| /* |
| * Copyright 2017 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include <new> |
| |
| #include "include/core/SkPoint.h" |
| #include "include/core/SkPoint3.h" |
| #include "include/gpu/GrRecordingContext.h" |
| #include "include/private/base/SkFloatingPoint.h" |
| #include "include/private/base/SkTo.h" |
| #include "src/base/SkMathPriv.h" |
| #include "src/core/SkBlendModePriv.h" |
| #include "src/core/SkMatrixPriv.h" |
| #include "src/core/SkRectPriv.h" |
| #include "src/gpu/ganesh/GrAppliedClip.h" |
| #include "src/gpu/ganesh/GrCaps.h" |
| #include "src/gpu/ganesh/GrDrawOpTest.h" |
| #include "src/gpu/ganesh/GrGeometryProcessor.h" |
| #include "src/gpu/ganesh/GrGpu.h" |
| #include "src/gpu/ganesh/GrMemoryPool.h" |
| #include "src/gpu/ganesh/GrOpFlushState.h" |
| #include "src/gpu/ganesh/GrOpsTypes.h" |
| #include "src/gpu/ganesh/GrRecordingContextPriv.h" |
| #include "src/gpu/ganesh/GrResourceProvider.h" |
| #include "src/gpu/ganesh/GrResourceProviderPriv.h" |
| #include "src/gpu/ganesh/GrShaderCaps.h" |
| #include "src/gpu/ganesh/GrTexture.h" |
| #include "src/gpu/ganesh/GrTextureProxy.h" |
| #include "src/gpu/ganesh/GrXferProcessor.h" |
| #include "src/gpu/ganesh/SkGr.h" |
| #include "src/gpu/ganesh/SurfaceDrawContext.h" |
| #include "src/gpu/ganesh/effects/GrBlendFragmentProcessor.h" |
| #include "src/gpu/ganesh/effects/GrTextureEffect.h" |
| #include "src/gpu/ganesh/geometry/GrQuad.h" |
| #include "src/gpu/ganesh/geometry/GrQuadBuffer.h" |
| #include "src/gpu/ganesh/geometry/GrQuadUtils.h" |
| #include "src/gpu/ganesh/geometry/GrRect.h" |
| #include "src/gpu/ganesh/glsl/GrGLSLVarying.h" |
| #include "src/gpu/ganesh/ops/FillRectOp.h" |
| #include "src/gpu/ganesh/ops/GrMeshDrawOp.h" |
| #include "src/gpu/ganesh/ops/GrSimpleMeshDrawOpHelper.h" |
| #include "src/gpu/ganesh/ops/QuadPerEdgeAA.h" |
| #include "src/gpu/ganesh/ops/TextureOp.h" |
| |
| #if defined(GR_TEST_UTILS) |
| #include "src/gpu/ganesh/GrProxyProvider.h" |
| #endif |
| |
| using namespace skgpu::ganesh; |
| |
| namespace { |
| |
| using Subset = skgpu::ganesh::QuadPerEdgeAA::Subset; |
| using VertexSpec = skgpu::ganesh::QuadPerEdgeAA::VertexSpec; |
| using ColorType = skgpu::ganesh::QuadPerEdgeAA::ColorType; |
| |
| // Extracts lengths of vertical and horizontal edges of axis-aligned quad. "width" is the edge |
| // between v0 and v2 (or v1 and v3), "height" is the edge between v0 and v1 (or v2 and v3). |
| SkSize axis_aligned_quad_size(const GrQuad& quad) { |
| SkASSERT(quad.quadType() == GrQuad::Type::kAxisAligned); |
| // Simplification of regular edge length equation, since it's axis aligned and can avoid sqrt |
| float dw = std::fabs(quad.x(2) - quad.x(0)) + std::fabs(quad.y(2) - quad.y(0)); |
| float dh = std::fabs(quad.x(1) - quad.x(0)) + std::fabs(quad.y(1) - quad.y(0)); |
| return {dw, dh}; |
| } |
| |
| // Describes function for normalizing src coords: [x * iw, y * ih + yOffset] can represent |
| // regular and rectangular textures, w/ or w/o origin correction. |
| struct NormalizationParams { |
| float fIW; // 1 / width of texture, or 1.0 for texture rectangles |
| float fInvH; // 1 / height of texture, or 1.0 for tex rects, X -1 if bottom-left origin |
| float fYOffset; // 0 for top-left origin, height of [normalized] tex if bottom-left |
| }; |
| NormalizationParams proxy_normalization_params(const GrSurfaceProxy* proxy, |
| GrSurfaceOrigin origin) { |
