blob: f66d54161b95a0ed44df4f4e10a03bef6e37fee5 [file] [log] [blame]
/*
* Copyright 2018 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkRasterPipeline_opts_DEFINED
#define SkRasterPipeline_opts_DEFINED
#include "include/core/SkTypes.h"
#include "include/private/base/SkMalloc.h"
#include "include/private/base/SkSpan_impl.h"
#include "include/private/base/SkTemplates.h"
#include "modules/skcms/skcms.h"
#include "src/base/SkUtils.h" // unaligned_{load,store}
#include "src/core/SkRasterPipeline.h"
#include "src/core/SkRasterPipelineContextUtils.h"
#include "src/shaders/SkPerlinNoiseShaderType.h"
#include "src/sksl/tracing/SkSLTraceHook.h"
#include <cstdint>
#include <type_traits>
// Every function in this file should be marked static and inline using SI.
#if defined(__clang__) || defined(__GNUC__)
#define SI __attribute__((always_inline)) static inline
#else
#define SI static inline
#endif
#if defined(__clang__)
#define SK_UNROLL _Pragma("unroll")
#else
#define SK_UNROLL
#endif
#if defined(__clang__)
template <int N, typename T> using Vec = T __attribute__((ext_vector_type(N)));
#elif defined(__GNUC__)
// Unfortunately, GCC does not allow us to omit the struct. This will not compile:
// template <int N, typename T> using Vec = T __attribute__((vector_size(N*sizeof(T))));
template <int N, typename T> struct VecHelper {
typedef T __attribute__((vector_size(N * sizeof(T)))) V;
};
template <int N, typename T> using Vec = typename VecHelper<N, T>::V;
#endif
template <typename Dst, typename Src>
SI Dst widen_cast(const Src& src) {
static_assert(sizeof(Dst) > sizeof(Src));
static_assert(std::is_trivially_copyable<Dst>::value);
static_assert(std::is_trivially_copyable<Src>::value);
Dst dst;
memcpy(&dst, &src, sizeof(Src));
return dst;
}
struct Ctx {
SkRasterPipelineStage* fStage;
template <typename T>
operator T*() {
return (T*)fStage->ctx;
}
};
using NoCtx = const void*;
#if defined(JUMPER_IS_SCALAR) || defined(JUMPER_IS_NEON) || defined(JUMPER_IS_HSW) || \
defined(JUMPER_IS_SKX) || defined(JUMPER_IS_AVX) || defined(JUMPER_IS_SSE41) || \
defined(JUMPER_IS_SSE2)
// Honor the existing setting
#elif !defined(__clang__) && !defined(__GNUC__)
#define JUMPER_IS_SCALAR
#elif defined(SK_ARM_HAS_NEON)
#define JUMPER_IS_NEON
#elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SKX
#define JUMPER_IS_SKX
#elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX2
#define JUMPER_IS_HSW
#elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX
#define JUMPER_IS_AVX
#elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41
#define JUMPER_IS_SSE41
#elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
#define JUMPER_IS_SSE2
#elif SK_CPU_LSX_LEVEL >= SK_CPU_LSX_LEVEL_LASX
#define JUMPER_IS_LASX
#elif SK_CPU_LSX_LEVEL >= SK_CPU_LSX_LEVEL_LSX
#define JUMPER_IS_LSX
#else
#define JUMPER_IS_SCALAR
#endif
// Older Clangs seem to crash when generating non-optimized NEON code for ARMv7.
#if defined(__clang__) && !defined(__OPTIMIZE__) && defined(SK_CPU_ARM32)
// Apple Clang 9 and vanilla Clang 5 are fine, and may even be conservative.
#if defined(__apple_build_version__) && __clang_major__ < 9
#define JUMPER_IS_SCALAR
#elif __clang_major__ < 5
#define JUMPER_IS_SCALAR
#endif
#if defined(JUMPER_IS_NEON) && defined(JUMPER_IS_SCALAR)
#undef JUMPER_IS_NEON
#endif
#endif
#if defined(JUMPER_IS_SCALAR)
#include <math.h>
#elif defined(JUMPER_IS_NEON)
#include <arm_neon.h>
#elif defined(JUMPER_IS_LASX)
#include <lasxintrin.h>
#include <lsxintrin.h>
#elif defined(JUMPER_IS_LSX)
#include <lsxintrin.h>
#else
#include <immintrin.h>
#endif
// Notes:
// * rcp_fast and rcp_precise both produce a reciprocal, but rcp_fast is an estimate with at least
// 12 bits of precision while rcp_precise should be accurate for float size. For ARM rcp_precise
// requires 2 Newton-Raphson refinement steps because its estimate has 8 bit precision, and for
// Intel this requires one additional step because its estimate has 12 bit precision.
//
// * Don't call rcp_approx or rsqrt_approx directly; only use rcp_fast and rsqrt.
namespace SK_OPTS_NS {
#if defined(JUMPER_IS_SCALAR)
// This path should lead to portable scalar code.
using F = float ;
using I32 = int32_t;
using U64 = uint64_t;
using U32 = uint32_t;
using U16 = uint16_t;
using U8 = uint8_t ;
SI F min(F a, F b) { return fminf(a,b); }
SI I32 min(I32 a, I32 b) { return a < b ? a : b; }
SI U32 min(U32 a, U32 b) { return a < b ? a : b; }
SI F max(F a, F b) { return fmaxf(a,b); }
SI I32 max(I32 a, I32 b) { return a > b ? a : b; }
SI U32 max(U32 a, U32 b) { return a > b ? a : b; }
SI F mad(F f, F m, F a) { return a+f*m; }
SI F nmad(F f, F m, F a) { return a-f*m; }
SI F abs_ (F v) { return fabsf(v); }
SI I32 abs_ (I32 v) { return v < 0 ? -v : v; }
SI F floor_(F v) { return floorf(v); }
SI F ceil_(F v) { return ceilf(v); }
SI F rcp_approx(F v) { return 1.0f / v; } // use rcp_fast instead
SI F rsqrt_approx(F v) { return 1.0f / sqrtf(v); }
SI F sqrt_ (F v) { return sqrtf(v); }
SI F rcp_precise (F v) { return 1.0f / v; }
SI I32 iround(F v) { return (I32)(v + 0.5f); }
SI U32 round(F v) { return (U32)(v + 0.5f); }
SI U32 round(F v, F scale) { return (U32)(v*scale + 0.5f); }
SI U16 pack(U32 v) { return (U16)v; }
SI U8 pack(U16 v) { return (U8)v; }
SI F if_then_else(I32 c, F t, F e) { return c ? t : e; }
SI I32 if_then_else(I32 c, I32 t, I32 e) { return c ? t : e; }
SI bool any(I32 c) { return c != 0; }
SI bool all(I32 c) { return c != 0; }
template <typename T>
SI T gather(const T* p, U32 ix) { return p[ix]; }
SI void scatter_masked(I32 src, int* dst, U32 ix, I32 mask) {
dst[ix] = mask ? src : dst[ix];
}
SI void load2(const uint16_t* ptr, U16* r, U16* g) {
*r = ptr[0];
*g = ptr[1];
}
SI void store2(uint16_t* ptr, U16 r, U16 g) {
ptr[0] = r;
ptr[1] = g;
}
SI void load4(const uint16_t* ptr, U16* r, U16* g, U16* b, U16* a) {
*r = ptr[0];
*g = ptr[1];
*b = ptr[2];
*a = ptr[3];
}
SI void store4(uint16_t* ptr, U16 r, U16 g, U16 b, U16 a) {
ptr[0] = r;
ptr[1] = g;
ptr[2] = b;
ptr[3] = a;
}
SI void load4(const float* ptr, F* r, F* g, F* b, F* a) {
*r = ptr[0];
*g = ptr[1];
*b = ptr[2];
*a = ptr[3];
}
SI void store4(float* ptr, F r, F g, F b, F a) {
ptr[0] = r;
ptr[1] = g;
ptr[2] = b;
ptr[3] = a;
}
#elif defined(JUMPER_IS_NEON)
template <typename T> using V = Vec<4, T>;
using F = V<float >;
using I32 = V< int32_t>;
using U64 = V<uint64_t>;
using U32 = V<uint32_t>;
using U16 = V<uint16_t>;
using U8 = V<uint8_t >;
// We polyfill a few routines that Clang doesn't build into ext_vector_types.
SI F min(F a, F b) { return vminq_f32(a,b); }
SI I32 min(I32 a, I32 b) { return vminq_s32(a,b); }
SI U32 min(U32 a, U32 b) { return vminq_u32(a,b); }
SI F max(F a, F b) { return vmaxq_f32(a,b); }
SI I32 max(I32 a, I32 b) { return vmaxq_s32(a,b); }
SI U32 max(U32 a, U32 b) { return vmaxq_u32(a,b); }
SI F abs_ (F v) { return vabsq_f32(v); }
SI I32 abs_ (I32 v) { return vabsq_s32(v); }
SI F rcp_approx(F v) { auto e = vrecpeq_f32(v); return vrecpsq_f32 (v,e ) * e; }
SI F rcp_precise(F v) { auto e = rcp_approx(v); return vrecpsq_f32 (v,e ) * e; }
SI F rsqrt_approx(F v) { auto e = vrsqrteq_f32(v); return vrsqrtsq_f32(v,e*e) * e; }
SI U16 pack(U32 v) { return __builtin_convertvector(v, U16); }
SI U8 pack(U16 v) { return __builtin_convertvector(v, U8); }
SI F if_then_else(I32 c, F t, F e) { return vbslq_f32((U32)c,t,e); }
SI I32 if_then_else(I32 c, I32 t, I32 e) { return vbslq_s32((U32)c,t,e); }
#if defined(SK_CPU_ARM64)
SI bool any(I32 c) { return vmaxvq_u32((U32)c) != 0; }
SI bool all(I32 c) { return vminvq_u32((U32)c) != 0; }
SI F mad(F f, F m, F a) { return vfmaq_f32(a,f,m); }
SI F nmad(F f, F m, F a) { return vfmsq_f32(a,f,m); }
SI F floor_(F v) { return vrndmq_f32(v); }
SI F ceil_(F v) { return vrndpq_f32(v); }
SI F sqrt_(F v) { return vsqrtq_f32(v); }
SI I32 iround(F v) { return vcvtnq_s32_f32(v); }
SI U32 round(F v) { return vcvtnq_u32_f32(v); }
SI U32 round(F v, F scale) { return vcvtnq_u32_f32(v*scale); }
#else
SI bool any(I32 c) { return c[0] | c[1] | c[2] | c[3]; }
SI bool all(I32 c) { return c[0] & c[1] & c[2] & c[3]; }
SI F mad(F f, F m, F a) { return vmlaq_f32(a,f,m); }
SI F nmad(F f, F m, F a) { return vmlsq_f32(a,f,m); }
SI F floor_(F v) {
F roundtrip = vcvtq_f32_s32(vcvtq_s32_f32(v));
return roundtrip - if_then_else(roundtrip > v, F() + 1, F());
}
SI F ceil_(F v) {
F roundtrip = vcvtq_f32_s32(vcvtq_s32_f32(v));
return roundtrip + if_then_else(roundtrip < v, F() + 1, F());
}
SI F sqrt_(F v) {
auto e = vrsqrteq_f32(v); // Estimate and two refinement steps for e = rsqrt(v).
e *= vrsqrtsq_f32(v,e*e);
e *= vrsqrtsq_f32(v,e*e);
return v*e; // sqrt(v) == v*rsqrt(v).
