| /* |
| * Copyright 2016 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "include/private/SkColorData.h" |
| #include "src/base/SkUtils.h" |
| #include "src/base/SkVx.h" |
| #include "src/core/SkSwizzlePriv.h" |
| |
| #include <algorithm> |
| #include <cmath> |
| #include <utility> |
| |
| #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE1 |
| #include <immintrin.h> |
| #elif defined(SK_ARM_HAS_NEON) |
| #include <arm_neon.h> |
| #elif SK_CPU_LSX_LEVEL >= SK_CPU_LSX_LEVEL_LASX |
| #include <lasxintrin.h> |
| #elif SK_CPU_LSX_LEVEL >= SK_CPU_LSX_LEVEL_LSX |
| #include <lsxintrin.h> |
| #endif |
| |
| // This file is included in multiple translation units with different #defines set enabling |
| // different instruction use for different CPU architectures. |
| // |
| // A pair of files controls what #defines are defined: SkOpts_SetTarget.h set the flags, and |
| // SkOpts_RestoreTarget.h restores them. SkOpts_SetTarget is controlled by setting the |
| // SK_OPTS_TARGET define before included it. |
| // |
| // SkOpts_SetTarget also sets the #define SK_OPTS_NS to the unique namespace for this code. |
| |
| #if defined(__clang__) || defined(__GNUC__) |
| #define SI __attribute__((always_inline)) static inline |
| #else |
| #define SI static inline |
| #endif |
| |
| namespace SK_OPTS_NS { |
| |
| #if defined(SK_USE_FAST_UNPREMUL_324099025) |
| constexpr bool kFastUnpremul = true; |
| #else |
| constexpr bool kFastUnpremul = false; |
| #endif |
| |
| SI float reciprocal_alpha_times_255_portable(float a) { |
| return a != 0 ? 255.0f / a : 0.0f; |
| } |
| |
| SI float reciprocal_alpha_portable(float a) { |
| return a != 0 ? 1.0f / a : 0.0f; |
| } |
| |
| #if defined(SK_ARM_HAS_NEON) |
| // -- NEON -- Harden against timing attacks |
| // For neon, the portable versions create branchless code. |
| SI float reciprocal_alpha_times_255(float a) { |
| return reciprocal_alpha_times_255_portable(a); |
| } |
| |
| SI float reciprocal_alpha(float a) { |
| return reciprocal_alpha_portable(a); |
| } |
| #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE1 && (defined(__clang__) || !defined(_MSC_VER)) |
| // -- SSE -- Harden against timing attacks -- MSVC is not supported. |
| using F4 = __m128; |
| |
| SK_NO_SANITIZE("float-divide-by-zero") |
| SI float reciprocal_alpha_times_255(float a) { |
| SkASSERT(0 <= a && a <= 255); |
| F4 vA{a, a, a, a}; |
| auto q = F4{255.0f} / vA; |
| return _mm_and_ps(sk_bit_cast<__m128>(vA != F4{0.0f}), q)[0]; |
| } |
| |
| SK_NO_SANITIZE("float-divide-by-zero") |
| SI float reciprocal_alpha(float a) { |
| SkASSERT(0 <= a && a <= 1); |
| F4 vA{a, a, a, a}; |
| auto q = F4{1.0f} / vA; |
| return _mm_and_ps(sk_bit_cast<__m128>(vA != F4{0.0f}), q)[0]; |
| } |
| #else |
| // -- Portable -- *Not* hardened against timing attacks |
| SI float reciprocal_alpha_times_255(float a) { |
| return reciprocal_alpha_times_255_portable(a); |
| } |
| |
| SI float reciprocal_alpha(float a) { |
| return reciprocal_alpha_portable(a); |
| } |
| #endif |
| |
| static void RGBA_to_rgbA_portable(uint32_t* dst, const uint32_t* src, int count) { |
| for (int i = 0; i < count; i++) { |
| uint8_t a = (src[i] >> 24) & 0xFF, |
| b = (src[i] >> 16) & 0xFF, |
| g = (src[i] >> 8) & 0xFF, |
| r = (src[i] >> 0) & 0xFF; |
| b = (b*a+127)/255; |
| g = (g*a+127)/255; |
| r = (r*a+127)/255; |
| dst[i] = (uint32_t)a << 24 |
| | (uint32_t)b << 16 |
| | (uint32_t)g << 8 |
| | (uint32_t)r << 0; |
| } |
| } |
| |
| // RP uses the following rounding routines in store_8888. There are three different |
| // styles of rounding: |
| // 1) +0.5 and floor - used by scalar and ARMv7 |
| // 2) round to even for sure - ARMv8 |
| // 3) round to even maybe - intel. The rounding on intel depends on MXCSR which |
| // defaults to round to even. |
| // |
| // Note: that vrndns_f32 is the single float version of vcvtnq_u32_f32. |
| |
| SI uint32_t pixel_round_as_RP(float n) { |
| #if defined(SK_ARM_HAS_NEON) && defined(SK_CPU_ARM64) |
| return vrndns_f32(n); |
| #elif defined(SK_ARM_HAS_NEON) && !defined(SK_CPU_ARM64) |
| float32x4_t vN{n + 0.5f}; |
| return vcvtq_u32_f32(vN)[0]; |
| #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2 && (defined(__clang__) || !defined(_MSC_VER)) |
| return _mm_cvtps_epi32(__m128{n})[0]; |
| #else |
| return (uint32_t)(n + 0.5f); |
| #endif |
| } |
| |
| // Doing the math for an original color b resulting in a premul color x, |
| // x = ⌊(b * a + 127) / 255⌋, |
| // x ≤ (b * a + 127) / 255 < x + 1, |
| // 255 * x ≤ b * a + 127 < 255 * (x + 1), |
| // 255 * x - 127 ≤ b * a < 255 * (x + 1) - 127, |
| // 255 * x - 127 ≤ b * a < 255 * x + 128, |
| // (255 * x - 127) / a ≤ b < (255 * x + 128) / a. |
| // So, given a premul value x < a, the original color b can be in the above range. |
| // We can pick the middle of that range as |
| // b = 255 * x / a |
| // b = x * (255 / a) |
| SI uint32_t unpremul_quick(float reciprocalA, float c) { |
| return (uint32_t)std::min(255.0f, (c * reciprocalA + 0.5f)); |
| } |
| |
| // Similar to unpremul but simulates Raster Pipeline by normalizing the pixel on the interval |
| // [0, 1] and uses round-to-even in most cases instead of round-up. |
| SI uint32_t unpremul_simulating_RP(float reciprocalA, float c) { |
| const float normalizedC = c * (1.0f / 255.0f); |
| const float answer = std::min(255.0f, normalizedC * reciprocalA * 255.0f); |
| return pixel_round_as_RP(answer); |
| } |
| |
| SI uint32_t rgbA_to_CCCA(float c00, float c08, float c16, float a) { |
| if constexpr (kFastUnpremul) { |
| const float reciprocalA = reciprocal_alpha_times_255(a); |
| auto unpremul = [reciprocalA](float c) { |
| return unpremul_quick(reciprocalA, c); |
| }; |
| return (uint32_t) a << 24 |
| | unpremul(c16) << 16 |
| | unpremul(c08) << 8 |
| | unpremul(c00) << 0; |
| } else { |
| const float normalizedA = a * (1.0f / 255.0f); |
| const float reciprocalA = reciprocal_alpha(normalizedA); |
| auto unpremul = [reciprocalA](float c) { |
| return unpremul_simulating_RP(reciprocalA, c); |
| }; |
| return (uint32_t) a << 24 |
| | unpremul(c16) << 16 |
| | unpremul(c08) << 8 |
| | unpremul(c00) << 0; |
| } |
| } |
| |
| static void rgbA_to_RGBA_portable(uint32_t* dst, const uint32_t* src, int count) { |
| for (int i = 0; i < count; i++) { |
| const uint32_t p = src[i]; |
| |
| const float a = (p >> 24) & 0xFF, |
| b = (p >> 16) & 0xFF, |
| g = (p >> 8) & 0xFF, |
| r = (p >> 0) & 0xFF; |
| |
| dst[i] = rgbA_to_CCCA(r, g, b, a); |
| } |
| } |
| |
| static void rgbA_to_BGRA_portable(uint32_t* dst, const uint32_t* src, int count) { |
| for (int i = 0; i < count; i++) { |
| const uint32_t p = src[i]; |
| |
| const uint32_t a = (p >> 24) & 0xFF, |
| b = (p >> 16) & 0xFF, |
| g = (p >> 8) & 0xFF, |
| r = (p >> 0) & 0xFF; |
| |
| dst[i] = rgbA_to_CCCA(b, g, r, a); |
| } |
| } |
| |
| static void RGBA_to_bgrA_portable(uint32_t* dst, const uint32_t* src, int count) { |
| for (int i = 0; i < count; i++) { |
| uint8_t a = (src[i] >> 24) & 0xFF, |
| b = (src[i] >> 16) & 0xFF, |
| g = (src[i] >> 8) & 0xFF, |
| r = (src[i] >> 0) & 0xFF; |
| b = (b*a+127)/255; |
| g = (g*a+127)/255; |
| r = (r*a+127)/255; |
| dst[i] = (uint32_t)a << 24 |
| | (uint32_t)r << 16 |
| | (uint32_t)g << 8 |
| | (uint32_t)b << 0; |
| } |
| } |
| |
| static void RGBA_to_BGRA_portable(uint32_t* dst, const uint32_t* src, int count) { |
| for (int i = 0; i < count; i++) { |
| uint8_t a = (src[i] >> 24) & 0xFF, |
| b = (src[i] >> 16) & 0xFF, |
| g = (src[i] >> 8) & 0xFF, |
| r = (src[i] >> 0) & 0xFF; |
| dst[i] = (uint32_t)a << 24 |
| | (uint32_t)r << 16 |
| | (uint32_t)g << 8 |
| | (uint32_t)b << 0; |
| } |
| } |
| |
| static void grayA_to_RGBA_portable(uint32_t dst[], const uint8_t* src, int count) { |
| for (int i = 0; i < count; i++) { |
| uint8_t g = src[0], |
| a = src[1]; |
| src += 2; |
| dst[i] = (uint32_t)a << 24 |
| | (uint32_t)g << 16 |
| | (uint32_t)g << 8 |
| | (uint32_t)g << 0; |
| } |
| } |
| |
| static void grayA_to_rgbA_portable(uint32_t dst[], const uint8_t* src, int count) { |
| for (int i = 0; i < count; i++) { |
| uint8_t g = src[0], |
| a = src[1]; |
| src += 2; |
| g = (g*a+127)/255; |
| dst[i] = (uint32_t)a << 24 |
| | (uint32_t)g << 16 |
| | (uint32_t)g << 8 |