| // Whether or not the proxy is instantiated, this is the size its texture will be, so we can |
| // normalize the src coordinates up front. |
| SkISize dimensions = proxy->backingStoreDimensions(); |
| float iw, ih, h; |
| if (proxy->backendFormat().textureType() == GrTextureType::kRectangle) { |
| iw = ih = 1.f; |
| h = dimensions.height(); |
| } else { |
| iw = 1.f / dimensions.width(); |
| ih = 1.f / dimensions.height(); |
| h = 1.f; |
| } |
| |
| if (origin == kBottomLeft_GrSurfaceOrigin) { |
| return {iw, -ih, h}; |
| } else { |
| return {iw, ih, 0.0f}; |
| } |
| } |
| |
| // Normalize the subset. If 'subsetRect' is null, it is assumed no subset constraint is desired, |
| // so a sufficiently large rect is returned even if the quad ends up batched with an op that uses |
| // subsets overall. When there is a subset it will be inset based on the filter mode. Normalization |
| // and y-flipping are applied as indicated by NormalizationParams. |
| SkRect normalize_and_inset_subset(GrSamplerState::Filter filter, |
| const NormalizationParams& params, |
| const SkRect* subsetRect) { |
| static constexpr SkRect kLargeRect = {-100000, -100000, 1000000, 1000000}; |
| if (!subsetRect) { |
| // Either the quad has no subset constraint and is batched with a subset constrained op |
| // (in which case we want a subset that doesn't restrict normalized tex coords), or the |
| // entire op doesn't use the subset, in which case the returned value is ignored. |
| return kLargeRect; |
| } |
| |
| auto ltrb = skvx::Vec<4, float>::Load(subsetRect); |
| auto flipHi = skvx::Vec<4, float>({1.f, 1.f, -1.f, -1.f}); |
| if (filter == GrSamplerState::Filter::kNearest) { |
| // Make sure our insetting puts us at pixel centers. |
| ltrb = skvx::floor(ltrb*flipHi)*flipHi; |
| } |
| // Inset with pin to the rect center. |
| ltrb += skvx::Vec<4, float>({ GrTextureEffect::kLinearInset, GrTextureEffect::kLinearInset, |
| -GrTextureEffect::kLinearInset, -GrTextureEffect::kLinearInset}); |
| auto mid = (skvx::shuffle<2, 3, 0, 1>(ltrb) + ltrb)*0.5f; |
| ltrb = skvx::min(ltrb*flipHi, mid*flipHi)*flipHi; |
| |
| // Normalize and offset |
| ltrb = ltrb * skvx::Vec<4, float>{params.fIW, params.fInvH, params.fIW, params.fInvH} + |
| skvx::Vec<4, float>{0.f, params.fYOffset, 0.f, params.fYOffset}; |
| if (params.fInvH < 0.f) { |
| // Flip top and bottom to keep the rect sorted when loaded back to SkRect. |
| ltrb = skvx::shuffle<0, 3, 2, 1>(ltrb); |
| } |
| |
| SkRect out; |
| ltrb.store(&out); |
| return out; |
| } |
| |
| // Normalizes logical src coords and corrects for origin |
| void normalize_src_quad(const NormalizationParams& params, |
| GrQuad* srcQuad) { |
| // The src quad should not have any perspective |
| SkASSERT(!srcQuad->hasPerspective()); |
| skvx::Vec<4, float> xs = srcQuad->x4f() * params.fIW; |
| skvx::Vec<4, float> ys = srcQuad->y4f() * params.fInvH + params.fYOffset; |
| xs.store(srcQuad->xs()); |
| ys.store(srcQuad->ys()); |
| } |
| |
| // Count the number of proxy runs in the entry set. This usually is already computed by |
| // SkGpuDevice, but when the BatchLengthLimiter chops the set up it must determine a new proxy count |
| // for each split. |
| int proxy_run_count(const GrTextureSetEntry set[], int count) { |
| int actualProxyRunCount = 0; |
| const GrSurfaceProxy* lastProxy = nullptr; |
| for (int i = 0; i < count; ++i) { |
