| /* |
| * Copyright 2015 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef SkBlitMask_opts_DEFINED |
| #define SkBlitMask_opts_DEFINED |
| |
| #include "include/private/base/SkFeatures.h" |
| #include "src/core/Sk4px.h" |
| |
| #if defined(SK_ARM_HAS_NEON) |
| #include <arm_neon.h> |
| #endif |
| |
| namespace SK_OPTS_NS { |
| |
| #if defined(SK_ARM_HAS_NEON) |
| // The Sk4px versions below will work fine with NEON, but we have had many indications |
| // that it doesn't perform as well as this NEON-specific code. TODO(mtklein): why? |
| |
| #define NEON_A (SK_A32_SHIFT / 8) |
| #define NEON_R (SK_R32_SHIFT / 8) |
| #define NEON_G (SK_G32_SHIFT / 8) |
| #define NEON_B (SK_B32_SHIFT / 8) |
| |
| static inline uint16x8_t SkAlpha255To256_neon8(uint8x8_t alpha) { |
| return vaddw_u8(vdupq_n_u16(1), alpha); |
| } |
| |
| static inline uint8x8_t SkAlphaMul_neon8(uint8x8_t color, uint16x8_t scale) { |
| return vshrn_n_u16(vmovl_u8(color) * scale, 8); |
| } |
| |
| static inline uint8x8x4_t SkAlphaMulQ_neon8(uint8x8x4_t color, uint16x8_t scale) { |
| uint8x8x4_t ret; |
| |
| ret.val[0] = SkAlphaMul_neon8(color.val[0], scale); |
| ret.val[1] = SkAlphaMul_neon8(color.val[1], scale); |
| ret.val[2] = SkAlphaMul_neon8(color.val[2], scale); |
| ret.val[3] = SkAlphaMul_neon8(color.val[3], scale); |
| |
| return ret; |
| } |
| |
| |
| template <bool isColor> |
| static void D32_A8_Opaque_Color_neon(void* SK_RESTRICT dst, size_t dstRB, |
| const void* SK_RESTRICT maskPtr, size_t maskRB, |
| SkColor color, int width, int height) { |
| SkPMColor pmc = SkPreMultiplyColor(color); |
| SkPMColor* SK_RESTRICT device = (SkPMColor*)dst; |
| const uint8_t* SK_RESTRICT mask = (const uint8_t*)maskPtr; |
| uint8x8x4_t vpmc; |
| |
| // Nine patch may set maskRB to 0 to blit the same row repeatedly. |
| ptrdiff_t mask_adjust = (ptrdiff_t)maskRB - width; |
| dstRB -= (width << 2); |
| |
| if (width >= 8) { |
| vpmc.val[NEON_A] = vdup_n_u8(SkGetPackedA32(pmc)); |
| vpmc.val[NEON_R] = vdup_n_u8(SkGetPackedR32(pmc)); |
| vpmc.val[NEON_G] = vdup_n_u8(SkGetPackedG32(pmc)); |
| vpmc.val[NEON_B] = vdup_n_u8(SkGetPackedB32(pmc)); |
| } |
| do { |
| int w = width; |
| while (w >= 8) { |
| uint8x8_t vmask = vld1_u8(mask); |
| uint16x8_t vscale, vmask256 = SkAlpha255To256_neon8(vmask); |
| if (isColor) { |
| vscale = vsubw_u8(vdupq_n_u16(256), |
| SkAlphaMul_neon8(vpmc.val[NEON_A], vmask256)); |
| } else { |
| vscale = vsubw_u8(vdupq_n_u16(256), vmask); |
| } |
| uint8x8x4_t vdev = vld4_u8((uint8_t*)device); |
| |
| vdev.val[NEON_A] = SkAlphaMul_neon8(vpmc.val[NEON_A], vmask256) |
| + SkAlphaMul_neon8(vdev.val[NEON_A], vscale); |
| vdev.val[NEON_R] = SkAlphaMul_neon8(vpmc.val[NEON_R], vmask256) |
| + SkAlphaMul_neon8(vdev.val[NEON_R], vscale); |
| vdev.val[NEON_G] = SkAlphaMul_neon8(vpmc.val[NEON_G], vmask256) |