| | (uint32_t)g << 0; |
| } |
| } |
| |
| static void inverted_CMYK_to_RGB1_portable(uint32_t* dst, const uint32_t* src, int count) { |
| for (int i = 0; i < count; i++) { |
| uint8_t k = (src[i] >> 24) & 0xFF, |
| y = (src[i] >> 16) & 0xFF, |
| m = (src[i] >> 8) & 0xFF, |
| c = (src[i] >> 0) & 0xFF; |
| // See comments in SkSwizzler.cpp for details on the conversion formula. |
| uint8_t b = (y*k+127)/255, |
| g = (m*k+127)/255, |
| r = (c*k+127)/255; |
| dst[i] = (uint32_t)0xFF << 24 |
| | (uint32_t) b << 16 |
| | (uint32_t) g << 8 |
| | (uint32_t) r << 0; |
| } |
| } |
| |
| static void inverted_CMYK_to_BGR1_portable(uint32_t* dst, const uint32_t* src, int count) { |
| for (int i = 0; i < count; i++) { |
| uint8_t k = (src[i] >> 24) & 0xFF, |
| y = (src[i] >> 16) & 0xFF, |
| m = (src[i] >> 8) & 0xFF, |
| c = (src[i] >> 0) & 0xFF; |
| uint8_t b = (y*k+127)/255, |
| g = (m*k+127)/255, |
| r = (c*k+127)/255; |
| dst[i] = (uint32_t)0xFF << 24 |
| | (uint32_t) r << 16 |
| | (uint32_t) g << 8 |
| | (uint32_t) b << 0; |
| } |
| } |
| |
| #if defined(SK_ARM_HAS_NEON) |
| // -- NEON ----------------------------------------------------------------------------------------- |
| // Rounded divide by 255, (x + 127) / 255 |
| SI uint8x8_t div255_round(uint16x8_t x) { |
| // result = (x + 127) / 255 |
| // result = (x + 127) / 256 + error1 |
| // |
| // error1 = (x + 127) / (255 * 256) |
| // error1 = (x + 127) / (256 * 256) + error2 |
| // |
| // error2 = (x + 127) / (255 * 256 * 256) |
| // |
| // The maximum value of error2 is too small to matter. Thus: |
| // result = (x + 127) / 256 + (x + 127) / (256 * 256) |
| // result = ((x + 127) / 256 + x + 127) / 256 |
| // result = ((x + 127) >> 8 + x + 127) >> 8 |
| // |
| // Use >>> to represent "rounded right shift" which, conveniently, |
| // NEON supports in one instruction. |
| // result = ((x >>> 8) + x) >>> 8 |
| // |
| // Note that the second right shift is actually performed as an |
| // "add, round, and narrow back to 8-bits" instruction. |
| return vraddhn_u16(x, vrshrq_n_u16(x, 8)); |
| } |
| |
| // Scale a byte by another, (x * y + 127) / 255 |
| SI uint8x8_t scale(uint8x8_t x, uint8x8_t y) { |
| return div255_round(vmull_u8(x, y)); |
| } |
| |
| static void premul_should_swapRB(bool kSwapRB, uint32_t* dst, const uint32_t* src, int count) { |
| while (count >= 8) { |
| // Load 8 pixels. |
| uint8x8x4_t rgba = vld4_u8((const uint8_t*) src); |
| |
| uint8x8_t a = rgba.val[3], |
| b = rgba.val[2], |
| g = rgba.val[1], |
| r = rgba.val[0]; |
| |
| // Premultiply. |
| b = scale(b, a); |
| g = scale(g, a); |
| r = scale(r, a); |
| |
| // Store 8 premultiplied pixels. |
| if (kSwapRB) { |
| rgba.val[2] = r; |
| rgba.val[1] = g; |
| rgba.val[0] = b; |
| } else { |
| rgba.val[2] = b; |
| rgba.val[1] = g; |
| rgba.val[0] = r; |
| } |
| vst4_u8((uint8_t*) dst, rgba); |
| src += 8; |
| dst += 8; |
| count -= 8; |
| } |
| |
| // Call portable code to finish up the tail of [0,8) pixels. |
| auto proc = kSwapRB ? RGBA_to_bgrA_portable : RGBA_to_rgbA_portable; |
| proc(dst, src, count); |
| } |
| |
| void RGBA_to_rgbA(uint32_t* dst, const uint32_t* src, int count) { |
| premul_should_swapRB(false, dst, src, count); |
| } |
| |
| void RGBA_to_bgrA(uint32_t* dst, const uint32_t* src, int count) { |
| premul_should_swapRB(true, dst, src, count); |
| } |
| |
| void RGBA_to_BGRA(uint32_t* dst, const uint32_t* src, int count) { |
| using std::swap; |
| while (count >= 16) { |
| // Load 16 pixels. |
| uint8x16x4_t rgba = vld4q_u8((const uint8_t*) src); |
| |
| // Swap r and b. |
| swap(rgba.val[0], rgba.val[2]); |
| |
| // Store 16 pixels. |
| vst4q_u8((uint8_t*) dst, rgba); |
| src += 16; |
| dst += 16; |
| count -= 16; |
| } |
| |
| if (count >= 8) { |
| // Load 8 pixels. |
| uint8x8x4_t rgba = vld4_u8((const uint8_t*) src); |
| |
| // Swap r and b. |
| swap(rgba.val[0], rgba.val[2]); |
| |
| // Store 8 pixels. |
| vst4_u8((uint8_t*) dst, rgba); |
| src += 8; |
| dst += 8; |
| count -= 8; |
| } |
| |
| RGBA_to_BGRA_portable(dst, src, count); |
| } |
| |
| static void expand_grayA(bool kPremul, uint32_t dst[], const uint8_t* src, int count) { |
| while (count >= 16) { |
| // Load 16 pixels. |
| uint8x16x2_t ga = vld2q_u8(src); |
| |
| // Premultiply if requested. |
| if (kPremul) { |
| ga.val[0] = vcombine_u8( |
| scale(vget_low_u8(ga.val[0]), vget_low_u8(ga.val[1])), |
| scale(vget_high_u8(ga.val[0]), vget_high_u8(ga.val[1]))); |
| } |
| |
| // Set each of the color channels. |
| uint8x16x4_t rgba; |
| rgba.val[0] = ga.val[0]; |
| rgba.val[1] = ga.val[0]; |
| rgba.val[2] = ga.val[0]; |
| rgba.val[3] = ga.val[1]; |
| |
| // Store 16 pixels. |
| vst4q_u8((uint8_t*) dst, rgba); |
| src += 16*2; |
| dst += 16; |
| count -= 16; |
| } |
| |
| if (count >= 8) { |
| // Load 8 pixels. |
| uint8x8x2_t ga = vld2_u8(src); |
| |
| // Premultiply if requested. |
| if (kPremul) { |
| ga.val[0] = scale(ga.val[0], ga.val[1]); |
| } |
| |
| // Set each of the color channels. |
| uint8x8x4_t rgba; |
| rgba.val[0] = ga.val[0]; |
| rgba.val[1] = ga.val[0]; |
| rgba.val[2] = ga.val[0]; |
| rgba.val[3] = ga.val[1]; |
| |
| // Store 8 pixels. |
| vst4_u8((uint8_t*) dst, rgba); |
| src += 8*2; |
| dst += 8; |
| count -= 8; |
| } |
| |
| auto proc = kPremul ? grayA_to_rgbA_portable : grayA_to_RGBA_portable; |
| proc(dst, src, count); |
| } |
| |
| void grayA_to_RGBA(uint32_t dst[], const uint8_t* src, int count) { |
| expand_grayA(false, dst, src, count); |
| } |
| |
| void grayA_to_rgbA(uint32_t dst[], const uint8_t* src, int count) { |
| expand_grayA(true, dst, src, count); |
| } |
| |
| enum Format { kRGB1, kBGR1 }; |
| static void inverted_cmyk_to(Format format, uint32_t* dst, const uint32_t* src, int count) { |
| while (count >= 8) { |
| // Load 8 cmyk pixels. |
| uint8x8x4_t pixels = vld4_u8((const uint8_t*) src); |
| |
| uint8x8_t k = pixels.val[3], |
| y = pixels.val[2], |
| m = pixels.val[1], |
| c = pixels.val[0]; |
| |
| // Scale to r, g, b. |
| uint8x8_t b = scale(y, k); |
| uint8x8_t g = scale(m, k); |
| uint8x8_t r = scale(c, k); |
| |
| // Store 8 rgba pixels. |
| if (kBGR1 == format) { |
| pixels.val[3] = vdup_n_u8(0xFF); |
| pixels.val[2] = r; |
| pixels.val[1] = g; |
| pixels.val[0] = b; |
| } else { |
| pixels.val[3] = vdup_n_u8(0xFF); |
| pixels.val[2] = b; |
| pixels.val[1] = g; |
| pixels.val[0] = r; |
| } |
| vst4_u8((uint8_t*) dst, pixels); |
| src += 8; |
| dst += 8; |
| count -= 8; |
| } |
| |
| auto proc = (kBGR1 == format) ? inverted_CMYK_to_BGR1_portable : inverted_CMYK_to_RGB1_portable; |
| proc(dst, src, count); |
| } |
| |
| void inverted_CMYK_to_RGB1(uint32_t dst[], const uint32_t* src, int count) { |
| inverted_cmyk_to(kRGB1, dst, src, count); |
| } |
| |
| void inverted_CMYK_to_BGR1(uint32_t dst[], const uint32_t* src, int count) { |
| inverted_cmyk_to(kBGR1, dst, src, count); |
| } |
| |
| template <bool swapRB> |
| static void common_rgbA_to_RGBA(uint32_t* dst, const uint32_t* src, int count) { |
| |
| // Only use the SIMD code if simulating RP, otherwise the quick code auto-vectorizes will |
| // enough on ARM to not need a SIMD implementation. |
| if constexpr (!kFastUnpremul) { |
| while (count >= 8) { |
| const uint8x8x4_t in = vld4_u8((const uint8_t*)src); |
| |
| auto round = [](float32x4_t v) -> uint32x4_t { |
| #if defined(SK_CPU_ARM64) |
| return vcvtnq_u32_f32(v); |
| #else |
| return vcvtq_u32_f32(v + 0.5f); |
| #endif |
| }; |
| |
| static constexpr float kN = 1.0f / 255.0f; |
| auto toNormalized = [](uint16x4_t v) -> float32x4_t { |
| return vcvtq_f32_u32(vmovl_u16(v)) * kN; |
| }; |
| |
| auto unpremulHalf = |
| [toNormalized, round](float32x4_t invA, uint16x4_t v) -> uint16x4_t { |
| const float32x4_t normalizedV = toNormalized(v); |
| const float32x4_t divided = invA * normalizedV; |
| const float32x4_t denormalized = divided * 255.0f; |
| const uint32x4_t rounded = round(denormalized); |
| return vqmovn_u32(rounded); |
| }; |
| |
| auto reciprocal = [](float32x4_t a) -> float32x4_t { |
| uint32x4_t mask = sk_bit_cast<uint32x4_t>(a != float32x4_t{0, 0, 0, 0}); |
| auto recip = 1.0f / a; |
| return sk_bit_cast<float32x4_t>(mask & sk_bit_cast<uint32x4_t>(recip)); |
| }; |
| |