| if (set[i].fProxyView.proxy() != lastProxy) { |
| actualProxyRunCount++; |
| lastProxy = set[i].fProxyView.proxy(); |
| } |
| } |
| return actualProxyRunCount; |
| } |
| |
| bool safe_to_ignore_subset_rect(GrAAType aaType, GrSamplerState::Filter filter, |
| const DrawQuad& quad, const SkRect& subsetRect) { |
| // If both the device and local quad are both axis-aligned, and filtering is off, the local quad |
| // can push all the way up to the edges of the the subset rect and the sampler shouldn't |
| // overshoot. Unfortunately, antialiasing adds enough jitter that we can only rely on this in |
| // the non-antialiased case. |
| SkRect localBounds = quad.fLocal.bounds(); |
| if (aaType == GrAAType::kNone && |
| filter == GrSamplerState::Filter::kNearest && |
| quad.fDevice.quadType() == GrQuad::Type::kAxisAligned && |
| quad.fLocal.quadType() == GrQuad::Type::kAxisAligned && |
| subsetRect.contains(localBounds)) { |
| |
| return true; |
| } |
| |
| // If the local quad is inset by at least 0.5 pixels into the subset rect's bounds, the |
| // sampler shouldn't overshoot, even when antialiasing and filtering is taken into account. |
| if (subsetRect.makeInset(GrTextureEffect::kLinearInset, |
| GrTextureEffect::kLinearInset) |
| .contains(localBounds)) { |
| return true; |
| } |
| |
| // The subset rect cannot be ignored safely. |
| return false; |
| } |
| |
| /** |
| * Op that implements TextureOp::Make. It draws textured quads. Each quad can modulate against a |
| * the texture by color. The blend with the destination is always src-over. The edges are non-AA. |
| */ |
| class TextureOpImpl final : public GrMeshDrawOp { |
| public: |
| using Saturate = TextureOp::Saturate; |
| |
| static GrOp::Owner Make(GrRecordingContext* context, |
| GrSurfaceProxyView proxyView, |
| sk_sp<GrColorSpaceXform> textureXform, |
| GrSamplerState::Filter filter, |
| GrSamplerState::MipmapMode mm, |
| const SkPMColor4f& color, |
| Saturate saturate, |
| GrAAType aaType, |
| DrawQuad* quad, |
| const SkRect* subset) { |
| |
| return GrOp::Make<TextureOpImpl>(context, std::move(proxyView), std::move(textureXform), |
| filter, mm, color, saturate, aaType, quad, subset); |
| } |
| |
| static GrOp::Owner Make(GrRecordingContext* context, |
| GrTextureSetEntry set[], |
| int cnt, |
| int proxyRunCnt, |
| GrSamplerState::Filter filter, |
| GrSamplerState::MipmapMode mm, |
| Saturate saturate, |
| GrAAType aaType, |
| SkCanvas::SrcRectConstraint constraint, |
| const SkMatrix& viewMatrix, |
| sk_sp<GrColorSpaceXform> textureColorSpaceXform) { |
| // Allocate size based on proxyRunCnt, since that determines number of ViewCountPairs. |
| SkASSERT(proxyRunCnt <= cnt); |
| return GrOp::MakeWithExtraMemory<TextureOpImpl>( |
| context, sizeof(ViewCountPair) * (proxyRunCnt - 1), |
| set, cnt, proxyRunCnt, filter, mm, saturate, aaType, constraint, |
| viewMatrix, std::move(textureColorSpaceXform)); |
| } |
| |
| ~TextureOpImpl() override { |
| for (unsigned p = 1; p < fMetadata.fProxyCount; ++p) { |
| fViewCountPairs[p].~ViewCountPair(); |
| } |
| } |
| |
| const char* name() const override { return "TextureOp"; } |
| |
| void visitProxies(const GrVisitProxyFunc& func) const override { |
| bool mipped = (fMetadata.mipmapMode() != GrSamplerState::MipmapMode::kNone); |
| for (unsigned p = 0; p < fMetadata.fProxyCount; ++p) { |
| func(fViewCountPairs[p].fProxy.get(), skgpu::Mipmapped(mipped)); |
