blob: 053192bad6293d23fc87df6452623d43e7410707 [file] [log] [blame]
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkPathOpsPoint_DEFINED
#define SkPathOpsPoint_DEFINED
#include "include/core/SkPoint.h"
#include "include/core/SkTypes.h"
#include "include/private/base/SkTemplates.h"
#include "src/pathops/SkPathOpsTypes.h"
inline bool AlmostEqualUlps(const SkPoint& pt1, const SkPoint& pt2) {
return AlmostEqualUlps(pt1.fX, pt2.fX) && AlmostEqualUlps(pt1.fY, pt2.fY);
}
struct SkDVector {
double fX;
double fY;
SkDVector& set(const SkVector& pt) {
fX = pt.fX;
fY = pt.fY;
return *this;
}
// only used by testing
void operator+=(const SkDVector& v) {
fX += v.fX;
fY += v.fY;
}
// only called by nearestT, which is currently only used by testing
void operator-=(const SkDVector& v) {
fX -= v.fX;
fY -= v.fY;
}
// only used by testing
void operator/=(const double s) {
fX /= s;
fY /= s;
}
// only used by testing
void operator*=(const double s) {
fX *= s;
fY *= s;
}
SkVector asSkVector() const {
SkVector v = {SkDoubleToScalar(fX), SkDoubleToScalar(fY)};
return v;
}
// only used by testing
double cross(const SkDVector& a) const {
return fX * a.fY - fY * a.fX;
}
// similar to cross, this bastardization considers nearly coincident to be zero
// uses ulps epsilon == 16
double crossCheck(const SkDVector& a) const {
double xy = fX * a.fY;
double yx = fY * a.fX;
return AlmostEqualUlps(xy, yx) ? 0 : xy - yx;
}
// allow tinier numbers
double crossNoNormalCheck(const SkDVector& a) const {
double xy = fX * a.fY;
double yx = fY * a.fX;
return AlmostEqualUlpsNoNormalCheck(xy, yx) ? 0 : xy - yx;
}
double dot(const SkDVector& a) const {
return fX * a.fX + fY * a.fY;
}
double length() const {
return sqrt(lengthSquared());
}
double lengthSquared() const {
return fX * fX + fY * fY;
}
SkDVector& normalize() {
double inverseLength = sk_ieee_double_divide(1, this->length());
fX *= inverseLength;
fY *= inverseLength;
return *this;
}
bool isFinite() const {
return SkIsFinite(fX, fY);
}
};
struct SkDPoint {
double fX;
double fY;
void set(const SkPoint& pt) {
fX = pt.fX;
fY = pt.fY;
}
friend SkDVector operator-(const SkDPoint& a, const SkDPoint& b) {
return { a.fX - b.fX, a.fY - b.fY };
}
friend bool operator==(const SkDPoint& a, const SkDPoint& b) {
return a.fX == b.fX && a.fY == b.fY;
}
friend bool operator!=(const SkDPoint& a, const SkDPoint& b) {
return a.fX != b.fX || a.fY != b.fY;
}
void operator=(const SkPoint& pt) {
fX = pt.fX;
fY = pt.fY;
}
// only used by testing
void operator+=(const SkDVector& v) {
fX += v.fX;
fY += v.fY;
}
// only used by testing
void operator-=(const SkDVector& v) {
fX -= v.fX;
fY -= v.fY;
}
// only used by testing
SkDPoint operator+(const SkDVector& v) {
SkDPoint result = *this;
result += v;
return result;
}
// only used by testing
SkDPoint operator-(const SkDVector& v) {
SkDPoint result = *this;
result -= v;
return result;
}
// note: this can not be implemented with
// return approximately_equal(a.fY, fY) && approximately_equal(a.fX, fX);
// because that will not take the magnitude of the values into account
bool approximatelyDEqual(const SkDPoint& a) const {
if (approximately_equal(fX, a.fX) && approximately_equal(fY, a.fY)) {
return true;
}
if (!RoughlyEqualUlps(fX, a.fX) || !RoughlyEqualUlps(fY, a.fY)) {
return false;
}
double dist = distance(a); // OPTIMIZATION: can we compare against distSq instead ?
double tiniest = std::min(std::min(std::min(fX, a.fX), fY), a.fY);
double largest = std::max(std::max(std::max(fX, a.fX), fY), a.fY);
largest = std::max(largest, -tiniest);
return AlmostDequalUlps(largest, largest + dist); // is the dist within ULPS tolerance?