| const uint8x8_t a = in.val[3]; |
| const uint16x8_t intA = vmovl_u8(a); |
| const float32x4_t invALow = reciprocal(toNormalized(vget_low_u16(intA))); |
| const float32x4_t invAHigh = reciprocal(toNormalized(vget_high_u16(intA))); |
| |
| auto unpremul = [unpremulHalf, invALow, invAHigh](uint8x8_t v) -> uint8x8_t { |
| const uint16x8_t to16 = vmovl_u8(v); |
| |
| const uint16x4_t low = unpremulHalf(invALow, vget_low_u16(to16)); |
| const uint16x4_t high = unpremulHalf(invAHigh, vget_high_u16(to16)); |
| |
| const uint16x8_t combined = vcombine_u16(low, high); |
| return vqmovn_u16(combined); |
| }; |
| |
| const uint8x8_t b = unpremul(in.val[2]); |
| const uint8x8_t g = unpremul(in.val[1]); |
| const uint8x8_t r = unpremul(in.val[0]); |
| |
| if constexpr (swapRB) { |
| const uint8x8x4_t out{b, g, r, a}; |
| vst4_u8((uint8_t*)dst, out); |
| } else { |
| const uint8x8x4_t out{r, g, b, a}; |
| vst4_u8((uint8_t*)dst, out); |
| } |
| |
| src += 8; |
| dst += 8; |
| count -= 8; |
| } |
| } |
| |
| // Handle the tail. Count will be < 8. |
| if constexpr (swapRB) { |
| rgbA_to_BGRA_portable(dst, src, count); |
| } else { |
| rgbA_to_RGBA_portable(dst, src, count); |
| } |
| } |
| |
| void rgbA_to_RGBA(uint32_t* dst, const uint32_t* src, int count) { |
| common_rgbA_to_RGBA</*swapRB=*/false>(dst, src, count); |
| } |
| |
| void rgbA_to_BGRA(uint32_t* dst, const uint32_t* src, int count) { |
| common_rgbA_to_RGBA</*swapRB=*/true>(dst, src, count); |
| } |
| |
| #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX2 |
| // -- AVX2 ----------------------------------------------------------------------------------------- |
| |
| // Scale a byte by another. |
| // Inputs are stored in 16-bit lanes, but are not larger than 8-bits. |
| static __m256i scale(__m256i x, __m256i y) { |
| const __m256i _128 = _mm256_set1_epi16(128); |
| const __m256i _257 = _mm256_set1_epi16(257); |
| |
| // (x+127)/255 == ((x+128)*257)>>16 for 0 <= x <= 255*255. |
| return _mm256_mulhi_epu16(_mm256_add_epi16(_mm256_mullo_epi16(x, y), _128), _257); |
| } |
| |
| static void premul_should_swapRB(bool kSwapRB, uint32_t* dst, const uint32_t* src, int count) { |
| |
| auto premul8 = [=](__m256i* lo, __m256i* hi) { |
| const __m256i zeros = _mm256_setzero_si256(); |
| __m256i planar; |
| if (kSwapRB) { |
| planar = _mm256_setr_epi8(2,6,10,14, 1,5,9,13, 0,4,8,12, 3,7,11,15, |
| 2,6,10,14, 1,5,9,13, 0,4,8,12, 3,7,11,15); |
| } else { |
| planar = _mm256_setr_epi8(0,4,8,12, 1,5,9,13, 2,6,10,14, 3,7,11,15, |
| 0,4,8,12, 1,5,9,13, 2,6,10,14, 3,7,11,15); |
| } |
| |
| // Swizzle the pixels to 8-bit planar. |
| *lo = _mm256_shuffle_epi8(*lo, planar); // rrrrgggg bbbbaaaa rrrrgggg bbbbaaaa |
| *hi = _mm256_shuffle_epi8(*hi, planar); // RRRRGGGG BBBBAAAA RRRRGGGG BBBBAAAA |
| __m256i rg = _mm256_unpacklo_epi32(*lo, *hi), // rrrrRRRR ggggGGGG rrrrRRRR ggggGGGG |
| ba = _mm256_unpackhi_epi32(*lo, *hi); // bbbbBBBB aaaaAAAA bbbbBBBB aaaaAAAA |
| |
| // Unpack to 16-bit planar. |
| __m256i r = _mm256_unpacklo_epi8(rg, zeros), // r_r_r_r_ R_R_R_R_ r_r_r_r_ R_R_R_R_ |
| g = _mm256_unpackhi_epi8(rg, zeros), // g_g_g_g_ G_G_G_G_ g_g_g_g_ G_G_G_G_ |
| b = _mm256_unpacklo_epi8(ba, zeros), // b_b_b_b_ B_B_B_B_ b_b_b_b_ B_B_B_B_ |
| a = _mm256_unpackhi_epi8(ba, zeros); // a_a_a_a_ A_A_A_A_ a_a_a_a_ A_A_A_A_ |
| |
| // Premultiply! |
| r = scale(r, a); |
| g = scale(g, a); |
| b = scale(b, a); |
| |
| // Repack into interlaced pixels. |
| rg = _mm256_or_si256(r, _mm256_slli_epi16(g, 8)); // rgrgrgrg RGRGRGRG rgrgrgrg RGRGRGRG |
| ba = _mm256_or_si256(b, _mm256_slli_epi16(a, 8)); // babababa BABABABA babababa BABABABA |
| *lo = _mm256_unpacklo_epi16(rg, ba); // rgbargba rgbargba rgbargba rgbargba |
| *hi = _mm256_unpackhi_epi16(rg, ba); // RGBARGBA RGBARGBA RGBARGBA RGBARGBA |
| }; |
| |
| while (count >= 16) { |
| __m256i lo = _mm256_loadu_si256((const __m256i*) (src + 0)), |
| hi = _mm256_loadu_si256((const __m256i*) (src + 8)); |
| |
| premul8(&lo, &hi); |
| |
| _mm256_storeu_si256((__m256i*) (dst + 0), lo); |
| _mm256_storeu_si256((__m256i*) (dst + 8), hi); |
| |
| src += 16; |
| dst += 16; |
| count -= 16; |
| } |
| |
| if (count >= 8) { |
| __m256i lo = _mm256_loadu_si256((const __m256i*) src), |
| hi = _mm256_setzero_si256(); |
| |
| premul8(&lo, &hi); |
| |
| _mm256_storeu_si256((__m256i*) dst, lo); |
| |
| src += 8; |
| dst += 8; |
| count -= 8; |
| } |
| |
| // Call portable code to finish up the tail of [0,8) pixels. |
| auto proc = kSwapRB ? RGBA_to_bgrA_portable : RGBA_to_rgbA_portable; |
| proc(dst, src, count); |
| } |
| |
| void RGBA_to_rgbA(uint32_t* dst, const uint32_t* src, int count) { |
| premul_should_swapRB(false, dst, src, count); |
| } |
| |
| void RGBA_to_bgrA(uint32_t* dst, const uint32_t* src, int count) { |
| premul_should_swapRB(true, dst, src, count); |
| } |
| |
| void RGBA_to_BGRA(uint32_t* dst, const uint32_t* src, int count) { |
| const __m256i swapRB = _mm256_setr_epi8(2,1,0,3, 6,5,4,7, 10,9,8,11, 14,13,12,15, |
| 2,1,0,3, 6,5,4,7, 10,9,8,11, 14,13,12,15); |
| |
| while (count >= 8) { |
| __m256i rgba = _mm256_loadu_si256((const __m256i*) src); |
| __m256i bgra = _mm256_shuffle_epi8(rgba, swapRB); |
| _mm256_storeu_si256((__m256i*) dst, bgra); |
| |
| src += 8; |
| dst += 8; |
| count -= 8; |
| } |
| |
| RGBA_to_BGRA_portable(dst, src, count); |
| } |
| |
| void grayA_to_RGBA(uint32_t dst[], const uint8_t* src, int count) { |
| while (count >= 16) { |
| __m256i ga = _mm256_loadu_si256((const __m256i*) src); |
| |
| __m256i gg = _mm256_or_si256(_mm256_and_si256(ga, _mm256_set1_epi16(0x00FF)), |
| _mm256_slli_epi16(ga, 8)); |
| |
| __m256i ggga_lo = _mm256_unpacklo_epi16(gg, ga); |
| __m256i ggga_hi = _mm256_unpackhi_epi16(gg, ga); |
| |
| // Shuffle for pixel reorder |
| // Note. 'p' stands for 'ggga' |
| // Before shuffle: |
| // ggga_lo = p0 p1 p2 p3 | p8 p9 p10 p11 |
| // ggga_hi = p4 p5 p6 p7 | p12 p13 p14 p15 |
| // |
| // After shuffle: |
| // ggga_lo_shuffle = p0 p1 p2 p3 | p4 p5 p6 p7 |
| // ggga_hi_shuffle = p8 p9 p10 p11 | p12 p13 p14 p15 |
| __m256i ggga_lo_shuffle = _mm256_permute2x128_si256(ggga_lo, ggga_hi, 0x20), |
| ggga_hi_shuffle = _mm256_permute2x128_si256(ggga_lo, ggga_hi, 0x31); |
| |
| _mm256_storeu_si256((__m256i*) (dst + 0), ggga_lo_shuffle); |
| _mm256_storeu_si256((__m256i*) (dst + 8), ggga_hi_shuffle); |
| |
| src += 16*2; |
| dst += 16; |
| count -= 16; |
| } |
| |
| grayA_to_RGBA_portable(dst, src, count); |
| } |
| |
| void grayA_to_rgbA(uint32_t dst[], const uint8_t* src, int count) { |
| while (count >= 16) { |
| __m256i grayA = _mm256_loadu_si256((const __m256i*) src); |
| |
| __m256i g0 = _mm256_and_si256(grayA, _mm256_set1_epi16(0x00FF)); |
| __m256i a0 = _mm256_srli_epi16(grayA, 8); |
| |
| // Premultiply |
| g0 = scale(g0, a0); |
| |
| __m256i gg = _mm256_or_si256(g0, _mm256_slli_epi16(g0, 8)); |
| __m256i ga = _mm256_or_si256(g0, _mm256_slli_epi16(a0, 8)); |
| |
| __m256i ggga_lo = _mm256_unpacklo_epi16(gg, ga); |
| __m256i ggga_hi = _mm256_unpackhi_epi16(gg, ga); |
| |
| // Shuffle for pixel reorder, similar as grayA_to_RGBA |
| __m256i ggga_lo_shuffle = _mm256_permute2x128_si256(ggga_lo, ggga_hi, 0x20), |
| ggga_hi_shuffle = _mm256_permute2x128_si256(ggga_lo, ggga_hi, 0x31); |
| |
| _mm256_storeu_si256((__m256i*) (dst + 0), ggga_lo_shuffle); |
| _mm256_storeu_si256((__m256i*) (dst + 8), ggga_hi_shuffle); |
| |
| src += 16*2; |
| dst += 16; |
| count -= 16; |
| } |
| |
| grayA_to_rgbA_portable(dst, src, count); |
| } |
| |
| enum Format { kRGB1, kBGR1 }; |
| static void inverted_cmyk_to(Format format, uint32_t* dst, const uint32_t* src, int count) { |
| auto convert8 = [=](__m256i* lo, __m256i* hi) { |
| const __m256i zeros = _mm256_setzero_si256(); |
| __m256i planar; |
| if (kBGR1 == format) { |
| planar = _mm256_setr_epi8(2,6,10,14, 1,5,9,13, 0,4,8,12, 3,7,11,15, |
| 2,6,10,14, 1,5,9,13, 0,4,8,12, 3,7,11,15); |
| } else { |
| planar = _mm256_setr_epi8(0,4,8,12, 1,5,9,13, 2,6,10,14, 3,7,11,15, |
| 0,4,8,12, 1,5,9,13, 2,6,10,14, 3,7,11,15); |
| } |
| |
| // Swizzle the pixels to 8-bit planar. |
| *lo = _mm256_shuffle_epi8(*lo, planar); // ccccmmmm yyyykkkk ccccmmmm yyyykkkk |
| *hi = _mm256_shuffle_epi8(*hi, planar); // CCCCMMMM YYYYKKKK CCCCMMMM YYYYKKKK |