| + SkAlphaMul_neon8(vdev.val[NEON_G], vscale); |
| vdev.val[NEON_B] = SkAlphaMul_neon8(vpmc.val[NEON_B], vmask256) |
| + SkAlphaMul_neon8(vdev.val[NEON_B], vscale); |
| |
| vst4_u8((uint8_t*)device, vdev); |
| |
| mask += 8; |
| device += 8; |
| w -= 8; |
| } |
| |
| while (w--) { |
| unsigned aa = *mask++; |
| if (isColor) { |
| *device = SkBlendARGB32(pmc, *device, aa); |
| } else { |
| *device = SkAlphaMulQ(pmc, SkAlpha255To256(aa)) |
| + SkAlphaMulQ(*device, SkAlpha255To256(255 - aa)); |
| } |
| device += 1; |
| } |
| |
| device = (uint32_t*)((char*)device + dstRB); |
| mask += mask_adjust; |
| |
| } while (--height != 0); |
| } |
| |
| static void blit_mask_d32_a8_general(SkPMColor* dst, size_t dstRB, |
| const SkAlpha* mask, size_t maskRB, |
| SkColor color, int w, int h) { |
| D32_A8_Opaque_Color_neon<true>(dst, dstRB, mask, maskRB, color, w, h); |
| } |
| |
| // As above, but made slightly simpler by requiring that color is opaque. |
| static void blit_mask_d32_a8_opaque(SkPMColor* dst, size_t dstRB, |
| const SkAlpha* mask, size_t maskRB, |
| SkColor color, int w, int h) { |
| D32_A8_Opaque_Color_neon<false>(dst, dstRB, mask, maskRB, color, w, h); |
| } |
| |
| // Same as _opaque, but assumes color == SK_ColorBLACK, a very common and even simpler case. |
| static void blit_mask_d32_a8_black(SkPMColor* dst, size_t dstRB, |
| const SkAlpha* maskPtr, size_t maskRB, |
| int width, int height) { |
| SkPMColor* SK_RESTRICT device = (SkPMColor*)dst; |
| const uint8_t* SK_RESTRICT mask = (const uint8_t*)maskPtr; |
| |
| // Nine patch may set maskRB to 0 to blit the same row repeatedly. |
| ptrdiff_t mask_adjust = (ptrdiff_t)maskRB - width; |
| dstRB -= (width << 2); |
| do { |
| int w = width; |
| while (w >= 8) { |
| uint8x8_t vmask = vld1_u8(mask); |
| uint16x8_t vscale = vsubw_u8(vdupq_n_u16(256), vmask); |
| uint8x8x4_t vdevice = vld4_u8((uint8_t*)device); |
| |
| vdevice = SkAlphaMulQ_neon8(vdevice, vscale); |
| vdevice.val[NEON_A] += vmask; |
| |
| vst4_u8((uint8_t*)device, vdevice); |
| |
| mask += 8; |
| device += 8; |
| w -= 8; |
| } |
| while (w-- > 0) { |
| unsigned aa = *mask++; |
| *device = (aa << SK_A32_SHIFT) |
| + SkAlphaMulQ(*device, SkAlpha255To256(255 - aa)); |
| device += 1; |
| } |
| device = (uint32_t*)((char*)device + dstRB); |
| mask += mask_adjust; |
| } while (--height != 0); |
| } |
| |
| #elif SK_CPU_LSX_LEVEL >= SK_CPU_LSX_LEVEL_LSX |
| #include <lsxintrin.h> |
| |
| static __m128i SkAlphaMul_lsx(__m128i x, __m128i y) { |
| __m128i tmp = __lsx_vmul_h(x, y); |
| __m128i mask = __lsx_vreplgr2vr_h(0xff00); |
| return __lsx_vsrlri_h(__lsx_vand_v(tmp, mask), 8); |
| } |
| |
| template <bool isColor> |
| static void D32_A8_Opaque_Color_lsx(void* SK_RESTRICT dst, size_t dstRB, |
| const void* SK_RESTRICT maskPtr, size_t maskRB, |