}
bool approximatelyDEqual(const SkPoint& a) const {
SkDPoint dA;
dA.set(a);
return approximatelyDEqual(dA);
}
bool approximatelyEqual(const SkDPoint& a) const {
if (approximately_equal(fX, a.fX) && approximately_equal(fY, a.fY)) {
return true;
}
if (!RoughlyEqualUlps(fX, a.fX) || !RoughlyEqualUlps(fY, a.fY)) {
return false;
}
double dist = distance(a); // OPTIMIZATION: can we compare against distSq instead ?
double tiniest = std::min(std::min(std::min(fX, a.fX), fY), a.fY);
double largest = std::max(std::max(std::max(fX, a.fX), fY), a.fY);
largest = std::max(largest, -tiniest);
return AlmostPequalUlps(largest, largest + dist); // is the dist within ULPS tolerance?
}
bool approximatelyEqual(const SkPoint& a) const {
SkDPoint dA;
dA.set(a);
return approximatelyEqual(dA);
}
static bool ApproximatelyEqual(const SkPoint& a, const SkPoint& b) {
if (approximately_equal(a.fX, b.fX) && approximately_equal(a.fY, b.fY)) {
return true;
}
if (!RoughlyEqualUlps(a.fX, b.fX) || !RoughlyEqualUlps(a.fY, b.fY)) {
return false;
}
SkDPoint dA, dB;
dA.set(a);
dB.set(b);
double dist = dA.distance(dB); // OPTIMIZATION: can we compare against distSq instead ?
float tiniest = std::min(std::min(std::min(a.fX, b.fX), a.fY), b.fY);
float largest = std::max(std::max(std::max(a.fX, b.fX), a.fY), b.fY);
largest = std::max(largest, -tiniest);
return AlmostDequalUlps((double) largest, largest + dist); // is dist within ULPS tolerance?
}
// only used by testing
bool approximatelyZero() const {
return approximately_zero(fX) && approximately_zero(fY);
}
SkPoint asSkPoint() const {
SkPoint pt = {SkDoubleToScalar(fX), SkDoubleToScalar(fY)};
return pt;
}
double distance(const SkDPoint& a) const {
SkDVector temp = *this - a;
return temp.length();
}
double distanceSquared(const SkDPoint& a) const {
SkDVector temp = *this - a;
return temp.lengthSquared();
}
static SkDPoint Mid(const SkDPoint& a, const SkDPoint& b) {
SkDPoint result;
result.fX = (a.fX + b.fX) / 2;
result.fY = (a.fY + b.fY) / 2;
return result;
}
bool roughlyEqual(const SkDPoint& a) const {
if (roughly_equal(fX, a.fX) && roughly_equal(fY, a.fY)) {
return true;
}
double dist = distance(a); // OPTIMIZATION: can we compare against distSq instead ?
double tiniest = std::min(std::min(std::min(fX, a.fX), fY), a.fY);
double largest = std::max(std::max(std::max(fX, a.fX), fY), a.fY);
largest = std::max(largest, -tiniest);
return RoughlyEqualUlps(largest, largest + dist); // is the dist within ULPS tolerance?
}
static bool RoughlyEqual(const SkPoint& a, const SkPoint& b) {
if (!RoughlyEqualUlps(a.fX, b.fX) && !RoughlyEqualUlps(a.fY, b.fY)) {
return false;
}
SkDPoint dA, dB;
dA.set(a);
dB.set(b);
double dist = dA.distance(dB); // OPTIMIZATION: can we compare against distSq instead ?
float tiniest = std::min(std::min(std::min(a.fX, b.fX), a.fY), b.fY);
float largest = std::max(std::max(std::max(a.fX, b.fX), a.fY), b.fY);
largest = std::max(largest, -tiniest);
return RoughlyEqualUlps((double) largest, largest + dist); // is dist within ULPS tolerance?
}
// very light weight check, should only be used for inequality check
static bool WayRoughlyEqual(const SkPoint& a, const SkPoint& b) {
float largestNumber = std::max(SkTAbs(a.fX), std::max(SkTAbs(a.fY),
std::max(SkTAbs(b.fX), SkTAbs(b.fY))));
SkVector diffs = a - b;
float largestDiff = std::max(diffs.fX, diffs.fY);
return roughly_zero_when_compared_to(largestDiff, largestNumber);
}
// utilities callable by the user from the debugger when the implementation code is linked in
void dump() const;
static void Dump(const SkPoint& pt);
static void DumpHex(const SkPoint& pt);
};
#endif