| __m256i cm = _mm256_unpacklo_epi32(*lo, *hi), // ccccCCCC mmmmMMMM ccccCCCC mmmmMMMM |
| yk = _mm256_unpackhi_epi32(*lo, *hi); // yyyyYYYY kkkkKKKK yyyyYYYY kkkkKKKK |
| |
| // Unpack to 16-bit planar. |
| __m256i c = _mm256_unpacklo_epi8(cm, zeros), // c_c_c_c_ C_C_C_C_ c_c_c_c_ C_C_C_C_ |
| m = _mm256_unpackhi_epi8(cm, zeros), // m_m_m_m_ M_M_M_M_ m_m_m_m_ M_M_M_M_ |
| y = _mm256_unpacklo_epi8(yk, zeros), // y_y_y_y_ Y_Y_Y_Y_ y_y_y_y_ Y_Y_Y_Y_ |
| k = _mm256_unpackhi_epi8(yk, zeros); // k_k_k_k_ K_K_K_K_ k_k_k_k_ K_K_K_K_ |
| |
| // Scale to r, g, b. |
| __m256i r = scale(c, k), |
| g = scale(m, k), |
| b = scale(y, k); |
| |
| // Repack into interlaced pixels: |
| // rg = rgrgrgrg RGRGRGRG rgrgrgrg RGRGRGRG |
| // ba = b1b1b1b1 B1B1B1B1 b1b1b1b1 B1B1B1B1 |
| __m256i rg = _mm256_or_si256(r, _mm256_slli_epi16(g, 8)), |
| ba = _mm256_or_si256(b, _mm256_set1_epi16((uint16_t) 0xFF00)); |
| *lo = _mm256_unpacklo_epi16(rg, ba); // rgb1rgb1 rgb1rgb1 rgb1rgb1 rgb1rgb1 |
| *hi = _mm256_unpackhi_epi16(rg, ba); // RGB1RGB1 RGB1RGB1 RGB1RGB1 RGB1RGB1 |
| }; |
| |
| while (count >= 16) { |
| __m256i lo = _mm256_loadu_si256((const __m256i*) (src + 0)), |
| hi = _mm256_loadu_si256((const __m256i*) (src + 8)); |
| |
| convert8(&lo, &hi); |
| |
| _mm256_storeu_si256((__m256i*) (dst + 0), lo); |
| _mm256_storeu_si256((__m256i*) (dst + 8), hi); |
| |
| src += 16; |
| dst += 16; |
| count -= 16; |
| } |
| |
| if (count >= 8) { |
| __m256i lo = _mm256_loadu_si256((const __m256i*) src), |
| hi = _mm256_setzero_si256(); |
| |
| convert8(&lo, &hi); |
| |
| _mm256_storeu_si256((__m256i*) dst, lo); |
| |
| src += 8; |
| dst += 8; |
| count -= 8; |
| } |
| |
| auto proc = (kBGR1 == format) ? inverted_CMYK_to_BGR1_portable : inverted_CMYK_to_RGB1_portable; |
| proc(dst, src, count); |
| } |
| |
| void inverted_CMYK_to_RGB1(uint32_t dst[], const uint32_t* src, int count) { |
| inverted_cmyk_to(kRGB1, dst, src, count); |
| } |
| |
| void inverted_CMYK_to_BGR1(uint32_t dst[], const uint32_t* src, int count) { |
| inverted_cmyk_to(kBGR1, dst, src, count); |
| } |
| |
| void rgbA_to_RGBA(uint32_t* dst, const uint32_t* src, int count) { |
| rgbA_to_RGBA_portable(dst, src, count); |
| } |
| |
| void rgbA_to_BGRA(uint32_t* dst, const uint32_t* src, int count) { |
| rgbA_to_BGRA_portable(dst, src, count); |
| } |
| |
| #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSSE3 |
| // -- SSSE3 ---------------------------------------------------------------------------------------- |
| |
| // Scale a byte by another. |
| // Inputs are stored in 16-bit lanes, but are not larger than 8-bits. |
| static __m128i scale(__m128i x, __m128i y) { |
| const __m128i _128 = _mm_set1_epi16(128); |
| const __m128i _257 = _mm_set1_epi16(257); |
| |
| // (x+127)/255 == ((x+128)*257)>>16 for 0 <= x <= 255*255. |
| return _mm_mulhi_epu16(_mm_add_epi16(_mm_mullo_epi16(x, y), _128), _257); |
| } |
| |
| static void premul_should_swapRB(bool kSwapRB, uint32_t* dst, const uint32_t* src, int count) { |
| |
| auto premul8 = [=](__m128i* lo, __m128i* hi) { |
| const __m128i zeros = _mm_setzero_si128(); |
| __m128i planar; |
| if (kSwapRB) { |
| planar = _mm_setr_epi8(2,6,10,14, 1,5,9,13, 0,4,8,12, 3,7,11,15); |
| } else { |
| planar = _mm_setr_epi8(0,4,8,12, 1,5,9,13, 2,6,10,14, 3,7,11,15); |
| } |
| |
| // Swizzle the pixels to 8-bit planar. |
| *lo = _mm_shuffle_epi8(*lo, planar); // rrrrgggg bbbbaaaa |
| *hi = _mm_shuffle_epi8(*hi, planar); // RRRRGGGG BBBBAAAA |
| __m128i rg = _mm_unpacklo_epi32(*lo, *hi), // rrrrRRRR ggggGGGG |
| ba = _mm_unpackhi_epi32(*lo, *hi); // bbbbBBBB aaaaAAAA |
| |
| // Unpack to 16-bit planar. |
| __m128i r = _mm_unpacklo_epi8(rg, zeros), // r_r_r_r_ R_R_R_R_ |
| g = _mm_unpackhi_epi8(rg, zeros), // g_g_g_g_ G_G_G_G_ |
| b = _mm_unpacklo_epi8(ba, zeros), // b_b_b_b_ B_B_B_B_ |
| a = _mm_unpackhi_epi8(ba, zeros); // a_a_a_a_ A_A_A_A_ |
| |
| // Premultiply! |
| r = scale(r, a); |
| g = scale(g, a); |
| b = scale(b, a); |
| |
| // Repack into interlaced pixels. |
| rg = _mm_or_si128(r, _mm_slli_epi16(g, 8)); // rgrgrgrg RGRGRGRG |
| ba = _mm_or_si128(b, _mm_slli_epi16(a, 8)); // babababa BABABABA |
| *lo = _mm_unpacklo_epi16(rg, ba); // rgbargba rgbargba |
| *hi = _mm_unpackhi_epi16(rg, ba); // RGBARGBA RGBARGBA |
| }; |
| |
| while (count >= 8) { |
| __m128i lo = _mm_loadu_si128((const __m128i*) (src + 0)), |
| hi = _mm_loadu_si128((const __m128i*) (src + 4)); |
| |
| premul8(&lo, &hi); |
| |
| _mm_storeu_si128((__m128i*) (dst + 0), lo); |
| _mm_storeu_si128((__m128i*) (dst + 4), hi); |
| |
| src += 8; |
| dst += 8; |
| count -= 8; |
| } |
| |
| if (count >= 4) { |
| __m128i lo = _mm_loadu_si128((const __m128i*) src), |
| hi = _mm_setzero_si128(); |
| |
| premul8(&lo, &hi); |
| |
| _mm_storeu_si128((__m128i*) dst, lo); |
| |
| src += 4; |
| dst += 4; |
| count -= 4; |
| } |
| |
| // Call portable code to finish up the tail of [0,4) pixels. |
| auto proc = kSwapRB ? RGBA_to_bgrA_portable : RGBA_to_rgbA_portable; |
| proc(dst, src, count); |
| } |
| |
| void RGBA_to_rgbA(uint32_t* dst, const uint32_t* src, int count) { |
| premul_should_swapRB(false, dst, src, count); |
| } |
| |
| void RGBA_to_bgrA(uint32_t* dst, const uint32_t* src, int count) { |
| premul_should_swapRB(true, dst, src, count); |
| } |
| |
| void RGBA_to_BGRA(uint32_t* dst, const uint32_t* src, int count) { |
| const __m128i swapRB = _mm_setr_epi8(2,1,0,3, 6,5,4,7, 10,9,8,11, 14,13,12,15); |
| |
| while (count >= 4) { |
| __m128i rgba = _mm_loadu_si128((const __m128i*) src); |
| __m128i bgra = _mm_shuffle_epi8(rgba, swapRB); |
| _mm_storeu_si128((__m128i*) dst, bgra); |
| |
| src += 4; |
| dst += 4; |
| count -= 4; |
| } |
| |
| RGBA_to_BGRA_portable(dst, src, count); |
| } |
| |
| void grayA_to_RGBA(uint32_t dst[], const uint8_t* src, int count) { |
| while (count >= 8) { |
| __m128i ga = _mm_loadu_si128((const __m128i*) src); |
| |
| __m128i gg = _mm_or_si128(_mm_and_si128(ga, _mm_set1_epi16(0x00FF)), |
| _mm_slli_epi16(ga, 8)); |
| |
| __m128i ggga_lo = _mm_unpacklo_epi16(gg, ga); |
| __m128i ggga_hi = _mm_unpackhi_epi16(gg, ga); |
| |
| _mm_storeu_si128((__m128i*) (dst + 0), ggga_lo); |
| _mm_storeu_si128((__m128i*) (dst + 4), ggga_hi); |
| |
| src += 8*2; |
| dst += 8; |
| count -= 8; |
| } |
| |
| grayA_to_RGBA_portable(dst, src, count); |
| } |
| |
| void grayA_to_rgbA(uint32_t dst[], const uint8_t* src, int count) { |
| while (count >= 8) { |
| __m128i grayA = _mm_loadu_si128((const __m128i*) src); |
| |
| __m128i g0 = _mm_and_si128(grayA, _mm_set1_epi16(0x00FF)); |
| __m128i a0 = _mm_srli_epi16(grayA, 8); |
| |
| // Premultiply |
| g0 = scale(g0, a0); |
| |
| __m128i gg = _mm_or_si128(g0, _mm_slli_epi16(g0, 8)); |
| __m128i ga = _mm_or_si128(g0, _mm_slli_epi16(a0, 8)); |
| |
| |
| __m128i ggga_lo = _mm_unpacklo_epi16(gg, ga); |
| __m128i ggga_hi = _mm_unpackhi_epi16(gg, ga); |
| |
| _mm_storeu_si128((__m128i*) (dst + 0), ggga_lo); |
| _mm_storeu_si128((__m128i*) (dst + 4), ggga_hi); |
| |
| src += 8*2; |
| dst += 8; |
| count -= 8; |
| } |
| |
| grayA_to_rgbA_portable(dst, src, count); |
| } |
| |
| enum Format { kRGB1, kBGR1 }; |
| static void inverted_cmyk_to(Format format, uint32_t* dst, const uint32_t* src, int count) { |
| auto convert8 = [=](__m128i* lo, __m128i* hi) { |
| const __m128i zeros = _mm_setzero_si128(); |
| __m128i planar; |
| if (kBGR1 == format) { |
| planar = _mm_setr_epi8(2,6,10,14, 1,5,9,13, 0,4,8,12, 3,7,11,15); |
| } else { |
| planar = _mm_setr_epi8(0,4,8,12, 1,5,9,13, 2,6,10,14, 3,7,11,15); |
| } |
| |
| // Swizzle the pixels to 8-bit planar. |
| *lo = _mm_shuffle_epi8(*lo, planar); // ccccmmmm yyyykkkk |
| *hi = _mm_shuffle_epi8(*hi, planar); // CCCCMMMM YYYYKKKK |
| __m128i cm = _mm_unpacklo_epi32(*lo, *hi), // ccccCCCC mmmmMMMM |
| yk = _mm_unpackhi_epi32(*lo, *hi); // yyyyYYYY kkkkKKKK |
| |
| // Unpack to 16-bit planar. |
| __m128i c = _mm_unpacklo_epi8(cm, zeros), // c_c_c_c_ C_C_C_C_ |
| m = _mm_unpackhi_epi8(cm, zeros), // m_m_m_m_ M_M_M_M_ |
| y = _mm_unpacklo_epi8(yk, zeros), // y_y_y_y_ Y_Y_Y_Y_ |
| k = _mm_unpackhi_epi8(yk, zeros); // k_k_k_k_ K_K_K_K_ |
| |
| // Scale to r, g, b. |
| __m128i r = scale(c, k), |
| g = scale(m, k), |
| b = scale(y, k); |