| SkColor color, int width, int height) { |
| SkPMColor pmc = SkPreMultiplyColor(color); |
| SkPMColor* SK_RESTRICT device = (SkPMColor*)dst; |
| const uint8_t* SK_RESTRICT mask = (const uint8_t*)maskPtr; |
| __m128i vpmc_b = __lsx_vldi(0); |
| __m128i vpmc_g = __lsx_vldi(0); |
| __m128i vpmc_r = __lsx_vldi(0); |
| __m128i vpmc_a = __lsx_vldi(0); |
| |
| // Nine patch may set maskRB to 0 to blit the same row repeatedly. |
| ptrdiff_t mask_adjust = (ptrdiff_t)maskRB - width; |
| dstRB -= (width << 2); |
| |
| if (width >= 8) { |
| vpmc_b = __lsx_vreplgr2vr_h(SkGetPackedB32(pmc)); |
| vpmc_g = __lsx_vreplgr2vr_h(SkGetPackedG32(pmc)); |
| vpmc_r = __lsx_vreplgr2vr_h(SkGetPackedR32(pmc)); |
| vpmc_a = __lsx_vreplgr2vr_h(SkGetPackedA32(pmc)); |
| } |
| |
| const __m128i zeros = __lsx_vldi(0); |
| __m128i planar = __lsx_vldi(0); |
| planar = __lsx_vinsgr2vr_d(planar, 0x0d0905010c080400, 0); |
| planar = __lsx_vinsgr2vr_d(planar, 0x0f0b07030e0a0602, 1); |
| |
| do{ |
| int w = width; |
| while(w >= 8){ |
| __m128i lo = __lsx_vld(device, 0); // bgra bgra bgra bgra |
| __m128i hi = __lsx_vld(device, 16); // BGRA BGRA BGRA BGRA |
| lo = __lsx_vshuf_b(zeros, lo, planar); // bbbb gggg rrrr aaaa |
| hi = __lsx_vshuf_b(zeros, hi, planar); // BBBB GGGG RRRR AAAA |
| __m128i bg = __lsx_vilvl_w(hi, lo), // bbbb BBBB gggg GGGG |
| ra = __lsx_vilvh_w(hi, lo); // rrrr RRRR aaaa AAAA |
| |
| __m128i b = __lsx_vilvl_b(zeros, bg), // _b_b _b_b _B_B _B_B |
| g = __lsx_vilvh_b(zeros, bg), // _g_g _g_g _G_G _G_G |
| r = __lsx_vilvl_b(zeros, ra), // _r_r _r_r _R_R _R_R |
| a = __lsx_vilvh_b(zeros, ra); // _a_a _a_a _A_A _A_A |
| |
| __m128i vmask = __lsx_vld(mask, 0); |
| vmask = __lsx_vilvl_b(zeros, vmask); |
| __m128i vscale, vmask256 = __lsx_vadd_h(vmask, __lsx_vreplgr2vr_h(1)); |
| |
| if (isColor) { |
| __m128i tmp = SkAlphaMul_lsx(vpmc_a, vmask256); |
| vscale = __lsx_vsub_h(__lsx_vreplgr2vr_h(256), tmp); |
| } else { |
| vscale = __lsx_vsub_h(__lsx_vreplgr2vr_h(256), vmask); |
| } |
| |
| b = SkAlphaMul_lsx(vpmc_b, vmask256) + SkAlphaMul_lsx(b, vscale); |
| g = SkAlphaMul_lsx(vpmc_g, vmask256) + SkAlphaMul_lsx(g, vscale); |
| r = SkAlphaMul_lsx(vpmc_r, vmask256) + SkAlphaMul_lsx(r, vscale); |
| a = SkAlphaMul_lsx(vpmc_a, vmask256) + SkAlphaMul_lsx(a, vscale); |
| |
| bg = __lsx_vor_v(b, __lsx_vslli_h(g, 8)); // bgbg bgbg BGBG BGBG |
| ra = __lsx_vor_v(r, __lsx_vslli_h(a, 8)); // rara rara RARA RARA |
| lo = __lsx_vilvl_h(ra, bg); // bgra bgra bgra bgra |
| hi = __lsx_vilvh_h(ra, bg); // BGRA BGRA BGRA BGRA |
| |
| __lsx_vst(lo, device, 0); |
| __lsx_vst(hi, device, 16); |
| |
| mask += 8; |
| device += 8; |
| w -= 8; |
| } |
| |
| while (w--) { |
| unsigned aa = *mask++; |
| if (isColor) { |
| *device = SkBlendARGB32(pmc, *device, aa); |
| } else { |
| *device = SkAlphaMulQ(pmc, SkAlpha255To256(aa)) |