| } |
| if (fDesc && fDesc->fProgramInfo) { |
| fDesc->fProgramInfo->visitFPProxies(func); |
| } |
| } |
| |
| #ifdef SK_DEBUG |
| static void ValidateResourceLimits() { |
| // The op implementation has an upper bound on the number of quads that it can represent. |
| // However, the resource manager imposes its own limit on the number of quads, which should |
| // always be lower than the numerical limit this op can hold. |
| using CountStorage = decltype(Metadata::fTotalQuadCount); |
| CountStorage maxQuadCount = std::numeric_limits<CountStorage>::max(); |
| // GrResourceProvider::Max...() is typed as int, so don't compare across signed/unsigned. |
| int resourceLimit = SkTo<int>(maxQuadCount); |
| SkASSERT(GrResourceProvider::MaxNumAAQuads() <= resourceLimit && |
| GrResourceProvider::MaxNumNonAAQuads() <= resourceLimit); |
| } |
| #endif |
| |
| GrProcessorSet::Analysis finalize(const GrCaps& caps, const GrAppliedClip*, |
| GrClampType clampType) override { |
| SkASSERT(fMetadata.colorType() == ColorType::kNone); |
| auto iter = fQuads.metadata(); |
| while(iter.next()) { |
| auto colorType = skgpu::ganesh::QuadPerEdgeAA::MinColorType(iter->fColor); |
| colorType = std::max(static_cast<ColorType>(fMetadata.fColorType), |
| colorType); |
| if (caps.reducedShaderMode()) { |
| colorType = std::max(colorType, ColorType::kByte); |
| } |
| fMetadata.fColorType = static_cast<uint16_t>(colorType); |
| } |
| return GrProcessorSet::EmptySetAnalysis(); |
| } |
| |
| FixedFunctionFlags fixedFunctionFlags() const override { |
| return fMetadata.aaType() == GrAAType::kMSAA ? FixedFunctionFlags::kUsesHWAA |
| : FixedFunctionFlags::kNone; |
| } |
| |
| DEFINE_OP_CLASS_ID |
| |
| private: |
| friend class ::GrOp; |
| |
| struct ColorSubsetAndAA { |
| ColorSubsetAndAA(const SkPMColor4f& color, const SkRect& subsetRect, GrQuadAAFlags aaFlags) |
| : fColor(color) |
| , fSubsetRect(subsetRect) |
| , fAAFlags(static_cast<uint16_t>(aaFlags)) { |
| SkASSERT(fAAFlags == static_cast<uint16_t>(aaFlags)); |
| } |
| |
| SkPMColor4f fColor; |
| // If the op doesn't use subsets, this is ignored. If the op uses subsets and the specific |
| // entry does not, this rect will equal kLargeRect, so it automatically has no effect. |
| SkRect fSubsetRect; |
| unsigned fAAFlags : 4; |
| |
| GrQuadAAFlags aaFlags() const { return static_cast<GrQuadAAFlags>(fAAFlags); } |
| }; |
| |
| struct ViewCountPair { |
| // Normally this would be a GrSurfaceProxyView, but TextureOp applies the GrOrigin right |
| // away so it doesn't need to be stored, and all ViewCountPairs in an op have the same |
| // swizzle so that is stored in the op metadata. |
| sk_sp<GrSurfaceProxy> fProxy; |
| int fQuadCnt; |
| }; |
| |
| // TextureOp and ViewCountPair are 8 byte aligned. This is packed into 8 bytes to minimally |
| // increase the size of the op; increasing the op size can have a surprising impact on |
| // performance (since texture ops are one of the most commonly used in an app). |
| struct Metadata { |
| // AAType must be filled after initialization; ColorType is determined in finalize() |
| Metadata(const skgpu::Swizzle& swizzle, |
| GrSamplerState::Filter filter, |
| GrSamplerState::MipmapMode mm, |
| Subset subset, |
| Saturate saturate) |
| : fSwizzle(swizzle) |
| , fProxyCount(1) |
| , fTotalQuadCount(1) |
| , fFilter(static_cast<uint16_t>(filter)) |