| |
| // Repack into interlaced pixels. |
| __m128i rg = _mm_or_si128(r, _mm_slli_epi16(g, 8)), // rgrgrgrg RGRGRGRG |
| ba = _mm_or_si128(b, _mm_set1_epi16((uint16_t) 0xFF00)); // b1b1b1b1 B1B1B1B1 |
| *lo = _mm_unpacklo_epi16(rg, ba); // rgbargba rgbargba |
| *hi = _mm_unpackhi_epi16(rg, ba); // RGB1RGB1 RGB1RGB1 |
| }; |
| |
| while (count >= 8) { |
| __m128i lo = _mm_loadu_si128((const __m128i*) (src + 0)), |
| hi = _mm_loadu_si128((const __m128i*) (src + 4)); |
| |
| convert8(&lo, &hi); |
| |
| _mm_storeu_si128((__m128i*) (dst + 0), lo); |
| _mm_storeu_si128((__m128i*) (dst + 4), hi); |
| |
| src += 8; |
| dst += 8; |
| count -= 8; |
| } |
| |
| if (count >= 4) { |
| __m128i lo = _mm_loadu_si128((const __m128i*) src), |
| hi = _mm_setzero_si128(); |
| |
| convert8(&lo, &hi); |
| |
| _mm_storeu_si128((__m128i*) dst, lo); |
| |
| src += 4; |
| dst += 4; |
| count -= 4; |
| } |
| |
| auto proc = (kBGR1 == format) ? inverted_CMYK_to_BGR1_portable : inverted_CMYK_to_RGB1_portable; |
| proc(dst, src, count); |
| } |
| |
| void inverted_CMYK_to_RGB1(uint32_t dst[], const uint32_t* src, int count) { |
| inverted_cmyk_to(kRGB1, dst, src, count); |
| } |
| |
| void inverted_CMYK_to_BGR1(uint32_t dst[], const uint32_t* src, int count) { |
| inverted_cmyk_to(kBGR1, dst, src, count); |
| } |
| |
| void rgbA_to_RGBA(uint32_t* dst, const uint32_t* src, int count) { |
| rgbA_to_RGBA_portable(dst, src, count); |
| } |
| |
| void rgbA_to_BGRA(uint32_t* dst, const uint32_t* src, int count) { |
| rgbA_to_BGRA_portable(dst, src, count); |
| } |
| |
| #elif SK_CPU_LSX_LEVEL >= SK_CPU_LSX_LEVEL_LASX |
| // -- LASX ---------------------------------------------------------------------------------------- |
| |
| // Scale a byte by another. |
| // Inputs are stored in 16-bit lanes, but are not larger than 8-bits. |
| // (x+127)/255 == ((x+128)*257)>>16 |
| SI __m256i scale(__m256i x, __m256i y) { |
| const __m256i _128 = __lasx_xvreplgr2vr_h(128); |
| const __m256i _257 = __lasx_xvreplgr2vr_h(257); |
| |
| // (x+127)/255 == ((x+128)*257)>>16 |
| return __lasx_xvmuh_hu(__lasx_xvadd_h(__lasx_xvmul_h(x, y), _128), _257); |
| } |
| |
| static void premul_should_swapRB(bool kSwapRB, uint32_t* dst, const uint32_t* src, int count) { |
| auto premul8 = [=](__m256i* lo, __m256i* hi) { |
| const __m256i zeros = __lasx_xvldi(0); |
| __m256i planar = __lasx_xvldi(0); |
| if (kSwapRB) { |
| planar = __lasx_xvinsgr2vr_d(planar, 0x0d0905010e0a0602 ,0); |
| planar = __lasx_xvinsgr2vr_d(planar, 0x0f0b07030c080400 ,1); |
| planar = __lasx_xvinsgr2vr_d(planar, 0x0d0905010e0a0602 ,2); |
| planar = __lasx_xvinsgr2vr_d(planar, 0x0f0b07030c080400 ,3); |
| } else { |
| planar = __lasx_xvinsgr2vr_d(planar, 0x0d0905010c080400 ,0); |
| planar = __lasx_xvinsgr2vr_d(planar, 0x0f0b07030e0a0602 ,1); |
| planar = __lasx_xvinsgr2vr_d(planar, 0x0d0905010c080400 ,2); |
| planar = __lasx_xvinsgr2vr_d(planar, 0x0f0b07030e0a0602 ,3); |
| } |
| |
| // Swizzle the pixels to 8-bit planar. |
| *lo = __lasx_xvshuf_b(zeros, *lo, planar); // rrrrgggg bbbbaaaa rrrrgggg bbbbaaaa |
| *hi = __lasx_xvshuf_b(zeros, *hi, planar); // RRRRGGGG BBBBAAAA RRRRGGGG BBBBAAAA |
| __m256i rg = __lasx_xvilvl_w(*hi, *lo), // rrrrRRRR ggggGGGG rrrrRRRR ggggGGGG |
| ba = __lasx_xvilvh_w(*hi, *lo); // bbbbBBBB aaaaAAAA bbbbBBBB aaaaAAAA |
| |
| // Unpack to 16-bit planar. |
| __m256i r = __lasx_xvilvl_b(zeros, rg), // r_r_r_r_ R_R_R_R_ r_r_r_r_ R_R_R_R_ |
| g = __lasx_xvilvh_b(zeros, rg), // g_g_g_g_ G_G_G_G_ g_g_g_g_ G_G_G_G_ |
| b = __lasx_xvilvl_b(zeros, ba), // b_b_b_b_ B_B_B_B_ b_b_b_b_ B_B_B_B_ |
| a = __lasx_xvilvh_b(zeros, ba); // a_a_a_a_ A_A_A_A_ a_a_a_a_ A_A_A_A_ |
| |
| // Premultiply! |
| r = scale(r, a); |
| g = scale(g, a); |
| b = scale(b, a); |
| |
| // Repack into interlaced pixels. |
| rg = __lasx_xvor_v(r, __lasx_xvslli_h(g, 8)); // rgrgrgrg RGRGRGRG rgrgrgrg RGRGRGRG |
| ba = __lasx_xvor_v(b, __lasx_xvslli_h(a, 8)); // babababa BABABABA babababa BABABABA |
| *lo = __lasx_xvilvl_h(ba, rg); // rgbargba rgbargba rgbargba rgbargba |
| *hi = __lasx_xvilvh_h(ba, rg); // RGBARGBA RGBARGBA RGBARGBA RGBARGBA |
| }; |
| |
| while (count >= 16) { |
| __m256i lo = __lasx_xvld(src, 0), |
| hi = __lasx_xvld(src, 32); |
| |
| premul8(&lo, &hi); |
| |
| __lasx_xvst(lo, dst, 0); |
| __lasx_xvst(hi, dst, 32); |
| |
| src += 16; |
| dst += 16; |
| count -= 16; |
| } |
| |
| if (count >= 8) { |
| __m256i lo = __lasx_xvld(src, 0), |
| hi = __lasx_xvldi(0); |
| |
| premul8(&lo, &hi); |
| |
| __lasx_xvst(lo, dst, 0); |
| |
| src += 8; |
| dst += 8; |
| count -= 8; |
| } |
| |
| // Call portable code to finish up the tail of [0,4) pixels. |
| auto proc = kSwapRB ? RGBA_to_bgrA_portable : RGBA_to_rgbA_portable; |
| proc(dst, src, count); |
| } |
| |
| /*not static*/ inline void RGBA_to_rgbA(uint32_t* dst, const uint32_t* src, int count) { |
| premul_should_swapRB(false, dst, src, count); |
| } |
| |
| /*not static*/ inline void RGBA_to_bgrA(uint32_t* dst, const uint32_t* src, int count) { |
| premul_should_swapRB(true, dst, src, count); |
| } |
| |
| /*not static*/ inline void RGBA_to_BGRA(uint32_t* dst, const uint32_t* src, int count) { |
| while (count >= 8) { |
| __m256i rgba = __lasx_xvld(src, 0); |
| __m256i bgra = __lasx_xvshuf4i_b(rgba, 0xC6); |
| __lasx_xvst(bgra, dst, 0); |
| |
| src += 8; |
| dst += 8; |
| count -= 8; |
| } |
| |
| RGBA_to_BGRA_portable(dst, src, count); |
| } |
| |
| /*not static*/ inline void grayA_to_RGBA(uint32_t dst[], const uint8_t* src, int count) { |
| while (count >= 16) { |
| __m256i ga = __lasx_xvld(src, 0); |
| |
| __m256i gg = __lasx_xvor_v(__lasx_xvand_v(ga, __lasx_xvreplgr2vr_h(0x00FF)), |
| __lasx_xvslli_h(ga, 8)); |
| |
| __m256i ggga_lo = __lasx_xvilvl_h(ga, gg); |
| __m256i ggga_hi = __lasx_xvilvh_h(ga, gg); |
| |
| __lasx_xvst(__lasx_xvpermi_q(ggga_lo, ggga_hi, 0x02), dst, 0); |
| __lasx_xvst(__lasx_xvpermi_q(ggga_lo, ggga_hi, 0x13), dst, 32); |
| |
| src += 16*2; |
| dst += 16; |
| count -= 16; |
| } |
| |
| grayA_to_RGBA_portable(dst, src, count); |
| } |
| |
| /*not static*/ inline void grayA_to_rgbA(uint32_t dst[], const uint8_t* src, int count) { |
| while (count >= 16) { |
| __m256i grayA = __lasx_xvld(src, 0); |
| |
| __m256i val = __lasx_xvreplgr2vr_h(0x00FF); |
| |
| __m256i g0 = __lasx_xvand_v(grayA, val); |
| __m256i a0 = __lasx_xvsrli_h(grayA, 8); |
| |
| // Premultiply |
| g0 = scale(g0, a0); |
| |
| __m256i gg = __lasx_xvor_v(g0, __lasx_xvslli_h(g0, 8)); |
| __m256i ga = __lasx_xvor_v(g0, __lasx_xvslli_h(a0, 8)); |
| |
| __m256i ggga_lo = __lasx_xvilvl_h(ga, gg); |
| __m256i ggga_hi = __lasx_xvilvh_h(ga, gg); |
| |
| val = __lasx_xvpermi_q(ggga_lo, ggga_hi, 0x02); |
| __lasx_xvst(val, dst, 0); |
| |
| val = __lasx_xvpermi_q(ggga_lo, ggga_hi, 0x13); |
| __lasx_xvst(val, dst, 32); |
| |
| src += 16*2; |
| dst += 16; |
| count -= 16; |
| } |
| |
| grayA_to_rgbA_portable(dst, src, count); |
| } |
| |
| enum Format { kRGB1, kBGR1 }; |
| static void inverted_cmyk_to(Format format, uint32_t* dst, const uint32_t* src, int count) { |
| auto convert8 = [=](__m256i *lo, __m256i* hi) { |
| const __m256i zeros = __lasx_xvldi(0); |
| __m256i planar = __lasx_xvldi(0); |
| if (kBGR1 == format) { |
| planar = __lasx_xvinsgr2vr_d(planar, 0x0d0905010e0a0602 ,0); |
| planar = __lasx_xvinsgr2vr_d(planar, 0x0f0b07030c080400 ,1); |
| planar = __lasx_xvinsgr2vr_d(planar, 0x0d0905010e0a0602 ,2); |
| planar = __lasx_xvinsgr2vr_d(planar, 0x0f0b07030c080400 ,3); |
| } else { |
| planar = __lasx_xvinsgr2vr_d(planar, 0x0d0905010c080400 ,0); |
| planar = __lasx_xvinsgr2vr_d(planar, 0x0f0b07030e0a0602 ,1); |
| planar = __lasx_xvinsgr2vr_d(planar, 0x0d0905010c080400 ,2); |
| planar = __lasx_xvinsgr2vr_d(planar, 0x0f0b07030e0a0602 ,3); |
| } |
| |
| // Swizzle the pixels to 8-bit planar. |
| *lo = __lasx_xvshuf_b(zeros, *lo, planar); // ccccmmmm yyyykkkk ccccmmmm yyyykkkk |
| *hi = __lasx_xvshuf_b(zeros, *hi, planar); // CCCCMMMM YYYYKKKK CCCCMMMM YYYYKKKK |
| __m256i cm = __lasx_xvilvl_w(*hi, *lo), // ccccCCCC mmmmMMMM ccccCCCC mmmmMMMM |
| yk = __lasx_xvilvh_w(*hi, *lo); // yyyyYYYY kkkkKKKK yyyyYYYY kkkkKKKK |
| |
| // Unpack to 16-bit planar. |
| __m256i c = __lasx_xvilvl_b(zeros, cm), // c_c_c_c_ C_C_C_C_ c_c_c_c_ C_C_C_C_ |