| + SkAlphaMulQ(*device, SkAlpha255To256(255 - aa)); |
| } |
| device += 1; |
| } |
| |
| device = (uint32_t *)((char*)device + dstRB); |
| mask += mask_adjust; |
| |
| } while (--height != 0); |
| } |
| |
| static void blit_mask_d32_a8_general(SkPMColor* dst, size_t dstRB, |
| const SkAlpha* mask, size_t maskRB, |
| SkColor color, int w, int h) { |
| D32_A8_Opaque_Color_lsx<true>(dst, dstRB, mask, maskRB, color, w, h); |
| } |
| |
| static void blit_mask_d32_a8_opaque(SkPMColor* dst, size_t dstRB, |
| const SkAlpha* mask, size_t maskRB, |
| SkColor color, int w, int h) { |
| D32_A8_Opaque_Color_lsx<false>(dst, dstRB, mask, maskRB, color, w, h); |
| } |
| |
| // Same as _opaque, but assumes color == SK_ColorBLACK, a very common and even simpler case. |
| static void blit_mask_d32_a8_black(SkPMColor* dst, size_t dstRB, |
| const SkAlpha* maskPtr, size_t maskRB, |
| int width, int height) { |
| SkPMColor* SK_RESTRICT device = (SkPMColor*)dst; |
| const uint8_t* SK_RESTRICT mask = (const uint8_t*)maskPtr; |
| |
| // Nine patch may set maskRB to 0 to blit the same row repeatedly. |
| ptrdiff_t mask_adjust = (ptrdiff_t)maskRB - width; |
| dstRB -= (width << 2); |
| const __m128i zeros = __lsx_vldi(0); |
| __m128i planar = __lsx_vldi(0); |
| planar = __lsx_vinsgr2vr_d(planar, 0x0d0905010c080400, 0); |
| planar = __lsx_vinsgr2vr_d(planar, 0x0f0b07030e0a0602, 1); |
| |
| do { |
| int w = width; |
| while (w >= 8) { |
| __m128i vmask = __lsx_vld(mask, 0); |
| vmask = __lsx_vilvl_b(zeros, vmask); |
| __m128i vscale = __lsx_vsub_h(__lsx_vreplgr2vr_h(256), vmask); |
| __m128i lo = __lsx_vld(device, 0); // bgra bgra bgra bgra |
| __m128i hi = __lsx_vld(device, 16); // BGRA BGRA BGRA BGRA |
| lo = __lsx_vshuf_b(zeros, lo, planar); // bbbb gggg rrrr aaaa |
| hi = __lsx_vshuf_b(zeros, hi, planar); // BBBB GGGG RRRR AAAA |
| __m128i bg = __lsx_vilvl_w(hi, lo), // bbbb BBBB gggg GGGG |
| ra = __lsx_vilvh_w(hi, lo); // rrrr RRRR aaaa AAAA |
| |
| __m128i b = __lsx_vilvl_b(zeros, bg), // _b_b _b_b _B_B _B_B |
| g = __lsx_vilvh_b(zeros, bg), // _g_g _g_g _G_G _G_G |
| r = __lsx_vilvl_b(zeros, ra), // _r_r _r_r _R_R _R_R |
| a = __lsx_vilvh_b(zeros, ra); // _a_a _a_a _A_A _A_A |
| |
| b = SkAlphaMul_lsx(b, vscale); |
| g = SkAlphaMul_lsx(g, vscale); |
| r = SkAlphaMul_lsx(r, vscale); |
| a = SkAlphaMul_lsx(a, vscale); |
| |
| a += vmask; |
| |
| bg = __lsx_vor_v(b, __lsx_vslli_h(g, 8)); // bgbg bgbg BGBG BGBG |
| ra = __lsx_vor_v(r, __lsx_vslli_h(a, 8)); // rara rara RARA RARA |
| lo = __lsx_vilvl_h(ra, bg); // bgra bgra bgra bgra |
| hi = __lsx_vilvh_h(ra, bg); // BGRA BGRA BGRA BGRA |
| |
| __lsx_vst(lo, device, 0); |
| __lsx_vst(hi, device, 16); |
| |
| mask += 8; |
| device += 8; |
| w -= 8; |
| } |
| |
| while (w-- > 0) { |
| unsigned aa = *mask++; |