| , fMipmapMode(static_cast<uint16_t>(mm)) |
| , fAAType(static_cast<uint16_t>(GrAAType::kNone)) |
| , fColorType(static_cast<uint16_t>(ColorType::kNone)) |
| , fSubset(static_cast<uint16_t>(subset)) |
| , fSaturate(static_cast<uint16_t>(saturate)) {} |
| |
| skgpu::Swizzle fSwizzle; // sizeof(skgpu::Swizzle) == uint16_t |
| uint16_t fProxyCount; |
| // This will be >= fProxyCount, since a proxy may be drawn multiple times |
| uint16_t fTotalQuadCount; |
| |
| // These must be based on uint16_t to help MSVC's pack bitfields optimally |
| uint16_t fFilter : 2; // GrSamplerState::Filter |
| uint16_t fMipmapMode : 2; // GrSamplerState::MipmapMode |
| uint16_t fAAType : 2; // GrAAType |
| uint16_t fColorType : 2; // GrQuadPerEdgeAA::ColorType |
| uint16_t fSubset : 1; // bool |
| uint16_t fSaturate : 1; // bool |
| uint16_t fUnused : 6; // # of bits left before Metadata exceeds 8 bytes |
| |
| GrSamplerState::Filter filter() const { |
| return static_cast<GrSamplerState::Filter>(fFilter); |
| } |
| GrSamplerState::MipmapMode mipmapMode() const { |
| return static_cast<GrSamplerState::MipmapMode>(fMipmapMode); |
| } |
| GrAAType aaType() const { return static_cast<GrAAType>(fAAType); } |
| ColorType colorType() const { return static_cast<ColorType>(fColorType); } |
| Subset subset() const { return static_cast<Subset>(fSubset); } |
| Saturate saturate() const { return static_cast<Saturate>(fSaturate); } |
| |
| static_assert(GrSamplerState::kFilterCount <= 4); |
| static_assert(kGrAATypeCount <= 4); |
| static_assert(skgpu::ganesh::QuadPerEdgeAA::kColorTypeCount <= 4); |
| }; |
| static_assert(sizeof(Metadata) == 8); |
| |
| // This descriptor is used to store the draw info we decide on during on(Pre)PrepareDraws. We |
| // store the data in a separate struct in order to minimize the size of the TextureOp. |
| // Historically, increasing the TextureOp's size has caused surprising perf regressions, but we |
| // may want to re-evaluate whether this is still necessary. |
| // |
| // In the onPrePrepareDraws case it is allocated in the creation-time opData arena, and |
| // allocatePrePreparedVertices is also called. |
| // |
| // In the onPrepareDraws case this descriptor is allocated in the flush-time arena (i.e., as |
| // part of the flushState). |
| struct Desc { |
| VertexSpec fVertexSpec; |
| int fNumProxies = 0; |
| int fNumTotalQuads = 0; |
| |
| // This member variable is only used by 'onPrePrepareDraws'. |
| char* fPrePreparedVertices = nullptr; |
| |
| GrProgramInfo* fProgramInfo = nullptr; |
| |
| sk_sp<const GrBuffer> fIndexBuffer; |
| sk_sp<const GrBuffer> fVertexBuffer; |
| int fBaseVertex; |
| |
| // How big should 'fVertices' be to hold all the vertex data? |
| size_t totalSizeInBytes() const { |
| return this->totalNumVertices() * fVertexSpec.vertexSize(); |
| } |
| |
| int totalNumVertices() const { |
| return fNumTotalQuads * fVertexSpec.verticesPerQuad(); |
| } |
| |
| void allocatePrePreparedVertices(SkArenaAlloc* arena) { |
| fPrePreparedVertices = arena->makeArrayDefault<char>(this->totalSizeInBytes()); |
| } |
| }; |
| // If subsetRect is not null it will be used to apply a strict src rect-style constraint. |
| TextureOpImpl(GrSurfaceProxyView proxyView, |
| sk_sp<GrColorSpaceXform> textureColorSpaceXform, |
| GrSamplerState::Filter filter, |
| GrSamplerState::MipmapMode mm, |
| const SkPMColor4f& color, |
| Saturate saturate, |