}
SI I32 iround(F v) {
return vcvtq_s32_f32(v + 0.5f);
}
SI U32 round(F v) {
return vcvtq_u32_f32(v + 0.5f);
}
SI U32 round(F v, F scale) {
return vcvtq_u32_f32(mad(v, scale, F() + 0.5f));
}
#endif
template <typename T>
SI V<T> gather(const T* p, U32 ix) {
return V<T>{p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]]};
}
SI void scatter_masked(I32 src, int* dst, U32 ix, I32 mask) {
I32 before = gather(dst, ix);
I32 after = if_then_else(mask, src, before);
dst[ix[0]] = after[0];
dst[ix[1]] = after[1];
dst[ix[2]] = after[2];
dst[ix[3]] = after[3];
}
SI void load2(const uint16_t* ptr, U16* r, U16* g) {
uint16x4x2_t rg = vld2_u16(ptr);
*r = rg.val[0];
*g = rg.val[1];
}
SI void store2(uint16_t* ptr, U16 r, U16 g) {
vst2_u16(ptr, (uint16x4x2_t{{r,g}}));
}
SI void load4(const uint16_t* ptr, U16* r, U16* g, U16* b, U16* a) {
uint16x4x4_t rgba = vld4_u16(ptr);
*r = rgba.val[0];
*g = rgba.val[1];
*b = rgba.val[2];
*a = rgba.val[3];
}
SI void store4(uint16_t* ptr, U16 r, U16 g, U16 b, U16 a) {
vst4_u16(ptr, (uint16x4x4_t{{r,g,b,a}}));
}
SI void load4(const float* ptr, F* r, F* g, F* b, F* a) {
float32x4x4_t rgba = vld4q_f32(ptr);
*r = rgba.val[0];
*g = rgba.val[1];
*b = rgba.val[2];
*a = rgba.val[3];
}
SI void store4(float* ptr, F r, F g, F b, F a) {
vst4q_f32(ptr, (float32x4x4_t{{r,g,b,a}}));
}
#elif defined(JUMPER_IS_SKX)
template <typename T> using V = Vec<16, T>;
using F = V<float >;
using I32 = V< int32_t>;
using U64 = V<uint64_t>;
using U32 = V<uint32_t>;
using U16 = V<uint16_t>;
using U8 = V<uint8_t >;
SI F mad(F f, F m, F a) { return _mm512_fmadd_ps(f, m, a); }
SI F nmad(F f, F m, F a) { return _mm512_fnmadd_ps(f, m, a); }
SI F min(F a, F b) { return _mm512_min_ps(a,b); }
SI I32 min(I32 a, I32 b) { return (I32)_mm512_min_epi32((__m512i)a,(__m512i)b); }
SI U32 min(U32 a, U32 b) { return (U32)_mm512_min_epu32((__m512i)a,(__m512i)b); }
SI F max(F a, F b) { return _mm512_max_ps(a,b); }
SI I32 max(I32 a, I32 b) { return (I32)_mm512_max_epi32((__m512i)a,(__m512i)b); }
SI U32 max(U32 a, U32 b) { return (U32)_mm512_max_epu32((__m512i)a,(__m512i)b); }
SI F abs_ (F v) { return _mm512_and_ps(v, _mm512_sub_ps(_mm512_setzero(), v)); }
SI I32 abs_ (I32 v) { return (I32)_mm512_abs_epi32((__m512i)v); }
SI F floor_(F v) { return _mm512_floor_ps(v); }
SI F ceil_(F v) { return _mm512_ceil_ps(v); }
SI F rcp_approx(F v) { return _mm512_rcp14_ps (v); }
SI F rsqrt_approx (F v) { return _mm512_rsqrt14_ps(v); }
SI F sqrt_ (F v) { return _mm512_sqrt_ps (v); }
SI F rcp_precise (F v) {
F e = rcp_approx(v);
return _mm512_fnmadd_ps(v, e, _mm512_set1_ps(2.0f)) * e;
}
SI I32 iround(F v) { return (I32)_mm512_cvtps_epi32(v); }
SI U32 round(F v) { return (U32)_mm512_cvtps_epi32(v); }
SI U32 round(F v, F scale) { return (U32)_mm512_cvtps_epi32(v*scale); }
SI U16 pack(U32 v) {
__m256i rst = _mm256_packus_epi32(_mm512_castsi512_si256((__m512i)v),
_mm512_extracti64x4_epi64((__m512i)v, 1));
return (U16)_mm256_permutex_epi64(rst, 216);
}
SI U8 pack(U16 v) {
__m256i rst = _mm256_packus_epi16((__m256i)v, (__m256i)v);
return (U8)_mm256_castsi256_si128(_mm256_permute4x64_epi64(rst, 8));
}
SI F if_then_else(I32 c, F t, F e) {
__m512i mask = _mm512_set1_epi32(0x80000000);
__m512i aa = _mm512_and_si512((__m512i)c, mask);
return _mm512_mask_blend_ps(_mm512_test_epi32_mask(aa, aa),e,t);
}
SI I32 if_then_else(I32 c, I32 t, I32 e) {
__m512i mask = _mm512_set1_epi32(0x80000000);
__m512i aa = _mm512_and_si512((__m512i)c, mask);
return (I32)_mm512_mask_blend_epi32(_mm512_test_epi32_mask(aa, aa),(__m512i)e,(__m512i)t);
}
SI bool any(I32 c) {
__mmask16 mask32 = _mm512_test_epi32_mask((__m512i)c, (__m512i)c);
return mask32 != 0;
}
SI bool all(I32 c) {
__mmask16 mask32 = _mm512_test_epi32_mask((__m512i)c, (__m512i)c);
return mask32 == 0xffff;
}
template <typename T>
SI V<T> gather(const T* p, U32 ix) {
return V<T>{ p[ix[ 0]], p[ix[ 1]], p[ix[ 2]], p[ix[ 3]],
p[ix[ 4]], p[ix[ 5]], p[ix[ 6]], p[ix[ 7]],
p[ix[ 8]], p[ix[ 9]], p[ix[10]], p[ix[11]],
p[ix[12]], p[ix[13]], p[ix[14]], p[ix[15]] };
}
SI F gather(const float* p, U32 ix) { return _mm512_i32gather_ps((__m512i)ix, p, 4); }
SI U32 gather(const uint32_t* p, U32 ix) {
return (U32)_mm512_i32gather_epi32((__m512i)ix, p, 4); }
SI U64 gather(const uint64_t* p, U32 ix) {
__m512i parts[] = {
_mm512_i32gather_epi64(_mm512_castsi512_si256((__m512i)ix), p, 8),
_mm512_i32gather_epi64(_mm512_extracti32x8_epi32((__m512i)ix, 1), p, 8),
};
return sk_bit_cast<U64>(parts);
}
template <typename V, typename S>
SI void scatter_masked(V src, S* dst, U32 ix, I32 mask) {
V before = gather(dst, ix);
V after = if_then_else(mask, src, before);
dst[ix[0]] = after[0];
dst[ix[1]] = after[1];
dst[ix[2]] = after[2];
dst[ix[3]] = after[3];
dst[ix[4]] = after[4];
dst[ix[5]] = after[5];
dst[ix[6]] = after[6];
dst[ix[7]] = after[7];
dst[ix[8]] = after[8];
dst[ix[9]] = after[9];
dst[ix[10]] = after[10];
dst[ix[11]] = after[11];
dst[ix[12]] = after[12];
dst[ix[13]] = after[13];
dst[ix[14]] = after[14];
dst[ix[15]] = after[15];
}
SI void load2(const uint16_t* ptr, U16* r, U16* g) {
__m256i _01234567 = _mm256_loadu_si256(((const __m256i*)ptr) + 0);
__m256i _89abcdef = _mm256_loadu_si256(((const __m256i*)ptr) + 1);
*r = (U16)_mm256_permute4x64_epi64(_mm256_packs_epi32(_mm256_srai_epi32(_mm256_slli_epi32
(_01234567, 16), 16), _mm256_srai_epi32(_mm256_slli_epi32(_89abcdef, 16), 16)), 216);
*g = (U16)_mm256_permute4x64_epi64(_mm256_packs_epi32(_mm256_srai_epi32(_01234567, 16),
_mm256_srai_epi32(_89abcdef, 16)), 216);
}
SI void store2(uint16_t* ptr, U16 r, U16 g) {
__m256i _01234567 = _mm256_unpacklo_epi16((__m256i)r, (__m256i)g);
__m256i _89abcdef = _mm256_unpackhi_epi16((__m256i)r, (__m256i)g);
__m512i combinedVector = _mm512_inserti64x4(_mm512_castsi256_si512(_01234567),
_89abcdef, 1);
__m512i aa = _mm512_permutexvar_epi64(_mm512_setr_epi64(0,1,4,5,2,3,6,7), combinedVector);
_01234567 = _mm512_castsi512_si256(aa);
_89abcdef = _mm512_extracti64x4_epi64(aa, 1);
_mm256_storeu_si256((__m256i*)ptr + 0, _01234567);
_mm256_storeu_si256((__m256i*)ptr + 1, _89abcdef);
}
SI void load4(const uint16_t* ptr, U16* r, U16* g, U16* b, U16* a) {
__m256i _0123 = _mm256_loadu_si256((const __m256i*)ptr),
_4567 = _mm256_loadu_si256(((const __m256i*)ptr) + 1),
_89ab = _mm256_loadu_si256(((const __m256i*)ptr) + 2),
_cdef = _mm256_loadu_si256(((const __m256i*)ptr) + 3);
auto a0 = _mm256_unpacklo_epi16(_0123, _4567),
a1 = _mm256_unpackhi_epi16(_0123, _4567),
b0 = _mm256_unpacklo_epi16(a0, a1),
b1 = _mm256_unpackhi_epi16(a0, a1),
a2 = _mm256_unpacklo_epi16(_89ab, _cdef),
a3 = _mm256_unpackhi_epi16(_89ab, _cdef),
b2 = _mm256_unpacklo_epi16(a2, a3),
b3 = _mm256_unpackhi_epi16(a2, a3),
rr = _mm256_unpacklo_epi64(b0, b2),
gg = _mm256_unpackhi_epi64(b0, b2),
bb = _mm256_unpacklo_epi64(b1, b3),
aa = _mm256_unpackhi_epi64(b1, b3);
*r = (U16)_mm256_permutexvar_epi32(_mm256_setr_epi32(0,4,1,5,2,6,3,7), rr);
*g = (U16)_mm256_permutexvar_epi32(_mm256_setr_epi32(0,4,1,5,2,6,3,7), gg);
*b = (U16)_mm256_permutexvar_epi32(_mm256_setr_epi32(0,4,1,5,2,6,3,7), bb);
*a = (U16)_mm256_permutexvar_epi32(_mm256_setr_epi32(0,4,1,5,2,6,3,7), aa);
}
SI void store4(uint16_t* ptr, U16 r, U16 g, U16 b, U16 a) {
auto rg012389ab = _mm256_unpacklo_epi16((__m256i)r, (__m256i)g),
rg4567cdef = _mm256_unpackhi_epi16((__m256i)r, (__m256i)g),
ba012389ab = _mm256_unpacklo_epi16((__m256i)b, (__m256i)a),
ba4567cdef = _mm256_unpackhi_epi16((__m256i)b, (__m256i)a);
auto _0189 = _mm256_unpacklo_epi32(rg012389ab, ba012389ab),
_23ab = _mm256_unpackhi_epi32(rg012389ab, ba012389ab),
_45cd = _mm256_unpacklo_epi32(rg4567cdef, ba4567cdef),
_67ef = _mm256_unpackhi_epi32(rg4567cdef, ba4567cdef);
auto _ab23 = _mm256_permutex_epi64(_23ab, 78),
_0123 = _mm256_blend_epi32(_0189, _ab23, 0xf0),
_89ab = _mm256_permutex_epi64(_mm256_blend_epi32(_0189, _ab23, 0x0f), 78),
_ef67 = _mm256_permutex_epi64(_67ef, 78),
_4567 = _mm256_blend_epi32(_45cd, _ef67, 0xf0),
_cdef = _mm256_permutex_epi64(_mm256_blend_epi32(_45cd, _ef67, 0x0f), 78);
_mm256_storeu_si256((__m256i*)ptr, _0123);
_mm256_storeu_si256((__m256i*)ptr + 1, _4567);
_mm256_storeu_si256((__m256i*)ptr + 2, _89ab);
_mm256_storeu_si256((__m256i*)ptr + 3, _cdef);
}
SI void load4(const float* ptr, F* r, F* g, F* b, F* a) {
F _048c, _159d, _26ae, _37bf;
_048c = _mm512_castps128_ps512(_mm_loadu_ps(ptr) );
_048c = _mm512_insertf32x4(_048c, _mm_loadu_ps(ptr+16), 1);
_048c = _mm512_insertf32x4(_048c, _mm_loadu_ps(ptr+32), 2);
_048c = _mm512_insertf32x4(_048c, _mm_loadu_ps(ptr+48), 3);
_159d = _mm512_castps128_ps512(_mm_loadu_ps(ptr+4) );
_159d = _mm512_insertf32x4(_159d, _mm_loadu_ps(ptr+20), 1);
_159d = _mm512_insertf32x4(_159d, _mm_loadu_ps(ptr+36), 2);
_159d = _mm512_insertf32x4(_159d, _mm_loadu_ps(ptr+52), 3);
_26ae = _mm512_castps128_ps512(_mm_loadu_ps(ptr+8) );
_26ae = _mm512_insertf32x4(_26ae, _mm_loadu_ps(ptr+24), 1);
_26ae = _mm512_insertf32x4(_26ae, _mm_loadu_ps(ptr+40), 2);
_26ae = _mm512_insertf32x4(_26ae, _mm_loadu_ps(ptr+56), 3);
_37bf = _mm512_castps128_ps512(_mm_loadu_ps(ptr+12) );
_37bf = _mm512_insertf32x4(_37bf, _mm_loadu_ps(ptr+28), 1);
_37bf = _mm512_insertf32x4(_37bf, _mm_loadu_ps(ptr+44), 2);
_37bf = _mm512_insertf32x4(_37bf, _mm_loadu_ps(ptr+60), 3);
F rg02468acf = _mm512_unpacklo_ps(_048c, _26ae),
ba02468acf = _mm512_unpackhi_ps(_048c, _26ae),
rg13579bde = _mm512_unpacklo_ps(_159d, _37bf),
ba13579bde = _mm512_unpackhi_ps(_159d, _37bf);
*r = (F)_mm512_unpacklo_ps(rg02468acf, rg13579bde);
*g = (F)_mm512_unpackhi_ps(rg02468acf, rg13579bde);
*b = (F)_mm512_unpacklo_ps(ba02468acf, ba13579bde);
*a = (F)_mm512_unpackhi_ps(ba02468acf, ba13579bde);
}
SI void store4(float* ptr, F r, F g, F b, F a) {
F rg014589cd = _mm512_unpacklo_ps(r, g),
rg2367abef = _mm512_unpackhi_ps(r, g),
ba014589cd = _mm512_unpacklo_ps(b, a),
ba2367abef = _mm512_unpackhi_ps(b, a);
F _048c = (F)_mm512_unpacklo_pd((__m512d)rg014589cd, (__m512d)ba014589cd),
_26ae = (F)_mm512_unpacklo_pd((__m512d)rg2367abef, (__m512d)ba2367abef),
_159d = (F)_mm512_unpackhi_pd((__m512d)rg014589cd, (__m512d)ba014589cd),
_37bf = (F)_mm512_unpackhi_pd((__m512d)rg2367abef, (__m512d)ba2367abef);
F _ae26 = (F)_mm512_permutexvar_pd(_mm512_setr_epi64(4,5,6,7,0,1,2,3), (__m512d)_26ae),
_bf37 = (F)_mm512_permutexvar_pd(_mm512_setr_epi64(4,5,6,7,0,1,2,3), (__m512d)_37bf),
_8c04 = (F)_mm512_permutexvar_pd(_mm512_setr_epi64(4,5,6,7,0,1,2,3), (__m512d)_048c),
_9d15 = (F)_mm512_permutexvar_pd(_mm512_setr_epi64(4,5,6,7,0,1,2,3), (__m512d)_159d);
__m512i index = _mm512_setr_epi32(4,5,6,7,0,1,2,3,12,13,14,15,8,9,10,11);
F _0426 = (F)_mm512_permutex2var_pd((__m512d)_048c, _mm512_setr_epi64(0,1,2,3,12,13,14,15),
(__m512d)_ae26),
_1537 = (F)_mm512_permutex2var_pd((__m512d)_159d, _mm512_setr_epi64(0,1,2,3,12,13,14,15),
(__m512d)_bf37),
_5173 = _mm512_permutexvar_ps(index, _1537),
_0123 = (F)_mm512_permutex2var_pd((__m512d)_0426, _mm512_setr_epi64(0,1,10,11,4,5,14,15),
(__m512d)_5173);
F _5476 = (F)_mm512_permutex2var_pd((__m512d)_5173, _mm512_setr_epi64(0,1,10,11,4,5,14,15),
(__m512d)_0426),
_4567 = _mm512_permutexvar_ps(index, _5476),
_8cae = (F)_mm512_permutex2var_pd((__m512d)_8c04, _mm512_setr_epi64(0,1,2,3,12,13,14,15),
(__m512d)_26ae),
_9dbf = (F)_mm512_permutex2var_pd((__m512d)_9d15, _mm512_setr_epi64(0,1,2,3,12,13,14,15),
(__m512d)_37bf),
_d9fb = _mm512_permutexvar_ps(index, _9dbf),
_89ab = (F)_mm512_permutex2var_pd((__m512d)_8cae, _mm512_setr_epi64(0,1,10,11,4,5,14,15),
(__m512d)_d9fb),
_dcfe = (F)_mm512_permutex2var_pd((__m512d)_d9fb, _mm512_setr_epi64(0,1,10,11,4,5,14,15),
(__m512d)_8cae),
_cdef = _mm512_permutexvar_ps(index, _dcfe);
_mm512_storeu_ps(ptr+0, _0123);
_mm512_storeu_ps(ptr+16, _4567);
_mm512_storeu_ps(ptr+32, _89ab);
_mm512_storeu_ps(ptr+48, _cdef);
}
#elif defined(JUMPER_IS_HSW)
// These are __m256 and __m256i, but friendlier and strongly-typed.