| m = __lasx_xvilvh_b(zeros, cm), // m_m_m_m_ M_M_M_M_ m_m_m_m_ M_M_M_M_ |
| y = __lasx_xvilvl_b(zeros, yk), // y_y_y_y_ Y_Y_Y_Y_ y_y_y_y_ Y_Y_Y_Y_ |
| k = __lasx_xvilvh_b(zeros, yk); // k_k_k_k_ K_K_K_K_ k_k_k_k_ K_K_K_K_ |
| |
| // Scale to r, g, b. |
| __m256i r = scale(c, k), |
| g = scale(m, k), |
| b = scale(y, k); |
| |
| // Repack into interlaced pixels: |
| // rg = rgrgrgrg RGRGRGRG rgrgrgrg RGRGRGRG |
| // ba = b1b1b1b1 B1B1B1B1 b1b1b1b1 B1B1B1B1 |
| __m256i rg = __lasx_xvor_v(r, __lasx_xvslli_h(g, 8)), |
| ba = __lasx_xvor_v(b, __lasx_xvreplgr2vr_h(0xff00)); |
| *lo = __lasx_xvilvl_h(ba, rg); // rgb1rgb1 rgb1rgb1 rgb1rgb1 rgb1rgb1 |
| *hi = __lasx_xvilvh_h(ba, rg); // RGB1RGB1 RGB1RGB1 RGB1RGB1 RGB1RGB1 |
| }; |
| |
| while (count >= 16) { |
| __m256i lo = __lasx_xvld(src, 0), |
| hi = __lasx_xvld(src, 32); |
| |
| convert8(&lo, &hi); |
| |
| __lasx_xvst(lo, dst, 0); |
| __lasx_xvst(hi, dst, 32); |
| |
| src += 16; |
| dst += 16; |
| count -= 16; |
| } |
| |
| while (count >= 8) { |
| __m256i lo = __lasx_xvld(src, 0), |
| hi = __lasx_xvldi(0); |
| |
| convert8(&lo, &hi); |
| |
| __lasx_xvst(lo, dst, 0); |
| |
| src += 8; |
| dst += 8; |
| count -= 8; |
| } |
| |
| auto proc = (kBGR1 == format) ? inverted_CMYK_to_BGR1_portable : inverted_CMYK_to_RGB1_portable; |
| proc(dst, src, count); |
| } |
| |
| /*not static*/ inline void inverted_CMYK_to_RGB1(uint32_t dst[], const uint32_t* src, int count) { |
| inverted_cmyk_to(kRGB1, dst, src, count); |
| } |
| |
| /*not static*/ inline void inverted_CMYK_to_BGR1(uint32_t dst[], const uint32_t* src, int count) { |
| inverted_cmyk_to(kBGR1, dst, src, count); |
| } |
| |
| /*not static*/ inline void rgbA_to_RGBA(uint32_t* dst, const uint32_t* src, int count) { |
| rgbA_to_RGBA_portable(dst, src, count); |
| } |
| |
| /*not static*/ inline void rgbA_to_BGRA(uint32_t* dst, const uint32_t* src, int count) { |
| rgbA_to_BGRA_portable(dst, src, count); |
| } |
| |
| #elif SK_CPU_LSX_LEVEL >= SK_CPU_LSX_LEVEL_LSX |
| // -- LSX ----------------------------------------------------------------------------------------- |
| |
| // Scale a byte by another. |
| // Inputs are stored in 16-bit lanes, but are not larger than 8-bits. |
| SI __m128i scale(__m128i x, __m128i y) { |
| const __m128i _128 = __lsx_vreplgr2vr_h(128); |
| const __m128i _257 = __lsx_vreplgr2vr_h(257); |
| |
| // (x+127)/255 == ((x+128)*257)>>16 |
| return __lsx_vmuh_hu(__lsx_vadd_h(__lsx_vmul_h(x, y), _128), _257); |
| } |
| |
| static void premul_should_swapRB(bool kSwapRB, uint32_t* dst, const uint32_t* src, int count) { |
| |
| auto premul8 = [=](__m128i *lo, __m128i *hi){ |
| const __m128i zeros = __lsx_vldi(0); |
| __m128i planar = __lsx_vldi(0); |
| if (kSwapRB) { |
| planar = __lsx_vinsgr2vr_d(planar, 0x0d0905010e0a0602, 0); |
| planar = __lsx_vinsgr2vr_d(planar, 0x0f0b07030c080400, 1); |
| } else { |
| planar = __lsx_vinsgr2vr_d(planar, 0x0d0905010c080400, 0); |
| planar = __lsx_vinsgr2vr_d(planar, 0x0f0b07030e0a0602, 1); |
| } |
| |
| // Swizzle the pixels to 8-bit planar. |
| *lo = __lsx_vshuf_b(zeros, *lo, planar); // rrrrgggg bbbbaaaa |
| *hi = __lsx_vshuf_b(zeros, *hi, planar); // RRRRGGGG BBBBAAAA |
| __m128i rg = __lsx_vilvl_w(*hi, *lo), // rrrrRRRR ggggGGGG |
| ba = __lsx_vilvh_w(*hi, *lo); // bbbbBBBB aaaaAAAA |
| |
| // Unpack to 16-bit planar. |
| __m128i r = __lsx_vilvl_b(zeros, rg), // r_r_r_r_ R_R_R_R_ |
| g = __lsx_vilvh_b(zeros, rg), // g_g_g_g_ G_G_G_G_ |
| b = __lsx_vilvl_b(zeros, ba), // b_b_b_b_ B_B_B_B_ |
| a = __lsx_vilvh_b(zeros, ba); // a_a_a_a_ A_A_A_A_ |
| |
| // Premultiply! |
| r = scale(r, a); |
| g = scale(g, a); |
| b = scale(b, a); |
| |
| // Repack into interlaced pixels. |
| rg = __lsx_vor_v(r, __lsx_vslli_h(g, 8)); // rgrgrgrg RGRGRGRG |
| ba = __lsx_vor_v(b, __lsx_vslli_h(a, 8)); // babababa BABABABA |
| *lo = __lsx_vilvl_h(ba, rg); // rgbargba rgbargba |
| *hi = __lsx_vilvh_h(ba, rg); // RGBARGBA RGBARGBA |
| }; |
| while (count >= 8) { |
| __m128i lo = __lsx_vld(src ,0), |
| hi = __lsx_vld(src ,16); |
| |
| premul8(&lo, &hi); |
| |
| __lsx_vst(lo, dst, 0); |
| __lsx_vst(hi, dst, 16); |
| |
| src += 8; |
| dst += 8; |
| count -= 8; |
| } |
| |
| if (count >= 4) { |
| __m128i lo = __lsx_vld(src, 0), |
| hi = __lsx_vldi(0); |
| |
| premul8(&lo, &hi); |
| |
| __lsx_vst(lo, dst, 0); |
| |
| src += 4; |
| dst += 4; |
| count -= 4; |
| } |
| |
| // Call portable code to finish up the tail of [0,4) pixels. |
| auto proc = kSwapRB ? RGBA_to_bgrA_portable : RGBA_to_rgbA_portable; |
| proc(dst, src, count); |
| } |
| |
| /*not static*/ inline void RGBA_to_rgbA(uint32_t* dst, const uint32_t* src, int count) { |
| premul_should_swapRB(false, dst, src, count); |
| } |
| |
| /*not static*/ inline void RGBA_to_bgrA(uint32_t* dst, const uint32_t* src, int count) { |
| premul_should_swapRB(true, dst, src, count); |
| } |
| |
| /*not static*/ inline void RGBA_to_BGRA(uint32_t* dst, const uint32_t* src, int count) { |
| __m128i swapRB = __lsx_vldi(0); |
| swapRB = __lsx_vinsgr2vr_d(swapRB, 0x0704050603000102, 0); |
| swapRB = __lsx_vinsgr2vr_d(swapRB, 0x0f0c0d0e0b08090a, 1); |
| |
| while (count >= 4) { |
| __m128i rgba = __lsx_vld(src, 0); |
| __m128i bgra = __lsx_vshuf4i_b(rgba, 0xC6); |
| __lsx_vst(bgra, dst, 0); |
| |
| src += 4; |
| dst += 4; |
| count -= 4; |
| } |
| |
| RGBA_to_BGRA_portable(dst, src, count); |
| } |
| |
| /*not static*/ inline void grayA_to_RGBA(uint32_t dst[], const uint8_t* src, int count) { |
| while (count >= 8) { |
| __m128i ga = __lsx_vld(src, 0); |
| |
| __m128i gg = __lsx_vor_v(__lsx_vand_v(ga, __lsx_vreplgr2vr_h(0x00FF)), |
| __lsx_vslli_h(ga, 8)); |
| |
| __m128i ggga_lo = __lsx_vilvl_h(ga, gg); |
| __m128i ggga_hi = __lsx_vilvh_h(ga, gg); |
| |
| __lsx_vst(ggga_lo, dst, 0); |
| __lsx_vst(ggga_hi, dst, 16); |
| |
| src += 8*2; |
| dst += 8; |
| count -= 8; |
| } |
| |
| grayA_to_RGBA_portable(dst, src, count); |
| } |
| |
| /*not static*/ inline void grayA_to_rgbA(uint32_t dst[], const uint8_t* src, int count) { |
| while (count >= 8) { |
| __m128i grayA = __lsx_vld(src, 0); |
| |
| __m128i g0 = __lsx_vand_v(grayA, __lsx_vreplgr2vr_h(0x00FF)); |
| __m128i a0 = __lsx_vsrli_h(grayA, 8); |
| |
| // Premultiply |
| g0 = scale(g0, a0); |
| |
| __m128i gg = __lsx_vor_v(g0, __lsx_vslli_h(g0, 8)); |
| __m128i ga = __lsx_vor_v(g0, __lsx_vslli_h(a0, 8)); |
| |
| __m128i ggga_lo = __lsx_vilvl_h(ga, gg); |
| __m128i ggga_hi = __lsx_vilvh_h(ga, gg); |
| |
| __lsx_vst(ggga_lo, dst, 0); |
| __lsx_vst(ggga_hi, dst, 16); |
| |
| src += 8*2; |
| dst += 8; |
| count -= 8; |
| } |
| |
| grayA_to_rgbA_portable(dst, src, count); |
| } |
| |
| enum Format { kRGB1, kBGR1 }; |
| static void inverted_cmyk_to(Format format, uint32_t* dst, const uint32_t* src, int count) { |
| auto convert8 = [=](__m128i *lo, __m128i* hi) { |
| const __m128i zeros = __lsx_vldi(0); |
| __m128i planar = __lsx_vldi(0); |
| if (kBGR1 == format) { |
| planar = __lsx_vinsgr2vr_d(planar, 0x0d0905010e0a0602, 0); |
| planar = __lsx_vinsgr2vr_d(planar, 0x0f0b07030c080400, 1); |
| } else { |
| planar = __lsx_vinsgr2vr_d(planar, 0x0d0905010c080400, 0); |
| planar = __lsx_vinsgr2vr_d(planar, 0x0f0b07030e0a0602, 1); |
| } |
| |
| // Swizzle the pixels to 8-bit planar. |
| *lo = __lsx_vshuf_b(zeros, *lo, planar); // ccccmmmm yyyykkkk |
| *hi = __lsx_vshuf_b(zeros, *hi, planar); // CCCCMMMM YYYYKKKK |
| __m128i cm = __lsx_vilvl_w(*hi, *lo), // ccccCCCC mmmmMMMM |
| yk = __lsx_vilvh_w(*hi, *lo); // yyyyYYYY kkkkKKKK |
| |
| // Unpack to 16-bit planar. |
| __m128i c = __lsx_vilvl_b(zeros, cm), // c_c_c_c_ C_C_C_C_ |
| m = __lsx_vilvh_b(zeros, cm), // m_m_m_m_ M_M_M_M_ |
| y = __lsx_vilvl_b(zeros, yk), // y_y_y_y_ Y_Y_Y_Y_ |
| k = __lsx_vilvh_b(zeros, yk); // k_k_k_k_ K_K_K_K_ |
| |
| // Scale to r, g, b. |
| __m128i r = scale(c, k), |
| g = scale(m, k), |
| b = scale(y, k); |
| |
| // Repack into interlaced pixels. |
| // rgrgrgrg RGRGRGRG |
| // b1b1b1b1 B1B1B1B1 |
| __m128i rg = __lsx_vor_v(r, __lsx_vslli_h(g, 8)), |
| ba = __lsx_vor_v(b, __lsx_vreplgr2vr_h(0xff00)); |
| *lo = __lsx_vilvl_h(ba, rg); // rgbargba rgbargba |
| *hi = __lsx_vilvl_h(ba, rg); // RGB1RGB1 RGB1RGB1 |
| }; |
| |
| while (count >= 8) { |