| GrAAType aaType, |
| DrawQuad* quad, |
| const SkRect* subsetRect) |
| : INHERITED(ClassID()) |
| , fQuads(1, true /* includes locals */) |
| , fTextureColorSpaceXform(std::move(textureColorSpaceXform)) |
| , fDesc(nullptr) |
| , fMetadata(proxyView.swizzle(), filter, mm, Subset(!!subsetRect), saturate) { |
| // Clean up disparities between the overall aa type and edge configuration and apply |
| // optimizations based on the rect and matrix when appropriate |
| GrQuadUtils::ResolveAAType(aaType, quad->fEdgeFlags, quad->fDevice, |
| &aaType, &quad->fEdgeFlags); |
| fMetadata.fAAType = static_cast<uint16_t>(aaType); |
| |
| // We expect our caller to have already caught this optimization. |
| SkASSERT(!subsetRect || |
| !subsetRect->contains(proxyView.proxy()->backingStoreBoundsRect())); |
| |
| // We may have had a strict constraint with nearest filter solely due to possible AA bloat. |
| // Try to identify cases where the subsetting isn't actually necessary, and skip it. |
| if (subsetRect) { |
| if (safe_to_ignore_subset_rect(aaType, filter, *quad, *subsetRect)) { |
| subsetRect = nullptr; |
| fMetadata.fSubset = static_cast<uint16_t>(Subset::kNo); |
| } |
| } |
| |
| // Normalize src coordinates and the subset (if set) |
| NormalizationParams params = proxy_normalization_params(proxyView.proxy(), |
| proxyView.origin()); |
| normalize_src_quad(params, &quad->fLocal); |
| SkRect subset = normalize_and_inset_subset(filter, params, subsetRect); |
| |
| // Set bounds before clipping so we don't have to worry about unioning the bounds of |
| // the two potential quads (GrQuad::bounds() is perspective-safe). |
| bool hairline = GrQuadUtils::WillUseHairline(quad->fDevice, aaType, quad->fEdgeFlags); |
| this->setBounds(quad->fDevice.bounds(), HasAABloat(aaType == GrAAType::kCoverage), |
| hairline ? IsHairline::kYes : IsHairline::kNo); |
| int quadCount = this->appendQuad(quad, color, subset); |
| fViewCountPairs[0] = {proxyView.detachProxy(), quadCount}; |
| } |
| |
| TextureOpImpl(GrTextureSetEntry set[], |
| int cnt, |
| int proxyRunCnt, |
| const GrSamplerState::Filter filter, |
| const GrSamplerState::MipmapMode mm, |
| const Saturate saturate, |
| const GrAAType aaType, |
| const SkCanvas::SrcRectConstraint constraint, |
| const SkMatrix& viewMatrix, |
| sk_sp<GrColorSpaceXform> textureColorSpaceXform) |
| : INHERITED(ClassID()) |
| , fQuads(cnt, true /* includes locals */) |
| , fTextureColorSpaceXform(std::move(textureColorSpaceXform)) |
| , fDesc(nullptr) |
| , fMetadata(set[0].fProxyView.swizzle(), |
| GrSamplerState::Filter::kNearest, |
| GrSamplerState::MipmapMode::kNone, |
| Subset::kNo, |
| saturate) { |
| // Update counts to reflect the batch op |
| fMetadata.fProxyCount = SkToUInt(proxyRunCnt); |
| fMetadata.fTotalQuadCount = SkToUInt(cnt); |
| |
| SkRect bounds = SkRectPriv::MakeLargestInverted(); |
| |
| GrAAType netAAType = GrAAType::kNone; // aa type maximally compatible with all dst rects |
| Subset netSubset = Subset::kNo; |
| GrSamplerState::Filter netFilter = GrSamplerState::Filter::kNearest; |
| GrSamplerState::MipmapMode netMM = GrSamplerState::MipmapMode::kNone; |
| bool hasSubpixel = false; |
| |
| const GrSurfaceProxy* curProxy = nullptr; |
| |
| // 'q' is the index in 'set' and fQuadBuffer; 'p' is the index in fViewCountPairs and only |
| // increases when set[q]'s proxy changes. |
| int p = 0; |