template <typename T> using V = Vec<8, T>;
using F = V<float >;
using I32 = V< int32_t>;
using U64 = V<uint64_t>;
using U32 = V<uint32_t>;
using U16 = V<uint16_t>;
using U8 = V<uint8_t >;
SI F mad(F f, F m, F a) { return _mm256_fmadd_ps(f, m, a); }
SI F nmad(F f, F m, F a) { return _mm256_fnmadd_ps(f, m, a); }
SI F min(F a, F b) { return _mm256_min_ps(a,b); }
SI I32 min(I32 a, I32 b) { return (I32)_mm256_min_epi32((__m256i)a,(__m256i)b); }
SI U32 min(U32 a, U32 b) { return (U32)_mm256_min_epu32((__m256i)a,(__m256i)b); }
SI F max(F a, F b) { return _mm256_max_ps(a,b); }
SI I32 max(I32 a, I32 b) { return (I32)_mm256_max_epi32((__m256i)a,(__m256i)b); }
SI U32 max(U32 a, U32 b) { return (U32)_mm256_max_epu32((__m256i)a,(__m256i)b); }
SI F abs_ (F v) { return _mm256_and_ps(v, 0-v); }
SI I32 abs_ (I32 v) { return (I32)_mm256_abs_epi32((__m256i)v); }
SI F floor_(F v) { return _mm256_floor_ps(v); }
SI F ceil_(F v) { return _mm256_ceil_ps(v); }
SI F rcp_approx(F v) { return _mm256_rcp_ps (v); } // use rcp_fast instead
SI F rsqrt_approx(F v) { return _mm256_rsqrt_ps(v); }
SI F sqrt_ (F v) { return _mm256_sqrt_ps (v); }
SI F rcp_precise (F v) {
F e = rcp_approx(v);
return _mm256_fnmadd_ps(v, e, _mm256_set1_ps(2.0f)) * e;
}
SI I32 iround(F v) { return (I32)_mm256_cvtps_epi32(v); }
SI U32 round(F v) { return (U32)_mm256_cvtps_epi32(v); }
SI U32 round(F v, F scale) { return (U32)_mm256_cvtps_epi32(v*scale); }
SI U16 pack(U32 v) {
return (U16)_mm_packus_epi32(_mm256_extractf128_si256((__m256i)v, 0),
_mm256_extractf128_si256((__m256i)v, 1));
}
SI U8 pack(U16 v) {
auto r = _mm_packus_epi16((__m128i)v,(__m128i)v);
return sk_unaligned_load<U8>(&r);
}
SI F if_then_else(I32 c, F t, F e) { return _mm256_blendv_ps(e, t, (__m256)c); }
SI I32 if_then_else(I32 c, I32 t, I32 e) {
return (I32)_mm256_blendv_ps((__m256)e, (__m256)t, (__m256)c);
}
// NOTE: This version of 'all' only works with mask values (true == all bits set)
SI bool any(I32 c) { return !_mm256_testz_si256((__m256i)c, _mm256_set1_epi32(-1)); }
SI bool all(I32 c) { return _mm256_testc_si256((__m256i)c, _mm256_set1_epi32(-1)); }
template <typename T>
SI V<T> gather(const T* p, U32 ix) {
return V<T>{ p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]],
p[ix[4]], p[ix[5]], p[ix[6]], p[ix[7]], };
}
SI F gather(const float* p, U32 ix) { return _mm256_i32gather_ps(p, (__m256i)ix, 4); }
SI U32 gather(const uint32_t* p, U32 ix) {
return (U32)_mm256_i32gather_epi32((const int*)p, (__m256i)ix, 4);
}
SI U64 gather(const uint64_t* p, U32 ix) {
__m256i parts[] = {
_mm256_i32gather_epi64(
(const long long int*)p, _mm256_extracti128_si256((__m256i)ix, 0), 8),
_mm256_i32gather_epi64(
(const long long int*)p, _mm256_extracti128_si256((__m256i)ix, 1), 8),
};
return sk_bit_cast<U64>(parts);
}
SI void scatter_masked(I32 src, int* dst, U32 ix, I32 mask) {
I32 before = gather(dst, ix);
I32 after = if_then_else(mask, src, before);
dst[ix[0]] = after[0];
dst[ix[1]] = after[1];
dst[ix[2]] = after[2];
dst[ix[3]] = after[3];
dst[ix[4]] = after[4];
dst[ix[5]] = after[5];
dst[ix[6]] = after[6];
dst[ix[7]] = after[7];
}
SI void load2(const uint16_t* ptr, U16* r, U16* g) {
__m128i _0123 = _mm_loadu_si128(((const __m128i*)ptr) + 0),
_4567 = _mm_loadu_si128(((const __m128i*)ptr) + 1);
*r = (U16)_mm_packs_epi32(_mm_srai_epi32(_mm_slli_epi32(_0123, 16), 16),
_mm_srai_epi32(_mm_slli_epi32(_4567, 16), 16));
*g = (U16)_mm_packs_epi32(_mm_srai_epi32(_0123, 16),
_mm_srai_epi32(_4567, 16));
}
SI void store2(uint16_t* ptr, U16 r, U16 g) {
auto _0123 = _mm_unpacklo_epi16((__m128i)r, (__m128i)g),
_4567 = _mm_unpackhi_epi16((__m128i)r, (__m128i)g);
_mm_storeu_si128((__m128i*)ptr + 0, _0123);
_mm_storeu_si128((__m128i*)ptr + 1, _4567);
}
SI void load4(const uint16_t* ptr, U16* r, U16* g, U16* b, U16* a) {
__m128i _01 = _mm_loadu_si128(((const __m128i*)ptr) + 0),
_23 = _mm_loadu_si128(((const __m128i*)ptr) + 1),
_45 = _mm_loadu_si128(((const __m128i*)ptr) + 2),
_67 = _mm_loadu_si128(((const __m128i*)ptr) + 3);
auto _02 = _mm_unpacklo_epi16(_01, _23), // r0 r2 g0 g2 b0 b2 a0 a2
_13 = _mm_unpackhi_epi16(_01, _23), // r1 r3 g1 g3 b1 b3 a1 a3
_46 = _mm_unpacklo_epi16(_45, _67),
_57 = _mm_unpackhi_epi16(_45, _67);
auto rg0123 = _mm_unpacklo_epi16(_02, _13), // r0 r1 r2 r3 g0 g1 g2 g3
ba0123 = _mm_unpackhi_epi16(_02, _13), // b0 b1 b2 b3 a0 a1 a2 a3
rg4567 = _mm_unpacklo_epi16(_46, _57),
ba4567 = _mm_unpackhi_epi16(_46, _57);
*r = (U16)_mm_unpacklo_epi64(rg0123, rg4567);
*g = (U16)_mm_unpackhi_epi64(rg0123, rg4567);
*b = (U16)_mm_unpacklo_epi64(ba0123, ba4567);
*a = (U16)_mm_unpackhi_epi64(ba0123, ba4567);
}
SI void store4(uint16_t* ptr, U16 r, U16 g, U16 b, U16 a) {
auto rg0123 = _mm_unpacklo_epi16((__m128i)r, (__m128i)g), // r0 g0 r1 g1 r2 g2 r3 g3
rg4567 = _mm_unpackhi_epi16((__m128i)r, (__m128i)g), // r4 g4 r5 g5 r6 g6 r7 g7
ba0123 = _mm_unpacklo_epi16((__m128i)b, (__m128i)a),
ba4567 = _mm_unpackhi_epi16((__m128i)b, (__m128i)a);
auto _01 = _mm_unpacklo_epi32(rg0123, ba0123),
_23 = _mm_unpackhi_epi32(rg0123, ba0123),
_45 = _mm_unpacklo_epi32(rg4567, ba4567),
_67 = _mm_unpackhi_epi32(rg4567, ba4567);
_mm_storeu_si128((__m128i*)ptr + 0, _01);
_mm_storeu_si128((__m128i*)ptr + 1, _23);
_mm_storeu_si128((__m128i*)ptr + 2, _45);
_mm_storeu_si128((__m128i*)ptr + 3, _67);
}
SI void load4(const float* ptr, F* r, F* g, F* b, F* a) {
F _04 = _mm256_castps128_ps256(_mm_loadu_ps(ptr+ 0)),
_15 = _mm256_castps128_ps256(_mm_loadu_ps(ptr+ 4)),
_26 = _mm256_castps128_ps256(_mm_loadu_ps(ptr+ 8)),
_37 = _mm256_castps128_ps256(_mm_loadu_ps(ptr+12));
_04 = _mm256_insertf128_ps(_04, _mm_loadu_ps(ptr+16), 1);
_15 = _mm256_insertf128_ps(_15, _mm_loadu_ps(ptr+20), 1);
_26 = _mm256_insertf128_ps(_26, _mm_loadu_ps(ptr+24), 1);
_37 = _mm256_insertf128_ps(_37, _mm_loadu_ps(ptr+28), 1);
F rg0145 = _mm256_unpacklo_ps(_04,_15), // r0 r1 g0 g1 | r4 r5 g4 g5
ba0145 = _mm256_unpackhi_ps(_04,_15),
rg2367 = _mm256_unpacklo_ps(_26,_37),
ba2367 = _mm256_unpackhi_ps(_26,_37);
*r = (F)_mm256_unpacklo_pd((__m256d)rg0145, (__m256d)rg2367);
*g = (F)_mm256_unpackhi_pd((__m256d)rg0145, (__m256d)rg2367);
*b = (F)_mm256_unpacklo_pd((__m256d)ba0145, (__m256d)ba2367);
*a = (F)_mm256_unpackhi_pd((__m256d)ba0145, (__m256d)ba2367);
}
SI void store4(float* ptr, F r, F g, F b, F a) {
F rg0145 = _mm256_unpacklo_ps(r, g), // r0 g0 r1 g1 | r4 g4 r5 g5
rg2367 = _mm256_unpackhi_ps(r, g), // r2 ... | r6 ...
ba0145 = _mm256_unpacklo_ps(b, a), // b0 a0 b1 a1 | b4 a4 b5 a5
ba2367 = _mm256_unpackhi_ps(b, a); // b2 ... | b6 ...
F _04 = (F)_mm256_unpacklo_pd((__m256d)rg0145, (__m256d)ba0145),// r0 g0 b0 a0 | r4 g4 b4 a4
_15 = (F)_mm256_unpackhi_pd((__m256d)rg0145, (__m256d)ba0145),// r1 ... | r5 ...
_26 = (F)_mm256_unpacklo_pd((__m256d)rg2367, (__m256d)ba2367),// r2 ... | r6 ...
_37 = (F)_mm256_unpackhi_pd((__m256d)rg2367, (__m256d)ba2367);// r3 ... | r7 ...
F _01 = _mm256_permute2f128_ps(_04, _15, 32), // 32 == 0010 0000 == lo, lo
_23 = _mm256_permute2f128_ps(_26, _37, 32),
_45 = _mm256_permute2f128_ps(_04, _15, 49), // 49 == 0011 0001 == hi, hi
_67 = _mm256_permute2f128_ps(_26, _37, 49);
_mm256_storeu_ps(ptr+ 0, _01);
_mm256_storeu_ps(ptr+ 8, _23);
_mm256_storeu_ps(ptr+16, _45);
_mm256_storeu_ps(ptr+24, _67);
}
#elif defined(JUMPER_IS_SSE2) || defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX)
template <typename T> using V = Vec<4, T>;
using F = V<float >;
using I32 = V< int32_t>;
using U64 = V<uint64_t>;
using U32 = V<uint32_t>;
using U16 = V<uint16_t>;
using U8 = V<uint8_t >;
SI F if_then_else(I32 c, F t, F e) {
return _mm_or_ps(_mm_and_ps((__m128)c, t), _mm_andnot_ps((__m128)c, e));
}
SI I32 if_then_else(I32 c, I32 t, I32 e) {
return (I32)_mm_or_ps(_mm_and_ps((__m128)c, (__m128)t),
_mm_andnot_ps((__m128)c, (__m128)e));
}
SI F min(F a, F b) { return _mm_min_ps(a,b); }
SI F max(F a, F b) { return _mm_max_ps(a,b); }
#if defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX)
SI I32 min(I32 a, I32 b) { return (I32)_mm_min_epi32((__m128i)a,(__m128i)b); }
SI U32 min(U32 a, U32 b) { return (U32)_mm_min_epu32((__m128i)a,(__m128i)b); }
SI I32 max(I32 a, I32 b) { return (I32)_mm_max_epi32((__m128i)a,(__m128i)b); }
SI U32 max(U32 a, U32 b) { return (U32)_mm_max_epu32((__m128i)a,(__m128i)b); }
#else
SI I32 min(I32 a, I32 b) { return if_then_else(a < b, a, b); }
SI I32 max(I32 a, I32 b) { return if_then_else(a > b, a, b); }
SI U32 min(U32 a, U32 b) {
return sk_bit_cast<U32>(if_then_else(a < b, sk_bit_cast<I32>(a), sk_bit_cast<I32>(b)));
}
SI U32 max(U32 a, U32 b) {
return sk_bit_cast<U32>(if_then_else(a > b, sk_bit_cast<I32>(a), sk_bit_cast<I32>(b)));
}
#endif
SI F mad(F f, F m, F a) { return a+f*m; }
SI F nmad(F f, F m, F a) { return a-f*m; }
SI F abs_(F v) { return _mm_and_ps(v, 0-v); }
#if defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX)
SI I32 abs_(I32 v) { return (I32)_mm_abs_epi32((__m128i)v); }
#else
SI I32 abs_(I32 v) { return max(v, -v); }
#endif
SI F rcp_approx(F v) { return _mm_rcp_ps (v); } // use rcp_fast instead
SI F rcp_precise (F v) { F e = rcp_approx(v); return e * (2.0f - v * e); }
SI F rsqrt_approx(F v) { return _mm_rsqrt_ps(v); }
SI F sqrt_(F v) { return _mm_sqrt_ps (v); }
SI I32 iround(F v) { return (I32)_mm_cvtps_epi32(v); }
SI U32 round(F v) { return (U32)_mm_cvtps_epi32(v); }
SI U32 round(F v, F scale) { return (U32)_mm_cvtps_epi32(v*scale); }
SI U16 pack(U32 v) {
#if defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX)
auto p = _mm_packus_epi32((__m128i)v,(__m128i)v);
#else
// Sign extend so that _mm_packs_epi32() does the pack we want.
auto p = _mm_srai_epi32(_mm_slli_epi32((__m128i)v, 16), 16);
p = _mm_packs_epi32(p,p);
#endif
return sk_unaligned_load<U16>(&p); // We have two copies. Return (the lower) one.