| __m128i lo = __lsx_vld(src, 0), |
| hi = __lsx_vld(src, 16); |
| |
| convert8(&lo, &hi); |
| |
| __lsx_vst(lo, dst, 0); |
| __lsx_vst(hi, dst, 16); |
| |
| src += 8; |
| dst += 8; |
| count -= 8; |
| } |
| |
| if (count >= 4) { |
| __m128i lo = __lsx_vld(src, 0), |
| hi = __lsx_vldi(0); |
| |
| convert8(&lo, &hi); |
| |
| __lsx_vst(lo, dst, 0); |
| |
| src += 4; |
| dst += 4; |
| count -= 4; |
| } |
| |
| auto proc = (kBGR1 == format) ? inverted_CMYK_to_BGR1_portable : inverted_CMYK_to_RGB1_portable; |
| proc(dst, src, count); |
| } |
| |
| /*not static*/ inline void inverted_CMYK_to_RGB1(uint32_t dst[], const uint32_t* src, int count) { |
| inverted_cmyk_to(kRGB1, dst, src, count); |
| } |
| |
| /*not static*/ inline void inverted_CMYK_to_BGR1(uint32_t dst[], const uint32_t* src, int count) { |
| inverted_cmyk_to(kBGR1, dst, src, count); |
| } |
| |
| /*not static*/ inline void rgbA_to_RGBA(uint32_t* dst, const uint32_t* src, int count) { |
| rgbA_to_RGBA_portable(dst, src, count); |
| } |
| |
| /*not static*/ inline void rgbA_to_BGRA(uint32_t* dst, const uint32_t* src, int count) { |
| rgbA_to_BGRA_portable(dst, src, count); |
| } |
| |
| #else |
| // -- No Opts -------------------------------------------------------------------------------------- |
| |
| void rgbA_to_RGBA(uint32_t* dst, const uint32_t* src, int count) { |
| rgbA_to_RGBA_portable(dst, src, count); |
| } |
| |
| void rgbA_to_BGRA(uint32_t* dst, const uint32_t* src, int count) { |
| rgbA_to_BGRA_portable(dst, src, count); |
| } |
| |
| void RGBA_to_rgbA(uint32_t* dst, const uint32_t* src, int count) { |
| RGBA_to_rgbA_portable(dst, src, count); |
| } |
| |
| void RGBA_to_bgrA(uint32_t* dst, const uint32_t* src, int count) { |
| RGBA_to_bgrA_portable(dst, src, count); |
| } |
| |
| void RGBA_to_BGRA(uint32_t* dst, const uint32_t* src, int count) { |
| RGBA_to_BGRA_portable(dst, src, count); |
| } |
| |
| void grayA_to_RGBA(uint32_t dst[], const uint8_t* src, int count) { |
| grayA_to_RGBA_portable(dst, src, count); |
| } |
| |
| void grayA_to_rgbA(uint32_t dst[], const uint8_t* src, int count) { |
| grayA_to_rgbA_portable(dst, src, count); |
| } |
| |
| void inverted_CMYK_to_RGB1(uint32_t dst[], const uint32_t* src, int count) { |
| inverted_CMYK_to_RGB1_portable(dst, src, count); |
| } |
| |
| void inverted_CMYK_to_BGR1(uint32_t dst[], const uint32_t* src, int count) { |
| inverted_CMYK_to_BGR1_portable(dst, src, count); |
| } |
| #endif |
| |
| // Basically as above, but we found no benefit from AVX-512 for gray_to_RGB1. |
| static void gray_to_RGB1_portable(uint32_t dst[], const uint8_t* src, int count) { |
| for (int i = 0; i < count; i++) { |
| dst[i] = (uint32_t)0xFF << 24 |
| | (uint32_t)src[i] << 16 |
| | (uint32_t)src[i] << 8 |
| | (uint32_t)src[i] << 0; |
| } |
| } |
| #if defined(SK_ARM_HAS_NEON) |
| void gray_to_RGB1(uint32_t dst[], const uint8_t* src, int count) { |
| while (count >= 16) { |
| // Load 16 pixels. |
| uint8x16_t gray = vld1q_u8(src); |
| |
| // Set each of the color channels. |
| uint8x16x4_t rgba; |
| rgba.val[0] = gray; |
| rgba.val[1] = gray; |
| rgba.val[2] = gray; |
| rgba.val[3] = vdupq_n_u8(0xFF); |
| |
| // Store 16 pixels. |
| vst4q_u8((uint8_t*) dst, rgba); |
| src += 16; |
| dst += 16; |
| count -= 16; |
| } |
| if (count >= 8) { |
| // Load 8 pixels. |
| uint8x8_t gray = vld1_u8(src); |
| |
| // Set each of the color channels. |
| uint8x8x4_t rgba; |
| rgba.val[0] = gray; |
| rgba.val[1] = gray; |
| rgba.val[2] = gray; |
| rgba.val[3] = vdup_n_u8(0xFF); |
| |
| // Store 8 pixels. |
| vst4_u8((uint8_t*) dst, rgba); |
| src += 8; |
| dst += 8; |
| count -= 8; |
| } |
| gray_to_RGB1_portable(dst, src, count); |
| } |
| #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX2 |
| void gray_to_RGB1(uint32_t dst[], const uint8_t* src, int count) { |
| const __m256i alphas = _mm256_set1_epi8((uint8_t) 0xFF); |
| while (count >= 32) { |
| __m256i grays = _mm256_loadu_si256((const __m256i*) src); |
| |
| __m256i gg_lo = _mm256_unpacklo_epi8(grays, grays); |
| __m256i gg_hi = _mm256_unpackhi_epi8(grays, grays); |
| __m256i ga_lo = _mm256_unpacklo_epi8(grays, alphas); |
| __m256i ga_hi = _mm256_unpackhi_epi8(grays, alphas); |
| |
| __m256i ggga0 = _mm256_unpacklo_epi16(gg_lo, ga_lo); |
| __m256i ggga1 = _mm256_unpackhi_epi16(gg_lo, ga_lo); |
| __m256i ggga2 = _mm256_unpacklo_epi16(gg_hi, ga_hi); |
| __m256i ggga3 = _mm256_unpackhi_epi16(gg_hi, ga_hi); |
| |
| // Shuffle for pixel reorder. |
| // Note. 'p' stands for 'ggga' |
| // Before shuffle: |
| // ggga0 = p0 p1 p2 p3 | p16 p17 p18 p19 |
| // ggga1 = p4 p5 p6 p7 | p20 p21 p22 p23 |
| // ggga2 = p8 p9 p10 p11 | p24 p25 p26 p27 |
| // ggga3 = p12 p13 p14 p15 | p28 p29 p30 p31 |
| // |
| // After shuffle: |
| // ggga0_shuffle = p0 p1 p2 p3 | p4 p5 p6 p7 |
| // ggga1_shuffle = p8 p9 p10 p11 | p12 p13 p14 p15 |
| // ggga2_shuffle = p16 p17 p18 p19 | p20 p21 p22 p23 |
| // ggga3_shuffle = p24 p25 p26 p27 | p28 p29 p30 p31 |
| __m256i ggga0_shuffle = _mm256_permute2x128_si256(ggga0, ggga1, 0x20), |
| ggga1_shuffle = _mm256_permute2x128_si256(ggga2, ggga3, 0x20), |
| ggga2_shuffle = _mm256_permute2x128_si256(ggga0, ggga1, 0x31), |
| ggga3_shuffle = _mm256_permute2x128_si256(ggga2, ggga3, 0x31); |
| |
| _mm256_storeu_si256((__m256i*) (dst + 0), ggga0_shuffle); |
| _mm256_storeu_si256((__m256i*) (dst + 8), ggga1_shuffle); |
| _mm256_storeu_si256((__m256i*) (dst + 16), ggga2_shuffle); |
| _mm256_storeu_si256((__m256i*) (dst + 24), ggga3_shuffle); |
| |
| src += 32; |
| dst += 32; |
| count -= 32; |
| } |
| gray_to_RGB1_portable(dst, src, count); |
| } |
| #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSSE3 // TODO: just check >= SSE2? |
| void gray_to_RGB1(uint32_t dst[], const uint8_t* src, int count) { |
| const __m128i alphas = _mm_set1_epi8((uint8_t) 0xFF); |
| while (count >= 16) { |
| __m128i grays = _mm_loadu_si128((const __m128i*) src); |
| |
| __m128i gg_lo = _mm_unpacklo_epi8(grays, grays); |
| __m128i gg_hi = _mm_unpackhi_epi8(grays, grays); |
| __m128i ga_lo = _mm_unpacklo_epi8(grays, alphas); |
| __m128i ga_hi = _mm_unpackhi_epi8(grays, alphas); |
| |
| __m128i ggga0 = _mm_unpacklo_epi16(gg_lo, ga_lo); |
| __m128i ggga1 = _mm_unpackhi_epi16(gg_lo, ga_lo); |
| __m128i ggga2 = _mm_unpacklo_epi16(gg_hi, ga_hi); |
| __m128i ggga3 = _mm_unpackhi_epi16(gg_hi, ga_hi); |
| |
| _mm_storeu_si128((__m128i*) (dst + 0), ggga0); |
| _mm_storeu_si128((__m128i*) (dst + 4), ggga1); |
| _mm_storeu_si128((__m128i*) (dst + 8), ggga2); |
| _mm_storeu_si128((__m128i*) (dst + 12), ggga3); |
| |
| src += 16; |
| dst += 16; |
| count -= 16; |
| } |
| gray_to_RGB1_portable(dst, src, count); |
| } |
| #elif SK_CPU_LSX_LEVEL >= SK_CPU_LSX_LEVEL_LASX |
| /*not static*/ inline void gray_to_RGB1(uint32_t dst[], const uint8_t* src, int count) { |
| const __m256i alphas = __lasx_xvreplgr2vr_b(0xFF); |
| while (count >= 32) { |
| __m256i grays = __lasx_xvld(src, 0); |
| |
| __m256i gg_lo = __lasx_xvilvl_b(grays, grays); |
| __m256i gg_hi = __lasx_xvilvh_b(grays, grays); |
| __m256i ga_lo = __lasx_xvilvl_b(alphas, grays); |
| __m256i ga_hi = __lasx_xvilvh_b(alphas, grays); |
| |
| __m256i ggga0 = __lasx_xvilvl_h(ga_lo, gg_lo); |
| __m256i ggga1 = __lasx_xvilvh_h(ga_lo, gg_lo); |
| __m256i ggga2 = __lasx_xvilvl_h(ga_hi, gg_hi); |
| __m256i ggga3 = __lasx_xvilvh_h(ga_hi, gg_hi); |
| |
| __m256i ggga_0 = __lasx_xvpermi_q(ggga0, ggga1, 0x02); |
| __m256i ggga_1 = __lasx_xvpermi_q(ggga2, ggga3, 0x02); |
| __m256i ggga_2 = __lasx_xvpermi_q(ggga0, ggga1, 0x13); |
| __m256i ggga_3 = __lasx_xvpermi_q(ggga2, ggga3, 0x13); |
| |
| __lasx_xvst(ggga_0, dst, 0); |
| __lasx_xvst(ggga_1, dst, 32); |
| __lasx_xvst(ggga_2, dst, 64); |
| __lasx_xvst(ggga_3, dst, 96); |
| |
| src += 32; |
| dst += 32; |
| count -= 32; |
| } |
| gray_to_RGB1_portable(dst, src, count); |
| } |
| #elif SK_CPU_LSX_LEVEL >= SK_CPU_LSX_LEVEL_LSX |
| /*not static*/ inline void gray_to_RGB1(uint32_t dst[], const uint8_t* src, int count) { |
| const __m128i alphas = __lsx_vreplgr2vr_b(0xFF); |
| while (count >= 16) { |
| __m128i grays = __lsx_vld(src, 0); |
| |
| __m128i gg_lo = __lsx_vilvl_b(grays, grays); |
| __m128i gg_hi = __lsx_vilvh_b(grays, grays); |