| for (int q = 0; q < cnt; ++q) { |
| SkASSERT(mm == GrSamplerState::MipmapMode::kNone || |
| (set[0].fProxyView.proxy()->asTextureProxy()->mipmapped() == |
| skgpu::Mipmapped::kYes)); |
| if (q == 0) { |
| // We do not placement new the first ViewCountPair since that one is allocated and |
| // initialized as part of the TextureOp creation. |
| fViewCountPairs[0].fProxy = set[0].fProxyView.detachProxy(); |
| fViewCountPairs[0].fQuadCnt = 0; |
| curProxy = fViewCountPairs[0].fProxy.get(); |
| } else if (set[q].fProxyView.proxy() != curProxy) { |
| // We must placement new the ViewCountPairs here so that the sk_sps in the |
| // GrSurfaceProxyView get initialized properly. |
| new(&fViewCountPairs[++p])ViewCountPair({set[q].fProxyView.detachProxy(), 0}); |
| |
| curProxy = fViewCountPairs[p].fProxy.get(); |
| SkASSERT(GrTextureProxy::ProxiesAreCompatibleAsDynamicState( |
| curProxy, fViewCountPairs[0].fProxy.get())); |
| SkASSERT(fMetadata.fSwizzle == set[q].fProxyView.swizzle()); |
| } // else another quad referencing the same proxy |
| |
| SkMatrix ctm = viewMatrix; |
| if (set[q].fPreViewMatrix) { |
| ctm.preConcat(*set[q].fPreViewMatrix); |
| } |
| |
| // Use dstRect/srcRect unless dstClip is provided, in which case derive new source |
| // coordinates by mapping dstClipQuad by the dstRect to srcRect transform. |
| DrawQuad quad; |
| if (set[q].fDstClipQuad) { |
| quad.fDevice = GrQuad::MakeFromSkQuad(set[q].fDstClipQuad, ctm); |
| |
| SkPoint srcPts[4]; |
| GrMapRectPoints(set[q].fDstRect, set[q].fSrcRect, set[q].fDstClipQuad, srcPts, 4); |
| quad.fLocal = GrQuad::MakeFromSkQuad(srcPts, SkMatrix::I()); |
| } else { |
| quad.fDevice = GrQuad::MakeFromRect(set[q].fDstRect, ctm); |
| quad.fLocal = GrQuad(set[q].fSrcRect); |
| } |
| |
| // This may be reduced per-quad from the requested aggregate filtering level, and used |
| // to determine if the subset is needed for the entry as well. |
| GrSamplerState::Filter filterForQuad = filter; |
| if (netFilter != filter || netMM != mm) { |
| // The only way netFilter != filter is if linear is requested and we haven't yet |
| // found a quad that requires linear (so net is still nearest). Similar for mip |
| // mapping. |
| SkASSERT(filter == netFilter || |
| (netFilter == GrSamplerState::Filter::kNearest && filter > netFilter)); |
| SkASSERT(mm == netMM || |
| (netMM == GrSamplerState::MipmapMode::kNone && mm > netMM)); |
| auto [mustFilter, mustMM] = FilterAndMipmapHaveNoEffect(quad.fLocal, quad.fDevice); |
| if (filter != GrSamplerState::Filter::kNearest) { |
| if (mustFilter) { |
| netFilter = filter; // upgrade batch to higher filter level |
| } else { |
| filterForQuad = GrSamplerState::Filter::kNearest; // downgrade entry |
| } |
| } |
| if (mustMM && mm != GrSamplerState::MipmapMode::kNone) { |
| netMM = mm; |
| } |
| } |
| |
| // Determine the AA type for the quad, then merge with net AA type |
| GrAAType aaForQuad; |
| GrQuadUtils::ResolveAAType(aaType, set[q].fAAFlags, quad.fDevice, |
| &aaForQuad, &quad.fEdgeFlags); |
| // Update overall bounds of the op as the union of all quads |
| bounds.joinPossiblyEmptyRect(quad.fDevice.bounds()); |
| hasSubpixel |= GrQuadUtils::WillUseHairline(quad.fDevice, aaForQuad, quad.fEdgeFlags); |
| |
| // Resolve sets aaForQuad to aaType or None, there is never a change between aa methods |
| SkASSERT(aaForQuad == GrAAType::kNone || aaForQuad == aaType); |