}
SI U8 pack(U16 v) {
auto r = widen_cast<__m128i>(v);
r = _mm_packus_epi16(r,r);
return sk_unaligned_load<U8>(&r);
}
// NOTE: This only checks the top bit of each lane, and is incorrect with non-mask values.
SI bool any(I32 c) { return _mm_movemask_ps(sk_bit_cast<F>(c)) != 0b0000; }
SI bool all(I32 c) { return _mm_movemask_ps(sk_bit_cast<F>(c)) == 0b1111; }
SI F floor_(F v) {
#if defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX)
return _mm_floor_ps(v);
#else
F roundtrip = _mm_cvtepi32_ps(_mm_cvttps_epi32(v));
return roundtrip - if_then_else(roundtrip > v, F() + 1, F() + 0);
#endif
}
SI F ceil_(F v) {
#if defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX)
return _mm_ceil_ps(v);
#else
F roundtrip = _mm_cvtepi32_ps(_mm_cvttps_epi32(v));
return roundtrip + if_then_else(roundtrip < v, F() + 1, F() + 0);
#endif
}
template <typename T>
SI V<T> gather(const T* p, U32 ix) {
return V<T>{p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]]};
}
SI void scatter_masked(I32 src, int* dst, U32 ix, I32 mask) {
I32 before = gather(dst, ix);
I32 after = if_then_else(mask, src, before);
dst[ix[0]] = after[0];
dst[ix[1]] = after[1];
dst[ix[2]] = after[2];
dst[ix[3]] = after[3];
}
SI void load2(const uint16_t* ptr, U16* r, U16* g) {
__m128i _01 = _mm_loadu_si128(((const __m128i*)ptr) + 0); // r0 g0 r1 g1 r2 g2 r3 g3
auto rg01_23 = _mm_shufflelo_epi16(_01, 0xD8); // r0 r1 g0 g1 r2 g2 r3 g3
auto rg = _mm_shufflehi_epi16(rg01_23, 0xD8); // r0 r1 g0 g1 r2 r3 g2 g3
auto R = _mm_shuffle_epi32(rg, 0x88); // r0 r1 r2 r3 r0 r1 r2 r3
auto G = _mm_shuffle_epi32(rg, 0xDD); // g0 g1 g2 g3 g0 g1 g2 g3
*r = sk_unaligned_load<U16>(&R);
*g = sk_unaligned_load<U16>(&G);
}
SI void store2(uint16_t* ptr, U16 r, U16 g) {
__m128i rg = _mm_unpacklo_epi16(widen_cast<__m128i>(r), widen_cast<__m128i>(g));
_mm_storeu_si128((__m128i*)ptr + 0, rg);
}
SI void load4(const uint16_t* ptr, U16* r, U16* g, U16* b, U16* a) {
__m128i _01 = _mm_loadu_si128(((const __m128i*)ptr) + 0), // r0 g0 b0 a0 r1 g1 b1 a1
_23 = _mm_loadu_si128(((const __m128i*)ptr) + 1); // r2 g2 b2 a2 r3 g3 b3 a3
auto _02 = _mm_unpacklo_epi16(_01, _23), // r0 r2 g0 g2 b0 b2 a0 a2
_13 = _mm_unpackhi_epi16(_01, _23); // r1 r3 g1 g3 b1 b3 a1 a3
auto rg = _mm_unpacklo_epi16(_02, _13), // r0 r1 r2 r3 g0 g1 g2 g3
ba = _mm_unpackhi_epi16(_02, _13); // b0 b1 b2 b3 a0 a1 a2 a3
*r = sk_unaligned_load<U16>((uint16_t*)&rg + 0);
*g = sk_unaligned_load<U16>((uint16_t*)&rg + 4);
*b = sk_unaligned_load<U16>((uint16_t*)&ba + 0);
*a = sk_unaligned_load<U16>((uint16_t*)&ba + 4);
}
SI void store4(uint16_t* ptr, U16 r, U16 g, U16 b, U16 a) {
auto rg = _mm_unpacklo_epi16(widen_cast<__m128i>(r), widen_cast<__m128i>(g)),
ba = _mm_unpacklo_epi16(widen_cast<__m128i>(b), widen_cast<__m128i>(a));
_mm_storeu_si128((__m128i*)ptr + 0, _mm_unpacklo_epi32(rg, ba));
_mm_storeu_si128((__m128i*)ptr + 1, _mm_unpackhi_epi32(rg, ba));
}
SI void load4(const float* ptr, F* r, F* g, F* b, F* a) {
F _0 = _mm_loadu_ps(ptr + 0),
_1 = _mm_loadu_ps(ptr + 4),
_2 = _mm_loadu_ps(ptr + 8),
_3 = _mm_loadu_ps(ptr +12);
_MM_TRANSPOSE4_PS(_0,_1,_2,_3);
*r = _0;
*g = _1;
*b = _2;
*a = _3;
}
SI void store4(float* ptr, F r, F g, F b, F a) {
_MM_TRANSPOSE4_PS(r,g,b,a);
_mm_storeu_ps(ptr + 0, r);
_mm_storeu_ps(ptr + 4, g);
_mm_storeu_ps(ptr + 8, b);
_mm_storeu_ps(ptr +12, a);
}
#elif defined(JUMPER_IS_LASX)
// These are __m256 and __m256i, but friendlier and strongly-typed.
template <typename T> using V = Vec<8, T>;
using F = V<float >;
using I32 = V<int32_t>;
using U64 = V<uint64_t>;
using U32 = V<uint32_t>;
using U16 = V<uint16_t>;
using U8 = V<uint8_t >;
SI __m128i emulate_lasx_d_xr2vr_l(__m256i a) {
v4i64 tmp = a;
v2i64 al = {tmp[0], tmp[1]};
return (__m128i)al;
}
SI __m128i emulate_lasx_d_xr2vr_h(__m256i a) {
v4i64 tmp = a;
v2i64 ah = {tmp[2], tmp[3]};
return (__m128i)ah;
}
SI F if_then_else(I32 c, F t, F e) {
return sk_bit_cast<Vec<8,float>>(__lasx_xvbitsel_v(sk_bit_cast<__m256i>(e),
sk_bit_cast<__m256i>(t),
sk_bit_cast<__m256i>(c)));
}
SI I32 if_then_else(I32 c, I32 t, I32 e) {
return sk_bit_cast<Vec<8,int32_t>>(__lasx_xvbitsel_v(sk_bit_cast<__m256i>(e),
sk_bit_cast<__m256i>(t),
sk_bit_cast<__m256i>(c)));
}
SI F min(F a, F b) { return __lasx_xvfmin_s(a,b); }
SI F max(F a, F b) { return __lasx_xvfmax_s(a,b); }
SI I32 min(I32 a, I32 b) { return __lasx_xvmin_w(a,b); }
SI U32 min(U32 a, U32 b) { return __lasx_xvmin_wu(a,b); }
SI I32 max(I32 a, I32 b) { return __lasx_xvmax_w(a,b); }
SI U32 max(U32 a, U32 b) { return __lasx_xvmax_wu(a,b); }
SI F mad(F f, F m, F a) { return __lasx_xvfmadd_s(f, m, a); }
SI F nmad(F f, F m, F a) { return __lasx_xvfmadd_s(-f, m, a); }
SI F abs_ (F v) { return (F)__lasx_xvand_v((I32)v, (I32)(0-v)); }
SI I32 abs_(I32 v) { return max(v, -v); }
SI F rcp_approx(F v) { return __lasx_xvfrecip_s(v); }
SI F rcp_precise (F v) { F e = rcp_approx(v); return e * nmad(v, e, 2.0f); }
SI F rsqrt_approx (F v) { return __lasx_xvfrsqrt_s(v); }
SI F sqrt_(F v) { return __lasx_xvfsqrt_s(v); }
SI U32 iround(F v) {
F t = F(0.5);
return __lasx_xvftintrz_w_s(v + t);
}
SI U32 round(F v) {
F t = F(0.5);
return __lasx_xvftintrz_w_s(v + t);
}
SI U32 round(F v, F scale) {
F t = F(0.5);
return __lasx_xvftintrz_w_s(mad(v, scale, t));
}
SI U16 pack(U32 v) {
return __lsx_vpickev_h(__lsx_vsat_wu(emulate_lasx_d_xr2vr_h(v), 15),
__lsx_vsat_wu(emulate_lasx_d_xr2vr_l(v), 15));
}
SI U8 pack(U16 v) {
__m128i tmp = __lsx_vsat_hu(v, 7);
auto r = __lsx_vpickev_b(tmp, tmp);
return sk_unaligned_load<U8>(&r);
}
SI bool any(I32 c){
v8i32 retv = (v8i32)__lasx_xvmskltz_w(__lasx_xvslt_wu(__lasx_xvldi(0), c));
return (retv[0] | retv[4]) != 0b0000;
}
SI bool all(I32 c){
v8i32 retv = (v8i32)__lasx_xvmskltz_w(__lasx_xvslt_wu(__lasx_xvldi(0), c));
return (retv[0] & retv[4]) == 0b1111;
}
SI F floor_(F v) {
return __lasx_xvfrintrm_s(v);
}
SI F ceil_(F v) {
return __lasx_xvfrintrp_s(v);
}
template <typename T>
SI V<T> gather(const T* p, U32 ix) {
return { p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]],
p[ix[4]], p[ix[5]], p[ix[6]], p[ix[7]], };
}
template <typename V, typename S>
SI void scatter_masked(V src, S* dst, U32 ix, I32 mask) {
V before = gather(dst, ix);
V after = if_then_else(mask, src, before);
dst[ix[0]] = after[0];
dst[ix[1]] = after[1];
dst[ix[2]] = after[2];
dst[ix[3]] = after[3];
dst[ix[4]] = after[4];
dst[ix[5]] = after[5];
dst[ix[6]] = after[6];
dst[ix[7]] = after[7];
}
SI void load2(const uint16_t* ptr, U16* r, U16* g) {
U16 _0123 = __lsx_vld(ptr, 0),
_4567 = __lsx_vld(ptr, 16);
*r = __lsx_vpickev_h(__lsx_vsat_w(__lsx_vsrai_w(__lsx_vslli_w(_4567, 16), 16), 15),
__lsx_vsat_w(__lsx_vsrai_w(__lsx_vslli_w(_0123, 16), 16), 15));
*g = __lsx_vpickev_h(__lsx_vsat_w(__lsx_vsrai_w(_4567, 16), 15),
__lsx_vsat_w(__lsx_vsrai_w(_0123, 16), 15));
}
SI void store2(uint16_t* ptr, U16 r, U16 g) {
auto _0123 = __lsx_vilvl_h(g, r),
_4567 = __lsx_vilvh_h(g, r);
__lsx_vst(_0123, ptr, 0);
__lsx_vst(_4567, ptr, 16);
}
SI void load4(const uint16_t* ptr, U16* r, U16* g, U16* b, U16* a) {
__m128i _01 = __lsx_vld(ptr, 0),
_23 = __lsx_vld(ptr, 16),
_45 = __lsx_vld(ptr, 32),
_67 = __lsx_vld(ptr, 48);
auto _02 = __lsx_vilvl_h(_23, _01), // r0 r2 g0 g2 b0 b2 a0 a2
_13 = __lsx_vilvh_h(_23, _01), // r1 r3 g1 g3 b1 b3 a1 a3
_46 = __lsx_vilvl_h(_67, _45),
_57 = __lsx_vilvh_h(_67, _45);
auto rg0123 = __lsx_vilvl_h(_13, _02), // r0 r1 r2 r3 g0 g1 g2 g3
ba0123 = __lsx_vilvh_h(_13, _02), // b0 b1 b2 b3 a0 a1 a2 a3
rg4567 = __lsx_vilvl_h(_57, _46),
ba4567 = __lsx_vilvh_h(_57, _46);
*r = __lsx_vilvl_d(rg4567, rg0123);
*g = __lsx_vilvh_d(rg4567, rg0123);
*b = __lsx_vilvl_d(ba4567, ba0123);
*a = __lsx_vilvh_d(ba4567, ba0123);
}
SI void store4(uint16_t* ptr, U16 r, U16 g, U16 b, U16 a) {
auto rg0123 = __lsx_vilvl_h(g, r), // r0 g0 r1 g1 r2 g2 r3 g3
rg4567 = __lsx_vilvh_h(g, r), // r4 g4 r5 g5 r6 g6 r7 g7
ba0123 = __lsx_vilvl_h(a, b),
ba4567 = __lsx_vilvh_h(a, b);
auto _01 =__lsx_vilvl_w(ba0123, rg0123),
_23 =__lsx_vilvh_w(ba0123, rg0123),
_45 =__lsx_vilvl_w(ba4567, rg4567),
_67 =__lsx_vilvh_w(ba4567, rg4567);
__lsx_vst(_01, ptr, 0);
__lsx_vst(_23, ptr, 16);
__lsx_vst(_45, ptr, 32);
__lsx_vst(_67, ptr, 48);
}
SI void load4(const float* ptr, F* r, F* g, F* b, F* a) {
F _04 = (F)__lasx_xvpermi_q(__lasx_xvld(ptr, 0), __lasx_xvld(ptr, 64), 0x02);
F _15 = (F)__lasx_xvpermi_q(__lasx_xvld(ptr, 16), __lasx_xvld(ptr, 80), 0x02);
F _26 = (F)__lasx_xvpermi_q(__lasx_xvld(ptr, 32), __lasx_xvld(ptr, 96), 0x02);
F _37 = (F)__lasx_xvpermi_q(__lasx_xvld(ptr, 48), __lasx_xvld(ptr, 112), 0x02);
F rg0145 = (F)__lasx_xvilvl_w((__m256i)_15, (__m256i)_04), // r0 r1 g0 g1 | r4 r5 g4 g5
ba0145 = (F)__lasx_xvilvh_w((__m256i)_15, (__m256i)_04),
rg2367 = (F)__lasx_xvilvl_w((__m256i)_37, (__m256i)_26),
ba2367 = (F)__lasx_xvilvh_w((__m256i)_37, (__m256i)_26);
*r = (F)__lasx_xvilvl_d((__m256i)rg2367, (__m256i)rg0145);
*g = (F)__lasx_xvilvh_d((__m256i)rg2367, (__m256i)rg0145);
*b = (F)__lasx_xvilvl_d((__m256i)ba2367, (__m256i)ba0145);
*a = (F)__lasx_xvilvh_d((__m256i)ba2367, (__m256i)ba0145);
}
SI void store4(float* ptr, F r, F g, F b, F a) {
F rg0145 = (F)__lasx_xvilvl_w((__m256i)g, (__m256i)r), // r0 g0 r1 g1 | r4 g4 r5 g5
rg2367 = (F)__lasx_xvilvh_w((__m256i)g, (__m256i)r), // r2 ... | r6 ...