| __m128i ga_lo = __lsx_vilvl_b(alphas, grays); |
| __m128i ga_hi = __lsx_vilvh_b(alphas, grays); |
| |
| __m128i ggga0 = __lsx_vilvl_h(ga_lo, gg_lo); |
| __m128i ggga1 = __lsx_vilvh_h(ga_lo, gg_lo); |
| __m128i ggga2 = __lsx_vilvl_h(ga_hi, gg_hi); |
| __m128i ggga3 = __lsx_vilvh_h(ga_hi, gg_hi); |
| |
| __lsx_vst(ggga0, dst, 0); |
| __lsx_vst(ggga1, dst, 16); |
| __lsx_vst(ggga2, dst, 32); |
| __lsx_vst(ggga3, dst, 48); |
| |
| src += 16; |
| dst += 16; |
| count -= 16; |
| } |
| gray_to_RGB1_portable(dst, src, count); |
| } |
| #else |
| void gray_to_RGB1(uint32_t dst[], const uint8_t* src, int count) { |
| gray_to_RGB1_portable(dst, src, count); |
| } |
| #endif |
| |
| // Again as above, this time not even finding benefit from AVX2 for RGB_to_{RGB,BGR}1. |
| static void RGB_to_RGB1_portable(uint32_t dst[], const uint8_t* src, int count) { |
| for (int i = 0; i < count; i++) { |
| uint8_t r = src[0], |
| g = src[1], |
| b = src[2]; |
| src += 3; |
| dst[i] = (uint32_t)0xFF << 24 |
| | (uint32_t)b << 16 |
| | (uint32_t)g << 8 |
| | (uint32_t)r << 0; |
| } |
| } |
| static void RGB_to_BGR1_portable(uint32_t dst[], const uint8_t* src, int count) { |
| for (int i = 0; i < count; i++) { |
| uint8_t r = src[0], |
| g = src[1], |
| b = src[2]; |
| src += 3; |
| dst[i] = (uint32_t)0xFF << 24 |
| | (uint32_t)r << 16 |
| | (uint32_t)g << 8 |
| | (uint32_t)b << 0; |
| } |
| } |
| #if defined(SK_ARM_HAS_NEON) |
| static void insert_alpha_should_swaprb(bool kSwapRB, |
| uint32_t dst[], const uint8_t* src, int count) { |
| while (count >= 16) { |
| // Load 16 pixels. |
| uint8x16x3_t rgb = vld3q_u8(src); |
| |
| // Insert an opaque alpha channel and swap if needed. |
| uint8x16x4_t rgba; |
| if (kSwapRB) { |
| rgba.val[0] = rgb.val[2]; |
| rgba.val[2] = rgb.val[0]; |
| } else { |
| rgba.val[0] = rgb.val[0]; |
| rgba.val[2] = rgb.val[2]; |
| } |
| rgba.val[1] = rgb.val[1]; |
| rgba.val[3] = vdupq_n_u8(0xFF); |
| |
| // Store 16 pixels. |
| vst4q_u8((uint8_t*) dst, rgba); |
| src += 16*3; |
| dst += 16; |
| count -= 16; |
| } |
| |
| if (count >= 8) { |
| // Load 8 pixels. |
| uint8x8x3_t rgb = vld3_u8(src); |
| |
| // Insert an opaque alpha channel and swap if needed. |
| uint8x8x4_t rgba; |
| if (kSwapRB) { |
| rgba.val[0] = rgb.val[2]; |
| rgba.val[2] = rgb.val[0]; |
| } else { |
| rgba.val[0] = rgb.val[0]; |
| rgba.val[2] = rgb.val[2]; |
| } |
| rgba.val[1] = rgb.val[1]; |
| rgba.val[3] = vdup_n_u8(0xFF); |
| |
| // Store 8 pixels. |
| vst4_u8((uint8_t*) dst, rgba); |
| src += 8*3; |
| dst += 8; |
| count -= 8; |
| } |
| |
| // Call portable code to finish up the tail of [0,8) pixels. |
| auto proc = kSwapRB ? RGB_to_BGR1_portable : RGB_to_RGB1_portable; |
| proc(dst, src, count); |
| } |
| |
| void RGB_to_RGB1(uint32_t dst[], const uint8_t* src, int count) { |
| insert_alpha_should_swaprb(false, dst, src, count); |
| } |
| void RGB_to_BGR1(uint32_t dst[], const uint8_t* src, int count) { |
| insert_alpha_should_swaprb(true, dst, src, count); |
| } |
| #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSSE3 |
| static void insert_alpha_should_swaprb(bool kSwapRB, |
| uint32_t dst[], const uint8_t* src, int count) { |
| const __m128i alphaMask = _mm_set1_epi32(0xFF000000); |
| __m128i expand; |
| const uint8_t X = 0xFF; // Used a placeholder. The value of X is irrelevant. |
| if (kSwapRB) { |
| expand = _mm_setr_epi8(2,1,0,X, 5,4,3,X, 8,7,6,X, 11,10,9,X); |
| } else { |
| expand = _mm_setr_epi8(0,1,2,X, 3,4,5,X, 6,7,8,X, 9,10,11,X); |
| } |
| |
| while (count >= 6) { |
| // Load a vector. While this actually contains 5 pixels plus an |
| // extra component, we will discard all but the first four pixels on |
| // this iteration. |
| __m128i rgb = _mm_loadu_si128((const __m128i*) src); |
| |
| // Expand the first four pixels to RGBX and then mask to RGB(FF). |
| __m128i rgba = _mm_or_si128(_mm_shuffle_epi8(rgb, expand), alphaMask); |
| |
| // Store 4 pixels. |
| _mm_storeu_si128((__m128i*) dst, rgba); |
| |
| src += 4*3; |
| dst += 4; |
| count -= 4; |
| } |
| |
| // Call portable code to finish up the tail of [0,4) pixels. |
| auto proc = kSwapRB ? RGB_to_BGR1_portable : RGB_to_RGB1_portable; |
| proc(dst, src, count); |
| } |
| |
| void RGB_to_RGB1(uint32_t dst[], const uint8_t* src, int count) { |
| insert_alpha_should_swaprb(false, dst, src, count); |
| } |
| void RGB_to_BGR1(uint32_t dst[], const uint8_t* src, int count) { |
| insert_alpha_should_swaprb(true, dst, src, count); |
| } |
| #elif SK_CPU_LSX_LEVEL >= SK_CPU_LSX_LEVEL_LASX |
| static void insert_alpha_should_swaprb(bool kSwapRB, |
| uint32_t dst[], const uint8_t* src, int count) { |
| const __m256i alphaMask = __lasx_xvreplgr2vr_w(0xFF000000); |
| |
| __m256i expand = __lasx_xvldi(0); |
| if (kSwapRB) { |
| expand = __lasx_xvinsgr2vr_d(expand, 0x0503040502000102, 0); |
| expand = __lasx_xvinsgr2vr_d(expand, 0x0b090a0b08060708, 1); |
| expand = __lasx_xvinsgr2vr_d(expand, 0x110f10110e0c0d0e, 2); |
| expand = __lasx_xvinsgr2vr_d(expand, 0x1715161714121314, 3); |
| } else { |
| expand = __lasx_xvinsgr2vr_d(expand, 0x0505040302020100, 0); |
| expand = __lasx_xvinsgr2vr_d(expand, 0x0b0b0a0908080706, 1); |
| expand = __lasx_xvinsgr2vr_d(expand, 0x1111100f0e0e0d0c, 2); |
| expand = __lasx_xvinsgr2vr_d(expand, 0x1717161514141312, 3); |
| } |
| |
| while (count >= 8) { |
| // Load a vector. While this actually contains 5 pixels plus an |
| // extra component, we will discard all but the first four pixels on |
| // this iteration. |
| __m256i rgb = __lasx_xvld(src, 0); |
| __m256i rgb_l = __lasx_xvpermi_d(rgb, 0x44); |
| __m256i rgb_h = __lasx_xvpermi_d(rgb, 0xEE); |
| |
| // Expand the first four pixels to RGBX and then mask to RGB(FF). |
| __m256i rgba = __lasx_xvor_v(__lasx_xvshuf_b(rgb_h, rgb_l, expand), alphaMask); |
| |
| // Store 8 pixels. |
| __lasx_xvst(rgba, dst, 0); |
| |
| src += 4*6; |
| dst += 8; |
| count -= 8; |
| } |
| |
| // Call portable code to finish up the tail of [0,4) pixels. |
| auto proc = kSwapRB ? RGB_to_BGR1_portable : RGB_to_RGB1_portable; |
| proc(dst, src, count); |
| } |
| /*not static*/ inline void RGB_to_RGB1(uint32_t dst[], const uint8_t* src, int count) { |
| insert_alpha_should_swaprb(false, dst, src, count); |
| } |
| /*not static*/ inline void RGB_to_BGR1(uint32_t dst[], const uint8_t* src, int count) { |
| insert_alpha_should_swaprb(true, dst, src, count); |
| } |
| #elif SK_CPU_LSX_LEVEL >= SK_CPU_LSX_LEVEL_LSX |
| static void insert_alpha_should_swaprb(bool kSwapRB, |
| uint32_t dst[], const uint8_t* src, int count) { |
| const __m128i alphaMask = __lsx_vreplgr2vr_w(0xFF000000); |
| |
| __m128i expand = __lsx_vldi(0); |
| if (kSwapRB) { |
| expand = __lsx_vinsgr2vr_d(expand, 0x0503040502000102, 0); |
| expand = __lsx_vinsgr2vr_d(expand, 0x0b090a0b08060708, 1); |
| } else { |
| expand = __lsx_vinsgr2vr_d(expand, 0x0505040302020100, 0); |
| expand = __lsx_vinsgr2vr_d(expand, 0x0b0b0a0908080706, 1); |
| } |
| |
| while (count >= 6) { |
| // Load a vector. While this actually contains 5 pixels plus an |
| // extra component, we will discard all but the first four pixels on |
| // this iteration. |
| __m128i rgb = __lsx_vld(src, 0); |
| |
| // Expand the first four pixels to RGBX and then mask to RGB(FF). |
| __m128i rgba = __lsx_vor_v(__lsx_vshuf_b(rgb, rgb, expand), alphaMask); |
| |
| // Store 4 pixels. |
| __lsx_vst(rgba, dst, 0); |
| |
| src += 4*3; |
| dst += 4; |
| count -= 4; |
| } |
| |
| // Call portable code to finish up the tail of [0,4) pixels. |
| auto proc = kSwapRB ? RGB_to_BGR1_portable : RGB_to_RGB1_portable; |
| proc(dst, src, count); |
| } |
| /*not static*/ inline void RGB_to_RGB1(uint32_t dst[], const uint8_t* src, int count) { |
| insert_alpha_should_swaprb(false, dst, src, count); |
| } |
| /*not static*/ inline void RGB_to_BGR1(uint32_t dst[], const uint8_t* src, int count) { |
| insert_alpha_should_swaprb(true, dst, src, count); |
| } |
| #else |
| void RGB_to_RGB1(uint32_t dst[], const uint8_t* src, int count) { |
| RGB_to_RGB1_portable(dst, src, count); |
| } |
| void RGB_to_BGR1(uint32_t dst[], const uint8_t* src, int count) { |
| RGB_to_BGR1_portable(dst, src, count); |
| } |
| #endif |
| |
| } // namespace SK_OPTS_NS |
| |
| #undef SI |