| *device = (aa << SK_A32_SHIFT) |
| + SkAlphaMulQ(*device, SkAlpha255To256(255 - aa)); |
| device += 1; |
| } |
| |
| device = (uint32_t*)((char*)device + dstRB); |
| mask += mask_adjust; |
| |
| } while (--height != 0); |
| } |
| |
| #else |
| static void blit_mask_d32_a8_general(SkPMColor* dst, size_t dstRB, |
| const SkAlpha* mask, size_t maskRB, |
| SkColor color, int w, int h) { |
| auto s = Sk4px::DupPMColor(SkPreMultiplyColor(color)); |
| auto fn = [&](const Sk4px& d, const Sk4px& aa) { |
| // = (s + d(1-sa))aa + d(1-aa) |
| // = s*aa + d(1-sa*aa) |
| auto left = s.approxMulDiv255(aa), |
| right = d.approxMulDiv255(left.alphas().inv()); |
| return left + right; // This does not overflow (exhaustively checked). |
| }; |
| while (h --> 0) { |
| Sk4px::MapDstAlpha(w, dst, mask, fn); |
| dst += dstRB / sizeof(*dst); |
| mask += maskRB / sizeof(*mask); |
| } |
| } |
| |
| // As above, but made slightly simpler by requiring that color is opaque. |
| static void blit_mask_d32_a8_opaque(SkPMColor* dst, size_t dstRB, |
| const SkAlpha* mask, size_t maskRB, |
| SkColor color, int w, int h) { |
| SkASSERT(SkColorGetA(color) == 0xFF); |
| auto s = Sk4px::DupPMColor(SkPreMultiplyColor(color)); |
| auto fn = [&](const Sk4px& d, const Sk4px& aa) { |
| // = (s + d(1-sa))aa + d(1-aa) |
| // = s*aa + d(1-sa*aa) |
| // ~~~> |
| // = s*aa + d(1-aa) |
| return s.approxMulDiv255(aa) + d.approxMulDiv255(aa.inv()); |
| }; |
| while (h --> 0) { |
| Sk4px::MapDstAlpha(w, dst, mask, fn); |
| dst += dstRB / sizeof(*dst); |
| mask += maskRB / sizeof(*mask); |
| } |
| } |
| |
| // Same as _opaque, but assumes color == SK_ColorBLACK, a very common and even simpler case. |
| static void blit_mask_d32_a8_black(SkPMColor* dst, size_t dstRB, |
| const SkAlpha* mask, size_t maskRB, |
| int w, int h) { |
| auto fn = [](const Sk4px& d, const Sk4px& aa) { |
| // = (s + d(1-sa))aa + d(1-aa) |
| // = s*aa + d(1-sa*aa) |
| // ~~~> |
| // a = 1*aa + d(1-1*aa) = aa + d(1-aa) |
| // c = 0*aa + d(1-1*aa) = d(1-aa) |
| return (aa & Sk4px(skvx::byte16{0,0,0,255, 0,0,0,255, 0,0,0,255, 0,0,0,255})) |
| + d.approxMulDiv255(aa.inv()); |
| }; |
| while (h --> 0) { |
| Sk4px::MapDstAlpha(w, dst, mask, fn); |
| dst += dstRB / sizeof(*dst); |
| mask += maskRB / sizeof(*mask); |
| } |
| } |
| #endif |
| |
| /*not static*/ inline void blit_mask_d32_a8(SkPMColor* dst, size_t dstRB, |
| const SkAlpha* mask, size_t maskRB, |
| SkColor color, int w, int h) { |
| if (color == SK_ColorBLACK) { |
| blit_mask_d32_a8_black(dst, dstRB, mask, maskRB, w, h); |
| } else if (SkColorGetA(color) == 0xFF) { |
| blit_mask_d32_a8_opaque(dst, dstRB, mask, maskRB, color, w, h); |
| } else { |
| blit_mask_d32_a8_general(dst, dstRB, mask, maskRB, color, w, h); |
| } |
| } |
| |
| } // namespace SK_OPTS_NS |
| |
| #endif//SkBlitMask_opts_DEFINED |