ba0145 = (F)__lasx_xvilvl_w((__m256i)a, (__m256i)b), // b0 a0 b1 a1 | b4 a4 b5 a5
ba2367 = (F)__lasx_xvilvh_w((__m256i)a, (__m256i)b); // b2 ... | b6 ...
F _04 = (F)__lasx_xvilvl_d((__m256i)ba0145, (__m256i)rg0145), // r0 g0 b0 a0 | r4 g4 b4 a4
_15 = (F)__lasx_xvilvh_d((__m256i)ba0145, (__m256i)rg0145), // r1 ... | r5 ...
_26 = (F)__lasx_xvilvl_d((__m256i)ba2367, (__m256i)rg2367), // r2 ... | r6 ...
_37 = (F)__lasx_xvilvh_d((__m256i)ba2367, (__m256i)rg2367); // r3 ... | r7 ...
F _01 = (F)__lasx_xvpermi_q((__m256i)_04, (__m256i)_15, 0x02),
_23 = (F)__lasx_xvpermi_q((__m256i)_26, (__m256i)_37, 0x02),
_45 = (F)__lasx_xvpermi_q((__m256i)_04, (__m256i)_15, 0x13),
_67 = (F)__lasx_xvpermi_q((__m256i)_26, (__m256i)_37, 0x13);
__lasx_xvst(_01, ptr, 0);
__lasx_xvst(_23, ptr, 32);
__lasx_xvst(_45, ptr, 64);
__lasx_xvst(_67, ptr, 96);
}
#elif defined(JUMPER_IS_LSX)
template <typename T> using V = Vec<4, T>;
using F = V<float >;
using I32 = V<int32_t >;
using U64 = V<uint64_t>;
using U32 = V<uint32_t>;
using U16 = V<uint16_t>;
using U8 = V<uint8_t >;
#define _LSX_TRANSPOSE4_S(row0, row1, row2, row3) \
do { \
__m128 __t0 = (__m128)__lsx_vilvl_w ((__m128i)row1, (__m128i)row0); \
__m128 __t1 = (__m128)__lsx_vilvl_w ((__m128i)row3, (__m128i)row2); \
__m128 __t2 = (__m128)__lsx_vilvh_w ((__m128i)row1, (__m128i)row0); \
__m128 __t3 = (__m128)__lsx_vilvh_w ((__m128i)row3, (__m128i)row2); \
(row0) = (__m128)__lsx_vilvl_d ((__m128i)__t1, (__m128i)__t0); \
(row1) = (__m128)__lsx_vilvh_d ((__m128i)__t1, (__m128i)__t0); \
(row2) = (__m128)__lsx_vilvl_d ((__m128i)__t3, (__m128i)__t2); \
(row3) = (__m128)__lsx_vilvh_d ((__m128i)__t3, (__m128i)__t2); \
} while (0)
SI F if_then_else(I32 c, F t, F e) {
return sk_bit_cast<Vec<4,float>>(__lsx_vbitsel_v(sk_bit_cast<__m128i>(e),
sk_bit_cast<__m128i>(t),
sk_bit_cast<__m128i>(c)));
}
SI I32 if_then_else(I32 c, I32 t, I32 e) {
return sk_bit_cast<Vec<4,int32_t>>(__lsx_vbitsel_v(sk_bit_cast<__m128i>(e),
sk_bit_cast<__m128i>(t),
sk_bit_cast<__m128i>(c)));
}
SI F min(F a, F b) { return __lsx_vfmin_s(a,b); }
SI F max(F a, F b) { return __lsx_vfmax_s(a,b); }
SI I32 min(I32 a, I32 b) { return __lsx_vmin_w(a,b); }
SI U32 min(U32 a, U32 b) { return __lsx_vmin_wu(a,b); }
SI I32 max(I32 a, I32 b) { return __lsx_vmax_w(a,b); }
SI U32 max(U32 a, U32 b) { return __lsx_vmax_wu(a,b); }
SI F mad(F f, F m, F a) { return __lsx_vfmadd_s(f, m, a); }
SI F nmad(F f, F m, F a) { return __lsx_vfmadd_s(-f, m, a); }
SI F abs_(F v) { return (F)__lsx_vand_v((I32)v, (I32)(0-v)); }
SI I32 abs_(I32 v) { return max(v, -v); }
SI F rcp_approx (F v) { return __lsx_vfrecip_s(v); }
SI F rcp_precise (F v) { F e = rcp_approx(v); return e * nmad(v, e, 2.0f); }
SI F rsqrt_approx (F v) { return __lsx_vfrsqrt_s(v); }
SI F sqrt_(F v) { return __lsx_vfsqrt_s (v); }
SI U32 iround(F v) {
F t = F(0.5);
return __lsx_vftintrz_w_s(v + t); }
SI U32 round(F v) {
F t = F(0.5);
return __lsx_vftintrz_w_s(v + t); }
SI U32 round(F v, F scale) {
F t = F(0.5);
return __lsx_vftintrz_w_s(mad(v, scale, t)); }
SI U16 pack(U32 v) {
__m128i tmp = __lsx_vsat_wu(v, 15);
auto p = __lsx_vpickev_h(tmp, tmp);
return sk_unaligned_load<U16>(&p); // We have two copies. Return (the lower) one.
}
SI U8 pack(U16 v) {
auto r = widen_cast<__m128i>(v);
__m128i tmp = __lsx_vsat_hu(r, 7);
r = __lsx_vpickev_b(tmp, tmp);
return sk_unaligned_load<U8>(&r);
}
SI bool any(I32 c){
v4i32 retv = (v4i32)__lsx_vmskltz_w(__lsx_vslt_wu(__lsx_vldi(0), c));
return retv[0] != 0b0000;
}
SI bool all(I32 c){
v4i32 retv = (v4i32)__lsx_vmskltz_w(__lsx_vslt_wu(__lsx_vldi(0), c));
return retv[0] == 0b1111;
}
SI F floor_(F v) {
return __lsx_vfrintrm_s(v);
}
SI F ceil_(F v) {
return __lsx_vfrintrp_s(v);
}
template <typename T>
SI V<T> gather(const T* p, U32 ix) {
return {p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]]};
}
template <typename V, typename S>
SI void scatter_masked(V src, S* dst, U32 ix, I32 mask) {
V before = gather(dst, ix);
V after = if_then_else(mask, src, before);
dst[ix[0]] = after[0];
dst[ix[1]] = after[1];
dst[ix[2]] = after[2];
dst[ix[3]] = after[3];
}
SI void load2(const uint16_t* ptr, U16* r, U16* g) {
__m128i _01 = __lsx_vld(ptr, 0); // r0 g0 r1 g1 r2 g2 r3 g3
auto rg = __lsx_vshuf4i_h(_01, 0xD8); // r0 r1 g0 g1 r2 r3 g2 g3
auto R = __lsx_vshuf4i_w(rg, 0x88); // r0 r1 r2 r3 r0 r1 r2 r3
auto G = __lsx_vshuf4i_w(rg, 0xDD); // g0 g1 g2 g3 g0 g1 g2 g3
*r = sk_unaligned_load<U16>(&R);
*g = sk_unaligned_load<U16>(&G);
}
SI void store2(uint16_t* ptr, U16 r, U16 g) {
U32 rg = __lsx_vilvl_h(widen_cast<__m128i>(g), widen_cast<__m128i>(r));
__lsx_vst(rg, ptr, 0);
}
SI void load4(const uint16_t* ptr, U16* r, U16* g, U16* b, U16* a) {
__m128i _01 = __lsx_vld(ptr, 0), // r0 g0 b0 a0 r1 g1 b1 a1
_23 = __lsx_vld(ptr, 16); // r2 g2 b2 a2 r3 g3 b3 a3
auto _02 = __lsx_vilvl_h(_23, _01), // r0 r2 g0 g2 b0 b2 a0 a2
_13 = __lsx_vilvh_h(_23, _01); // r1 r3 g1 g3 b1 b3 a1 a3
auto rg = __lsx_vilvl_h(_13, _02), // r0 r1 r2 r3 g0 g1 g2 g3
ba = __lsx_vilvh_h(_13, _02); // b0 b1 b2 b3 a0 a1 a2 a3
*r = sk_unaligned_load<U16>((uint16_t*)&rg + 0);
*g = sk_unaligned_load<U16>((uint16_t*)&rg + 4);
*b = sk_unaligned_load<U16>((uint16_t*)&ba + 0);
*a = sk_unaligned_load<U16>((uint16_t*)&ba + 4);
}
SI void store4(uint16_t* ptr, U16 r, U16 g, U16 b, U16 a) {
auto rg = __lsx_vilvl_h(widen_cast<__m128i>(g), widen_cast<__m128i>(r)),
ba = __lsx_vilvl_h(widen_cast<__m128i>(a), widen_cast<__m128i>(b));
__lsx_vst(__lsx_vilvl_w(ba, rg), ptr, 0);
__lsx_vst(__lsx_vilvh_w(ba, rg), ptr, 16);
}
SI void load4(const float* ptr, F* r, F* g, F* b, F* a) {
F _0 = (F)__lsx_vld(ptr, 0),
_1 = (F)__lsx_vld(ptr, 16),
_2 = (F)__lsx_vld(ptr, 32),
_3 = (F)__lsx_vld(ptr, 48);
_LSX_TRANSPOSE4_S(_0,_1,_2,_3);
*r = _0;
*g = _1;
*b = _2;
*a = _3;
}
SI void store4(float* ptr, F r, F g, F b, F a) {
_LSX_TRANSPOSE4_S(r,g,b,a);
__lsx_vst(r, ptr, 0);
__lsx_vst(g, ptr, 16);
__lsx_vst(b, ptr, 32);
__lsx_vst(a, ptr, 48);
}
#endif
// Helpers to do scalar -> vector promotion on GCC (clang does this automatically)
// We need to subtract (not add) zero to keep float conversion zero-cost. See:
// https://stackoverflow.com/q/48255293
//
// The GCC implementation should be usable everywhere, but Mac clang (only) complains that the
// expressions make these functions not constexpr.
//
// Further: We can't use the subtract-zero version in scalar mode. There, the subtraction will
// really happen (at least at low optimization levels), which can alter the bit pattern of NaNs.
// Because F_() is used when copying uniforms (even integer uniforms), this can corrupt values.
// The vector subtraction of zero doesn't appear to ever alter NaN bit patterns.
#if defined(__clang__) || defined(JUMPER_IS_SCALAR)
SI constexpr F F_(float x) { return x; }
SI constexpr I32 I32_(int32_t x) { return x; }
SI constexpr U32 U32_(uint32_t x) { return x; }
#else
SI constexpr F F_(float x) { return x - F(); }
SI constexpr I32 I32_(int32_t x) { return x + I32(); }
SI constexpr U32 U32_(uint32_t x) { return x + U32(); }
#endif
// Extremely helpful literals:
static constexpr F F0 = F_(0.0f),
F1 = F_(1.0f);
#if !defined(JUMPER_IS_SCALAR)
SI F min(F a, float b) { return min(a, F_(b)); }
SI F min(float a, F b) { return min(F_(a), b); }
SI F max(F a, float b) { return max(a, F_(b)); }
SI F max(float a, F b) { return max(F_(a), b); }
SI F mad(F f, F m, float a) { return mad(f, m, F_(a)); }
SI F mad(F f, float m, F a) { return mad(f, F_(m), a); }
SI F mad(F f, float m, float a) { return mad(f, F_(m), F_(a)); }
SI F mad(float f, F m, F a) { return mad(F_(f), m, a); }
SI F mad(float f, F m, float a) { return mad(F_(f), m, F_(a)); }
SI F mad(float f, float m, F a) { return mad(F_(f), F_(m), a); }
SI F nmad(F f, F m, float a) { return nmad(f, m, F_(a)); }
SI F nmad(F f, float m, F a) { return nmad(f, F_(m), a); }
SI F nmad(F f, float m, float a) { return nmad(f, F_(m), F_(a)); }
SI F nmad(float f, F m, F a) { return nmad(F_(f), m, a); }
SI F nmad(float f, F m, float a) { return nmad(F_(f), m, F_(a)); }
SI F nmad(float f, float m, F a) { return nmad(F_(f), F_(m), a); }
#endif
// We need to be a careful with casts.
// (F)x means cast x to float in the portable path, but bit_cast x to float in the others.
// These named casts and bit_cast() are always what they seem to be.
#if defined(JUMPER_IS_SCALAR)
SI F cast (U32 v) { return (F)v; }
SI F cast64(U64 v) { return (F)v; }
SI U32 trunc_(F v) { return (U32)v; }
SI U32 expand(U16 v) { return (U32)v; }
SI U32 expand(U8 v) { return (U32)v; }
#else
SI F cast (U32 v) { return __builtin_convertvector((I32)v, F); }
SI F cast64(U64 v) { return __builtin_convertvector( v, F); }
SI U32 trunc_(F v) { return (U32)__builtin_convertvector( v, I32); }
SI U32 expand(U16 v) { return __builtin_convertvector( v, U32); }
SI U32 expand(U8 v) { return __builtin_convertvector( v, U32); }
#endif
#if !defined(JUMPER_IS_SCALAR)
SI F if_then_else(I32 c, F t, float e) { return if_then_else(c, t , F_(e)); }
SI F if_then_else(I32 c, float t, F e) { return if_then_else(c, F_(t), e ); }
SI F if_then_else(I32 c, float t, float e) { return if_then_else(c, F_(t), F_(e)); }
#endif
SI F fract(F v) { return v - floor_(v); }
// See http://www.machinedlearnings.com/2011/06/fast-approximate-logarithm-exponential.html
SI F approx_log2(F x) {
// e - 127 is a fair approximation of log2(x) in its own right...
F e = cast(sk_bit_cast<U32>(x)) * (1.0f / (1<<23));
// ... but using the mantissa to refine its error is _much_ better.
F m = sk_bit_cast<F>((sk_bit_cast<U32>(x) & 0x007fffff) | 0x3f000000);
return nmad(m, 1.498030302f, e - 124.225514990f) - 1.725879990f / (0.3520887068f + m);
}
SI F approx_log(F x) {
const float ln2 = 0.69314718f;
return ln2 * approx_log2(x);
}
SI F approx_pow2(F x) {
constexpr float kInfinityBits = 0x7f800000;
F f = fract(x);
F approx = nmad(f, 1.490129070f, x + 121.274057500f);
approx += 27.728023300f / (4.84252568f - f);
approx *= 1.0f * (1<<23);
approx = min(max(approx, F0), F_(kInfinityBits)); // guard against underflow/overflow
return sk_bit_cast<F>(round(approx));
}
SI F approx_exp(F x) {
const float log2_e = 1.4426950408889634074f;
return approx_pow2(log2_e * x);
}
SI F approx_powf(F x, F y) {
return if_then_else((x == 0)|(x == 1), x
, approx_pow2(approx_log2(x) * y));
}
#if !defined(JUMPER_IS_SCALAR)
SI F approx_powf(F x, float y) { return approx_powf(x, F_(y)); }
#endif
SI F from_half(U16 h) {
#if defined(JUMPER_IS_NEON) && defined(SK_CPU_ARM64)
return vcvt_f32_f16((float16x4_t)h);
#elif defined(JUMPER_IS_SKX)
return _mm512_cvtph_ps((__m256i)h);
#elif defined(JUMPER_IS_HSW)
return _mm256_cvtph_ps((__m128i)h);
#else
// Remember, a half is 1-5-10 (sign-exponent-mantissa) with 15 exponent bias.
U32 sem = expand(h),
s = sem & 0x8000,
em = sem ^ s;
// Convert to 1-8-23 float with 127 bias, flushing denorm halfs (including zero) to zero.
auto denorm = (I32)em < 0x0400; // I32 comparison is often quicker, and always safe here.
return if_then_else(denorm, F0
, sk_bit_cast<F>( (s<<16) + (em<<13) + ((127-15)<<23) ));
#endif
}
SI U16 to_half(F f) {
#if defined(JUMPER_IS_NEON) && defined(SK_CPU_ARM64)
return (U16)vcvt_f16_f32(f);
#elif defined(JUMPER_IS_SKX)
return (U16)_mm512_cvtps_ph(f, _MM_FROUND_CUR_DIRECTION);
#elif defined(JUMPER_IS_HSW)
return (U16)_mm256_cvtps_ph(f, _MM_FROUND_CUR_DIRECTION);
#else
// Remember, a float is 1-8-23 (sign-exponent-mantissa) with 127 exponent bias.
U32 sem = sk_bit_cast<U32>(f),
s = sem & 0x80000000,
em = sem ^ s;
// Convert to 1-5-10 half with 15 bias, flushing denorm halfs (including zero) to zero.
auto denorm = (I32)em < 0x38800000; // I32 comparison is often quicker, and always safe here.
return pack((U32)if_then_else(denorm, I32_(0)
, (I32)((s>>16) + (em>>13) - ((127-15)<<10))));
#endif
}
static void patch_memory_contexts(SkSpan<SkRasterPipeline_MemoryCtxPatch> memoryCtxPatches,
size_t dx, size_t dy, size_t tail) {
for (SkRasterPipeline_MemoryCtxPatch& patch : memoryCtxPatches) {
SkRasterPipeline_MemoryCtx* ctx = patch.info.context;
const ptrdiff_t offset = patch.info.bytesPerPixel * (dy * ctx->stride + dx);
if (patch.info.load) {
void* ctxData = SkTAddOffset<void>(ctx->pixels, offset);
memcpy(patch.scratch, ctxData, patch.info.bytesPerPixel * tail);
}
SkASSERT(patch.backup == nullptr);
void* scratchFakeBase = SkTAddOffset<void>(patch.scratch, -offset);
patch.backup = ctx->pixels;
ctx->pixels = scratchFakeBase;
}
}
static void restore_memory_contexts(SkSpan<SkRasterPipeline_MemoryCtxPatch> memoryCtxPatches,
size_t dx, size_t dy, size_t tail) {
for (SkRasterPipeline_MemoryCtxPatch& patch : memoryCtxPatches) {
SkRasterPipeline_MemoryCtx* ctx = patch.info.context;
SkASSERT(patch.backup != nullptr);
ctx->pixels = patch.backup;
patch.backup = nullptr;
const ptrdiff_t offset = patch.info.bytesPerPixel * (dy * ctx->stride + dx);
if (patch.info.store) {
void* ctxData = SkTAddOffset<void>(ctx->pixels, offset);
memcpy(ctxData, patch.scratch, patch.info.bytesPerPixel * tail);
}
}
}
#if defined(JUMPER_IS_SCALAR) || defined(JUMPER_IS_SSE2)
// In scalar and SSE2 mode, we always use precise math so we can have more predictable results.
// Chrome will use the SSE2 implementation when --disable-skia-runtime-opts is set. (b/40042946)
SI F rcp_fast(F v) { return rcp_precise(v); }
SI F rsqrt(F v) { return rcp_precise(sqrt_(v)); }
#else
SI F rcp_fast(F v) { return rcp_approx(v); }
SI F rsqrt(F v) { return rsqrt_approx(v); }
#endif
// Our fundamental vector depth is our pixel stride.
static constexpr size_t N = sizeof(F) / sizeof(float);
// We're finally going to get to what a Stage function looks like!
// Any custom ABI to use for all (non-externally-facing) stage functions?
// Also decide here whether to use narrow (compromise) or wide (ideal) stages.
#if defined(SK_CPU_ARM32) && defined(JUMPER_IS_NEON)
// This lets us pass vectors more efficiently on 32-bit ARM.
// We can still only pass 16 floats, so best as 4x {r,g,b,a}.
#define ABI __attribute__((pcs("aapcs-vfp")))
#define JUMPER_NARROW_STAGES 1
#elif defined(_MSC_VER)
// Even if not vectorized, this lets us pass {r,g,b,a} as registers,
// instead of {b,a} on the stack. Narrow stages work best for __vectorcall.
#define ABI __vectorcall
#define JUMPER_NARROW_STAGES 1
#elif defined(__x86_64__) || defined(SK_CPU_ARM64) || defined(SK_CPU_LOONGARCH)
// These platforms are ideal for wider stages, and their default ABI is ideal.
#define ABI
#define JUMPER_NARROW_STAGES 0
#else
// 32-bit or unknown... shunt them down the narrow path.
// Odds are these have few registers and are better off there.
#define ABI
#define JUMPER_NARROW_STAGES 1
#endif
#if JUMPER_NARROW_STAGES
struct Params {
size_t dx, dy;
std::byte* base;
F dr,dg,db,da;
};
using Stage = void(ABI*)(Params*, SkRasterPipelineStage* program, F r, F g, F b, F a);
#else
using Stage = void(ABI*)(SkRasterPipelineStage* program, size_t dx, size_t dy,
std::byte* base, F,F,F,F, F,F,F,F);
#endif
static void start_pipeline(size_t dx, size_t dy,
size_t xlimit, size_t ylimit,
SkRasterPipelineStage* program,
SkSpan<SkRasterPipeline_MemoryCtxPatch> memoryCtxPatches,
uint8_t* tailPointer) {
uint8_t unreferencedTail;
if (!tailPointer) {
tailPointer = &unreferencedTail;
}
auto start = (Stage)program->fn;
const size_t x0 = dx;
std::byte* const base = nullptr;
for (; dy < ylimit; dy++) {
#if JUMPER_NARROW_STAGES
Params params = { x0,dy,base, F0,F0,F0,F0 };
while (params.dx + N <= xlimit) {
start(&params,program, F0,F0,F0,F0);
params.dx += N;
}
if (size_t tail = xlimit - params.dx) {
*tailPointer = tail;
patch_memory_contexts(memoryCtxPatches, params.dx, dy, tail);
start(&params,program, F0,F0,F0,F0);
restore_memory_contexts(memoryCtxPatches, params.dx, dy, tail);
*tailPointer = 0xFF;
}
#else
dx = x0;
while (dx + N <= xlimit) {
start(program,dx,dy,base, F0,F0,F0,F0, F0,F0,F0,F0);
dx += N;
}
if (size_t tail = xlimit - dx) {
*tailPointer = tail;
patch_memory_contexts(memoryCtxPatches, dx, dy, tail);
start(program,dx,dy,base, F0,F0,F0,F0, F0,F0,F0,F0);
restore_memory_contexts(memoryCtxPatches, dx, dy, tail);
*tailPointer = 0xFF;
}
#endif
}
}
#if SK_HAS_MUSTTAIL
#define JUMPER_MUSTTAIL [[clang::musttail]]
#else
#define JUMPER_MUSTTAIL
#endif
#if JUMPER_NARROW_STAGES
#define DECLARE_STAGE(name, ARG, STAGE_RET, INC, OFFSET, MUSTTAIL) \
SI STAGE_RET name##_k(ARG, size_t dx, size_t dy, std::byte*& base, \
F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da); \
static void ABI name(Params* params, SkRasterPipelineStage* program, \
F r, F g, F b, F a) { \
OFFSET name##_k(Ctx{program}, params->dx,params->dy,params->base, \
r,g,b,a, params->dr, params->dg, params->db, params->da); \
INC; \
auto fn = (Stage)program->fn; \
MUSTTAIL return fn(params, program, r,g,b,a); \
} \
SI STAGE_RET name##_k(ARG, size_t dx, size_t dy, std::byte*& base, \
F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da)
#else
#define DECLARE_STAGE(name, ARG, STAGE_RET, INC, OFFSET, MUSTTAIL) \
SI STAGE_RET name##_k(ARG, size_t dx, size_t dy, std::byte*& base, \
F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da); \
static void ABI name(SkRasterPipelineStage* program, size_t dx, size_t dy, \
std::byte* base, F r, F g, F b, F a, F dr, F dg, F db, F da) { \
OFFSET name##_k(Ctx{program}, dx,dy,base, r,g,b,a, dr,dg,db,da); \
INC; \
auto fn = (Stage)program->fn; \
MUSTTAIL return fn(program, dx,dy,base, r,g,b,a, dr,dg,db,da); \
} \
SI STAGE_RET name##_k(ARG, size_t dx, size_t dy, std::byte*& base, \
F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da)
#endif
// A typical stage returns void, always increments the program counter by 1, and lets the optimizer
// decide whether or not tail-calling is appropriate.
#define STAGE(name, arg) \
DECLARE_STAGE(name, arg, void, ++program, /*no offset*/, /*no musttail*/)
// A tail stage returns void, always increments the program counter by 1, and uses tail-calling.
// Tail-calling is necessary in SkSL-generated programs, which can be thousands of ops long, and
// could overflow the stack (particularly in debug).
#define STAGE_TAIL(name, arg) \
DECLARE_STAGE(name, arg, void, ++program, /*no offset*/, JUMPER_MUSTTAIL)
// A branch stage returns an integer, which is added directly to the program counter, and tailcalls.
#define STAGE_BRANCH(name, arg) \
DECLARE_STAGE(name, arg, int, /*no increment*/, program +=, JUMPER_MUSTTAIL)
// just_return() is a simple no-op stage that only exists to end the chain,
// returning back up to start_pipeline(), and from there to the caller.
#if JUMPER_NARROW_STAGES
static void ABI just_return(Params*, SkRasterPipelineStage*, F,F,F,F) {}
#else
static void ABI just_return(SkRasterPipelineStage*, size_t,size_t, std::byte*,
F,F,F,F, F,F,F,F) {}
#endif
// Note that in release builds, most stages consume no stack (thanks to tail call optimization).
// However: certain builds (especially with non-clang compilers) may fail to optimize tail
// calls, resulting in actual stack frames being generated.
//
// stack_checkpoint() and stack_rewind() are special stages that can be used to manage stack growth.
// If a pipeline contains a stack_checkpoint, followed by any number of stack_rewind (at any point),
// the C++ stack will be reset to the state it was at when the stack_checkpoint was initially hit.
//
// All instances of stack_rewind (as well as the one instance of stack_checkpoint near the start of
// a pipeline) share a single context (of type SkRasterPipeline_RewindCtx). That context holds the
// full state of the mutable registers that are normally passed to the next stage in the program.
//
// stack_rewind is the only stage other than just_return that actually returns (rather than jumping
// to the next stage in the program). Before it does so, it stashes all of the registers in the
// context. This includes the updated `program` pointer. Unlike stages that tail call exactly once,
// stack_checkpoint calls the next stage in the program repeatedly, as long as the `program` in the
// context is overwritten (i.e., as long as a stack_rewind was the reason the pipeline returned,
// rather than a just_return).
//
// Normally, just_return is the only stage that returns, and no other stage does anything after a
// subsequent (called) stage returns, so the stack just unwinds all the way to start_pipeline.
// With stack_checkpoint on the stack, any stack_rewind stages will return all the way up to the
// stack_checkpoint. That grabs the values that would have been passed to the next stage (from the
// context), and continues the linear execution of stages, but has reclaimed all of the stack frames
// pushed before the stack_rewind before doing so.
#if JUMPER_NARROW_STAGES
static void ABI stack_checkpoint(Params* params, SkRasterPipelineStage* program,
F r, F g, F b, F a) {
SkRasterPipeline_RewindCtx* ctx = Ctx{program};
while (program) {
auto next = (Stage)(++program)->fn;
ctx->stage = nullptr;
next(params, program, r, g, b, a);
program = ctx->stage;
if (program) {
r = sk_unaligned_load<F>(ctx->r );
g = sk_unaligned_load<F>(ctx->g );
b = sk_unaligned_load<F>(ctx->b );
a = sk_unaligned_load<F>(ctx->a );
params->dr = sk_unaligned_load<F>(ctx->dr);
params->dg = sk_unaligned_load<F>(ctx->dg);
params->db = sk_unaligned_load<F>(ctx->db);
params->da = sk_unaligned_load<F>(ctx->da);
params->base = ctx->base;
}
}
}
static void ABI stack_rewind(Params* params, SkRasterPipelineStage* program,
F r, F g, F b, F a) {
SkRasterPipeline_RewindCtx* ctx = Ctx{program};
sk_unaligned_store(ctx->r , r );
sk_unaligned_store(ctx->g , g );
sk_unaligned_store(ctx->b , b );
sk_unaligned_store(ctx->a , a );
sk_unaligned_store(ctx->dr, params->dr);
sk_unaligned_store(ctx->dg, params->dg);
sk_unaligned_store(ctx->db, params->db);
sk_unaligned_store(ctx->da, params->da);
ctx->base = params->base;
ctx->stage = program;
}
#else
static void ABI stack_checkpoint(SkRasterPipelineStage* program,
size_t dx, size_t dy, std::byte* base,
F r, F g, F b, F a, F dr, F dg, F db, F da) {
SkRasterPipeline_RewindCtx* ctx = Ctx{program};
while (program) {
auto next = (Stage)(++program)->fn;
ctx->stage = nullptr;
next(program, dx, dy, base, r, g, b, a, dr, dg, db, da);
program = ctx->stage;
if (program) {
r = sk_unaligned_load<F>(ctx->r );
g = sk_unaligned_load<F>(ctx->g );
b = sk_unaligned_load<F>(ctx->b );
a = sk_unaligned_load<F>(ctx->a );
dr = sk_unaligned_load<F>(ctx->dr);
dg = sk_unaligned_load<F>(ctx->dg);
db = sk_unaligned_load<F>(ctx->db);
da = sk_unaligned_load<F>(ctx->da);
base = ctx->base;
}
}
}
static void ABI stack_rewind(SkRasterPipelineStage* program,
size_t dx, size_t dy, std::byte* base,
F r, F g, F b, F a, F dr, F dg, F db, F da) {
SkRasterPipeline_RewindCtx* ctx = Ctx{program};
sk_unaligned_store(ctx->r , r );
sk_unaligned_store(ctx->g , g );
sk_unaligned_store(ctx->b , b );
sk_unaligned_store(ctx->a , a );
sk_unaligned_store(ctx->dr, dr);
sk_unaligned_store(ctx->dg, dg);
sk_unaligned_store(ctx->db, db);
sk_unaligned_store(ctx->da, da);
ctx->base = base;
ctx->stage = program;
}
#endif
// We could start defining normal Stages now. But first, some helper functions.
template <typename V, typename T>
SI V load(const T* src) {
return sk_unaligned_load<V>(src);
}
template <typename V, typename T>
SI void store(T* dst, V v) {
sk_unaligned_store(dst, v);
}
SI F from_byte(U8 b) {
return cast(expand(b)) * (1/255.0f);
}
SI F from_short(U16 s) {
return cast(expand(s)) * (1/65535.0f);
}
SI void from_565(U16 _565, F* r, F* g, F* b) {
U32 wide = expand(_565);
*r = cast(wide & (31<<11)) * (1.0f / (31<<11));
*g = cast(wide & (63<< 5)) * (1.0f / (63<< 5));
*b = cast(wide & (31<< 0)) * (1.0f / (31<< 0));
}
SI void from_4444(U16 _4444, F* r, F* g, F* b, F* a) {
U32 wide = expand(_4444);
*r = cast(wide & (15<<12)) * (1.0f / (15<<12));
*g = cast(wide & (15<< 8)) * (1.0f / (15<< 8));
*b = cast(wide & (15<< 4)) * (1.0f / (15<< 4));
*a = cast(wide & (15<< 0)) * (1.0f / (15<< 0));
}
SI void from_8888(U32 _8888, F* r, F* g, F* b, F* a) {
*r = cast((_8888 ) & 0xff) * (1/255.0f);
*g = cast((_8888 >> 8) & 0xff) * (1/255.0f);
*b = cast((_8888 >> 16) & 0xff) * (1/255.0f);
*a = cast((_8888 >> 24) ) * (1/255.0f);
}
SI void from_88(U16 _88, F* r, F* g) {
U32 wide = expand(_88);
*r = cast((wide ) & 0xff) * (1/255.0f);
*g = cast((wide >> 8) & 0xff) * (1/255.0f);
}
SI void from_1010102(U32 rgba, F* r, F* g, F* b, F* a) {
*r = cast((rgba ) & 0x3ff) * (1/1023.0f);
*g = cast((rgba >> 10) & 0x3ff) * (1/1023.0f);
*b = cast((rgba >> 20) & 0x3ff) * (1/1023.0f);
*a = cast((rgba >> 30) ) * (1/ 3.0f);
}
SI void from_1010102_xr(U32 rgba, F* r, F* g, F* b, F* a) {
static constexpr float min = -0.752941f;
static constexpr float max = 1.25098f;
static constexpr float range = max - min;
*r = cast((rgba ) & 0x3ff) * (1/1023.0f) * range + min;
*g = cast((rgba >> 10) & 0x3ff) * (1/1023.0f) * range + min;
*b = cast((rgba >> 20) & 0x3ff) * (1/1023.0f) * range + min;
*a = cast((rgba >> 30) ) * (1/ 3.0f);
}
SI void from_10101010_xr(U64 _10x6, F* r, F* g, F* b, F* a) {
*r = (cast64((_10x6 >> 6) & 0x3ff) - 384.f) / 510.f;
*g = (cast64((_10x6 >> 22) & 0x3ff) - 384.f) / 510.f;
*b = (cast64((_10x6 >> 38) & 0x3ff) - 384.f) / 510.f;
*a = (cast64((_10x6 >> 54) & 0x3ff) - 384.f) / 510.f;
}
SI void from_10x6(U64 _10x6, F* r, F* g, F* b, F* a) {
*r = cast64((_10x6 >> 6) & 0x3ff) * (1/1023.0f);
*g = cast64((_10x6 >> 22) & 0x3ff) * (1/1023.0f);
*b = cast64((_10x6 >> 38) & 0x3ff) * (1/1023.0f);
*a = cast64((_10x6 >> 54) & 0x3ff) * (1/1023.0f);
}
SI void from_1616(U32 _1616, F* r, F* g) {
*r = cast((_1616 ) & 0xffff) * (1/65535.0f);
*g = cast((_1616 >> 16) & 0xffff) * (1/65535.0f);
}
SI void from_16161616(U64 _16161616, F* r, F* g, F* b, F* a) {
*r = cast64((_16161616 ) & 0xffff) * (1/65535.0f);
*g = cast64((_16161616 >> 16) & 0xffff) * (1/65535.0f);
*b = cast64((_16161616 >> 32) & 0xffff) * (1/65535.0f);
*a = cast64((_16161616 >> 48) & 0xffff) * (1/65535.0f);
}
// Used by load_ and store_ stages to get to the right (dx,dy) starting point of contiguous memory.
template <typename T>
SI T* ptr_at_xy(const SkRasterPipeline_MemoryCtx* ctx, size_t dx, size_t dy) {
return (T*)ctx->pixels + dy*ctx->stride + dx;
}
// clamp v to [0,limit).
SI F clamp(F v, F limit) {
F inclusive = sk_bit_cast<F>(sk_bit_cast<U32>(limit) - 1); // Exclusive -> inclusive.
return min(max(0.0f, v), inclusive);
}
// clamp to (0,limit).
SI F clamp_ex(F v, float limit) {
const F inclusiveZ = F_(std::numeric_limits<float>::min()),
inclusiveL = sk_bit_cast<F>( sk_bit_cast<U32>(F_(limit)) - 1 );
return min(max(inclusiveZ, v), inclusiveL);
}
// Polynomial approximation of degree 5 for sin(x * 2 * pi) in the range [-1/4, 1/4]
// Adapted from https://github.com/google/swiftshader/blob/master/docs/Sin-Cos-Optimization.pdf
SI F sin5q_(F x) {
// A * x + B * x^3 + C * x^5
// Exact at x = 0, 1/12, 1/6, 1/4, and their negatives,
// which correspond to x * 2 * pi = 0, pi/6, pi/3, pi/2
constexpr float A = 6.28230858f;
constexpr float B = -41.1693687f;
constexpr float C = 74.4388885f;
F x2 = x * x;
return x * mad(mad(x2, C, B), x2, A);
}
SI F sin_(F x) {
constexpr float one_over_pi2 = 1 / (2 * SK_FloatPI);
x = mad(x, -one_over_pi2, 0.25f);
x = 0.25f - abs_(x - floor_(x + 0.5f));
return sin5q_(x);
}
SI F cos_(F x) {
constexpr float one_over_pi2 = 1 / (2 * SK_FloatPI);
x *= one_over_pi2;
x = 0.25f - abs_(x - floor_(x + 0.5f));
return sin5q_(x);
}
/* "GENERATING ACCURATE VALUES FOR THE TANGENT FUNCTION"
https://mae.ufl.edu/~uhk/ACCURATE-TANGENT.pdf
approx = x + (1/3)x^3 + (2/15)x^5 + (17/315)x^7 + (62/2835)x^9
Some simplifications:
1. tan(x) is periodic, -PI/2 < x < PI/2
2. tan(x) is odd, so tan(-x) = -tan(x)
3. Our polynomial approximation is best near zero, so we use the following identity
tan(x) + tan(y)
tan(x + y) = -----------------
1 - tan(x)*tan(y)
tan(PI/4) = 1
So for x > PI/8, we do the following refactor:
x' = x - PI/4
1 + tan(x')
tan(x) = ------------
1 - tan(x')
*/
SI F tan_(F x) {
constexpr float Pi = SK_FloatPI;
// periodic between -pi/2 ... pi/2
// shift to 0...Pi, scale 1/Pi to get into 0...1, then fract, scale-up, shift-back
x = mad(fract(mad(x, 1/Pi, 0.5f)), Pi, -Pi/2);
I32 neg = (x < 0.0f);
x = if_then_else(neg, -x, x);
// minimize total error by shifting if x > pi/8
I32 use_quotient = (x > (Pi/8));
x = if_then_else(use_quotient, x - (Pi/4), x);
// 9th order poly = 4th order(x^2) * x
const float c4 = 62 / 2835.0f;
const float c3 = 17 / 315.0f;
const float c2 = 2 / 15.0f;
const float c1 = 1 / 3.0f;
const float c0 = 1.0f;
F x2 = x * x;
x *= mad(x2, mad(x2, mad(x2, mad(x2, c4, c3), c2), c1), c0);
x = if_then_else(use_quotient, (1+x)/(1-x), x);
x = if_then_else(neg, -x, x);
return x;
}
/* Use 4th order polynomial approximation from https://arachnoid.com/polysolve/
with 129 values of x,atan(x) for x:[0...1]
This only works for 0 <= x <= 1
*/
SI F approx_atan_unit(F x) {
// y = 0.14130025741326729 x⁴
// - 0.34312835980675116 x³
// - 0.016172900528248768 x²
// + 1.00376969762003850 x
// - 0.00014758242182738969
const float c4 = 0.14130025741326729f;
const float c3 = -0.34312835980675116f;
const float c2 = -0.016172900528248768f;
const float c1 = 1.0037696976200385f;
const float c0 = -0.00014758242182738969f;
return mad(x, mad(x, mad(x, mad(x, c4, c3), c2), c1), c0);
}
// Use identity atan(x) = pi/2 - atan(1/x) for x > 1
SI F atan_(F x) {
I32 neg = (x < 0.0f);
x = if_then_else(neg, -x, x);
I32 flip = (x > 1.0f);
x = if_then_else(flip, 1/x, x);
x = approx_atan_unit(x);
x = if_then_else(flip, SK_FloatPI/2 - x, x);
x = if_then_else(neg, -x, x);
return x;
}
// Handbook of Mathematical Functions, by Milton Abramowitz and Irene Stegun:
// https://books.google.com/books/content?id=ZboM5tOFWtsC&pg=PA81&img=1&zoom=3&hl=en&bul=1&sig=ACfU3U2M75tG_iGVOS92eQspr14LTq02Nw&ci=0%2C15%2C999%2C1279&edge=0
// http://screen/8YGJxUGFQ49bVX6
SI F asin_(F x) {
I32 neg = (x < 0.0f);
x = if_then_else(neg, -x, x);
const float c3 = -0.0187293f;
const float c2 = 0.0742610f;
const float c1 = -0.2121144f;
const float c0 = 1.5707288f;
F poly = mad(x, mad(x, mad(x, c3, c2), c1), c0);
x = nmad(sqrt_(1 - x), poly, SK_FloatPI/2);
x = if_then_else(neg, -x, x);
return x;
}
SI F acos_(F x) {
return SK_FloatPI/2 - asin_(x);
}
/* Use identity atan(x) = pi/2 - atan(1/x) for x > 1
By swapping y,x to ensure the ratio is <= 1, we can safely call atan_unit()
which avoids a 2nd divide instruction if we had instead called atan().
*/
SI F atan2_(F y0, F x0) {
I32 flip = (abs_(y0) > abs_(x0));
F y = if_then_else(flip, x0, y0);
F x = if_then_else(flip, y0, x0);
F arg = y/x;
I32 neg = (arg < 0.0f);
arg = if_then_else(neg, -arg, arg);
F r = approx_atan_unit(arg);
r = if_then_else(flip, SK_FloatPI/2 - r, r);
r = if_then_else(neg, -r, r);
// handle quadrant distinctions
r = if_then_else((y0 >= 0) & (x0 < 0), r + SK_FloatPI, r);
r = if_then_else((y0 < 0) & (x0 <= 0), r - SK_FloatPI, r);
// Note: we don't try to handle 0,0 or infinities
return r;
}
// Used by gather_ stages to calculate the base pointer and a vector of indices to load.
template <typename T>
SI U32 ix_and_ptr(T** ptr, const SkRasterPipeline_GatherCtx* ctx, F x, F y) {
// We use exclusive clamp so that our min value is > 0 because ULP subtraction using U32 would
// produce a NaN if applied to +0.f.
x = clamp_ex(x, ctx->width );
y = clamp_ex(y, ctx->height);
x = sk_bit_cast<F>(sk_bit_cast<U32>(x) - (uint32_t)ctx->roundDownAtInteger);
y = sk_bit_cast<F>(sk_bit_cast<U32>(y) - (uint32_t)ctx->roundDownAtInteger);
*ptr = (const T*)ctx->pixels;
return trunc_(y)*ctx->stride + trunc_(x);
}
// We often have a nominally [0,1] float value we need to scale and convert to an integer,
// whether for a table lookup or to pack back down into bytes for storage.
//
// In practice, especially when dealing with interesting color spaces, that notionally
// [0,1] float may be out of [0,1] range. Unorms cannot represent that, so we must clamp.
//
// You can adjust the expected input to [0,bias] by tweaking that parameter.
SI U32 to_unorm(F v, float scale, float bias = 1.0f) {
// Any time we use round() we probably want to use to_unorm().
return round(min(max(0.0f, v), bias), F_(scale));
}
SI I32 cond_to_mask(I32 cond) {
#if defined(JUMPER_IS_SCALAR)
// In scalar mode, conditions are bools (0 or 1), but we want to store and operate on masks
// (eg, using bitwise operations to select values).
return if_then_else(cond, I32(~0), I32(0));
#else
// In SIMD mode, our various instruction sets already represent conditions as masks.
return cond;
#endif
}
#if defined(JUMPER_IS_SCALAR)
// In scalar mode, `data` only contains a single lane.
SI uint32_t select_lane(uint32_t data, int /*lane*/) { return data; }
SI int32_t select_lane( int32_t data, int /*lane*/) { return data; }
#else
// In SIMD mode, `data` contains a vector of lanes.
SI uint32_t select_lane(U32 data, int lane) { return data[lane]; }
SI int32_t select_lane(I32 data, int lane) { return data[lane]; }
#endif
// Now finally, normal Stages!
STAGE(seed_shader, NoCtx) {
static constexpr float iota[] = {
0.5f, 1.5f, 2.5f, 3.5f, 4.5f, 5.5f, 6.5f, 7.5f,
8.5f, 9.5f,10.5f,11.5f,12.5f,13.5f,14.5f,15.5f,
};
static_assert(std::size(iota) >= SkRasterPipeline_kMaxStride_highp);
// It's important for speed to explicitly cast(dx) and cast(dy),
// which has the effect of splatting them to vectors before converting to floats.
// On Intel this breaks a data dependency on previous loop iterations' registers.
r = cast(U32_(dx)) + sk_unaligned_load<F>(iota);
g = cast(U32_(dy)) + 0.5f;
b = F1; // This is w=1 for matrix multiplies by the device coords.
a = F0;
}
STAGE(dither, const float* rate) {
// Get [(dx,dy), (dx+1,dy), (dx+2,dy), ...] loaded up in integer vectors.
uint32_t iota[] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
static_assert(std::size(iota) >= SkRasterPipeline_kMaxStride_highp);
U32 X = U32_(dx) + sk_unaligned_load<U32>(iota),
Y = U32_(dy);
// We're doing 8x8 ordered dithering, see https://en.wikipedia.org/wiki/Ordered_dithering.
// In this case n=8 and we're using the matrix that looks like 1/64 x [ 0 48 12 60 ... ].
// We only need X and X^Y from here on, so it's easier to just think of that as "Y".
Y ^= X;
// We'll mix the bottom 3 bits of each of X and Y to make 6 bits,
// for 2^6 == 64 == 8x8 matrix values. If X=abc and Y=def, we make fcebda.
U32 M = (Y & 1) << 5 | (X & 1) << 4
| (Y & 2) << 2 | (X & 2) << 1
| (Y & 4) >> 1 | (X & 4) >> 2;
// Scale that dither to [0,1), then (-0.5,+0.5), here using 63/128 = 0.4921875 as 0.5-epsilon.
// We want to make sure our dither is less than 0.5 in either direction to keep exact values
// like 0 and 1 unchanged after rounding.
F dither = mad(cast(M), 2/128.0f, -63/128.0f);
r = mad(dither, *rate, r);
g = mad(dither, *rate, g);
b = mad(dither, *rate, b);
r = max(0.0f, min(r, a));
g = max(0.0f, min(g, a));
b = max(0.0f, min(b, a));
}
// load 4 floats from memory, and splat them into r,g,b,a
STAGE(uniform_color, const SkRasterPipeline_UniformColorCtx* c) {
r = F_(c->r);
g = F_(c->g);
b = F_(c->b);
a = F_(c->a);
}
STAGE(unbounded_uniform_color, const SkRasterPipeline_UniformColorCtx* c) {
r = F_(c->r);
g = F_(c->g);
b = F_(c->b);
a = F_(c->a);
}
// load 4 floats from memory, and splat them into dr,dg,db,da
STAGE(uniform_color_dst, const SkRasterPipeline_UniformColorCtx* c) {
dr = F_(c->r);
dg = F_(c->g);
db = F_(c->b);
da = F_(c->a);
}
// splats opaque-black into r,g,b,a
STAGE(black_color, NoCtx) {
r = g = b = F0;
a = F1;
}
STAGE(white_color, NoCtx) {
r = g = b = a = F1;
}
// load registers r,g,b,a from context (mirrors store_src)
STAGE(load_src, const float* ptr) {
r = sk_unaligned_load<F>(ptr + 0*N);
g = sk_unaligned_load<F>(ptr + 1*N);
b = sk_unaligned_load<F>(ptr + 2*N);
a = sk_unaligned_load<F>(ptr + 3*N);
}
// store registers r,g,b,a into context (mirrors load_src)
STAGE(store_src, float* ptr) {
sk_unaligned_store(ptr + 0*N, r);
sk_unaligned_store(ptr + 1*N, g);
sk_unaligned_store(ptr + 2*N, b);
sk_unaligned_store(ptr + 3*N, a);
}
// store registers r,g into context
STAGE(store_src_rg, float* ptr) {
sk_unaligned_store(ptr + 0*N, r);
sk_unaligned_store(ptr + 1*N, g);
}
// load registers r,g from context
STAGE(load_src_rg, float* ptr) {
r = sk_unaligned_load<F>(ptr + 0*N);
g = sk_unaligned_load<F>(ptr + 1*N);
}
// store register a into context
STAGE(store_src_a, float* ptr) {
sk_unaligned_store(ptr, a);
}
// load registers dr,dg,db,da from context (mirrors store_dst)
STAGE(load_dst, const float* ptr) {
dr = sk_unaligned_load<F>(ptr + 0*N);
dg = sk_unaligned_load<F>(ptr + 1*N);
db = sk_unaligned_load<F>(ptr + 2*N);
da = sk_unaligned_load<F>(ptr + 3*N);
}
// store registers dr,dg,db,da into context (mirrors load_dst)
STAGE(store_dst, float* ptr) {
sk_unaligned_store(ptr + 0*N, dr);
sk_unaligned_store(ptr + 1*N, dg);
sk_unaligned_store(ptr + 2*N, db);
sk_unaligned_store(ptr + 3*N, da);
}
// Most blend modes apply the same logic to each channel.
#define BLEND_MODE(name) \
SI F name##_channel(F s, F d, F sa, F da); \
STAGE(name, NoCtx) { \
r = name##_channel(r,dr,a,da); \
g = name##_channel(g,dg,a,da); \
b = name##_channel(b,db,a,da); \
a = name##_channel(a,da,a,da); \
} \
SI F name##_channel(F s, F d, F sa, F da)
SI F inv(F x) { return 1.0f - x; }
SI F two(F x) { return x + x; }
BLEND_MODE(clear) { return F0; }
BLEND_MODE(srcatop) { return mad(s, da, d*inv(sa)); }
BLEND_MODE(dstatop) { return mad(d, sa, s*inv(da)); }
BLEND_MODE(srcin) { return s * da; }
BLEND_MODE(dstin) { return d * sa; }
BLEND_MODE(srcout) { return s * inv(da); }
BLEND_MODE(dstout) { return d * inv(sa); }
BLEND_MODE(srcover) { return mad(d, inv(sa), s); }
BLEND_MODE(dstover) { return mad(s, inv(da), d); }
BLEND_MODE(modulate) { return s*d; }
BLEND_MODE(multiply) { return mad(s, d, mad(s, inv(da), d*inv(sa))); }
BLEND_MODE(plus_) { return min(s + d, 1.0f); } // We can clamp to either 1 or sa.
BLEND_MODE(screen) { return nmad(s, d, s + d); }
BLEND_MODE(xor_) { return mad(s, inv(da), d*inv(sa)); }
#undef BLEND_MODE
// Most other blend modes apply the same logic to colors, and srcover to alpha.
#define BLEND_MODE(name) \
SI F name##_channel(F s, F d, F sa, F da); \
STAGE(name, NoCtx) { \
r = name##_channel(r,dr,a,da); \
g = name##_channel(g,dg,a,da); \
b = name##_channel(b,db,a,da); \
a = mad(da, inv(a), a); \
} \
SI F name##_channel(F s, F d, F sa, F da)
BLEND_MODE(darken) { return s + d - max(s*da, d*sa) ; }
BLEND_MODE(lighten) { return s + d - min(s*da, d*sa) ; }
BLEND_MODE(difference) { return s + d - two(min(s*da, d*sa)); }
BLEND_MODE(exclusion) { return s + d - two(s*d); }
BLEND_MODE(colorburn) {
return if_then_else(d == da, d + s*inv(da),
if_then_else(s == 0, /* s + */ d*inv(sa),
sa*(da - min(da, (da-d)*sa*rcp_fast(s))) + s*inv(da) + d*inv(sa)));
}
BLEND_MODE(colordodge) {
return if_then_else(d == 0, /* d + */ s*inv(da),
if_then_else(s == sa, s + d*inv(sa),
sa*min(da, (d*sa)*rcp_fast(sa - s)) + s*inv(da) + d*inv(sa)));
}
BLEND_MODE(hardlight) {
return s*inv(da) + d*inv(sa)
+ if_then_else(two(s) <= sa, two(s*d), sa*da - two((da-d)*(sa-s)));
}
BLEND_MODE(overlay) {
return s*inv(da) + d*inv(sa)
+ if_then_else(two(d) <= da, two(s*d), sa*da - two((da-d)*(sa-s)));
}
BLEND_MODE(softlight) {
F m = if_then_else(da > 0, d / da, 0.0f),
s2 = two(s),
m4 = two(two(m));
// The logic forks three ways:
// 1. dark src?
// 2. light src, dark dst?
// 3. light src, light dst?
F darkSrc = d*(sa + (s2 - sa)*(1.0f - m)), // Used in case 1.
darkDst = (m4*m4 + m4)*(m - 1.0f) + 7.0f*m, // Used in case 2.
liteDst = sqrt_(m) - m,
liteSrc = d*sa + da*(s2 - sa) * if_then_else(two(two(d)) <= da, darkDst, liteDst); // 2 or 3?
return s*inv(da) + d*inv(sa) + if_then_else(s2 <= sa, darkSrc, liteSrc); // 1 or (2 or 3)?
}
#undef BLEND_MODE
// We're basing our implemenation of non-separable blend modes on
// https://www.w3.org/TR/compositing-1/#blendingnonseparable.
// and
// https://www.khronos.org/registry/OpenGL/specs/es/3.2/es_spec_3.2.pdf
// They're equivalent, but ES' math has been better simplified.
//
// Anything extra we add beyond that is to make the math work with premul inputs.
SI F sat(F r, F g, F b) { return max(r, max(g,b)) - min(r, min(g,b)); }
SI F lum(F r, F g, F b) { return mad(r, 0.30f, mad(g, 0.59f, b*0.11f)); }
SI void set_sat(F* r, F* g, F* b, F s) {
F mn = min(*r, min(*g,*b)),
mx = max(*r, max(*g,*b)),
sat = mx - mn;
// Map min channel to 0, max channel to s, and scale the middle proportionally.
s = if_then_else(sat == 0.0f, 0.0f, s * rcp_fast(sat));
*r = (*r - mn) * s;
*g = (*g - mn) * s;
*b = (*b - mn) * s;
}
SI void set_lum(F* r, F* g, F* b, F l) {
F diff = l - lum(*r, *g, *b);
*r += diff;
*g += diff;
*b += diff;
}