| if (netAAType == GrAAType::kNone && aaForQuad != GrAAType::kNone) { |
| netAAType = aaType; |
| } |
| |
| // Calculate metadata for the entry |
| const SkRect* subsetForQuad = nullptr; |
| if (constraint == SkCanvas::kStrict_SrcRectConstraint) { |
| // Check (briefly) if the subset rect is actually needed for this set entry. |
| SkRect* subsetRect = &set[q].fSrcRect; |
| if (!subsetRect->contains(curProxy->backingStoreBoundsRect())) { |
| if (!safe_to_ignore_subset_rect(aaForQuad, filterForQuad, quad, *subsetRect)) { |
| netSubset = Subset::kYes; |
| subsetForQuad = subsetRect; |
| } |
| } |
| } |
| |
| // Normalize the src quads and apply origin |
| NormalizationParams proxyParams = proxy_normalization_params( |
| curProxy, set[q].fProxyView.origin()); |
| normalize_src_quad(proxyParams, &quad.fLocal); |
| |
| // This subset may represent a no-op, otherwise it will have the origin and dimensions |
| // of the texture applied to it. |
| SkRect subset = normalize_and_inset_subset(filter, proxyParams, subsetForQuad); |
| |
| // Always append a quad (or 2 if perspective clipped), it just may refer back to a prior |
| // ViewCountPair (this frequently happens when Chrome draws 9-patches). |
| fViewCountPairs[p].fQuadCnt += this->appendQuad(&quad, set[q].fColor, subset); |
| } |
| // The # of proxy switches should match what was provided (+1 because we incremented p |
| // when a new proxy was encountered). |
| SkASSERT((p + 1) == fMetadata.fProxyCount); |
| SkASSERT(fQuads.count() == fMetadata.fTotalQuadCount); |
| |
| fMetadata.fAAType = static_cast<uint16_t>(netAAType); |
| fMetadata.fFilter = static_cast<uint16_t>(netFilter); |
| fMetadata.fSubset = static_cast<uint16_t>(netSubset); |
| |
| this->setBounds(bounds, HasAABloat(netAAType == GrAAType::kCoverage), |
| hasSubpixel ? IsHairline::kYes : IsHairline::kNo); |
| } |
| |
| int appendQuad(DrawQuad* quad, const SkPMColor4f& color, const SkRect& subset) { |
| DrawQuad extra; |
| // Always clip to W0 to stay consistent with GrQuad::bounds |
| int quadCount = GrQuadUtils::ClipToW0(quad, &extra); |
| if (quadCount == 0) { |
| // We can't discard the op at this point, but disable AA flags so it won't go through |
| // inset/outset processing |
| quad->fEdgeFlags = GrQuadAAFlags::kNone; |
| quadCount = 1; |
| } |
| fQuads.append(quad->fDevice, {color, subset, quad->fEdgeFlags}, &quad->fLocal); |
| if (quadCount > 1) { |
| fQuads.append(extra.fDevice, {color, subset, extra.fEdgeFlags}, &extra.fLocal); |
| fMetadata.fTotalQuadCount++; |
| } |
| return quadCount; |
| } |
| |
| GrProgramInfo* programInfo() override { |
| // Although this Op implements its own onPrePrepareDraws it calls GrMeshDrawOps' version so |
| // this entry point will be called. |
| return (fDesc) ? fDesc->fProgramInfo : nullptr; |
| } |
| |
| void onCreateProgramInfo(const GrCaps* caps, |
| SkArenaAlloc* arena, |
| const GrSurfaceProxyView& writeView, |
| bool usesMSAASurface, |
| GrAppliedClip&& appliedClip, |
| const GrDstProxyView& dstProxyView, |
| GrXferBarrierFlags renderPassXferBarriers, |
| GrLoadOp colorLoadOp) override { |
| SkASSERT(fDesc); |
| |
| GrGeometryProcessor* gp; |
| |
| { |
| const GrBackendFormat& backendFormat = |
| fViewCountPairs[0].fProxy->backendFormat(); |
| |
| GrSamplerState samplerState = GrSamplerState(GrSamplerState::WrapMode::kClamp, |
| fMetadata.filter()); |
| |
| gp = skgpu::ganesh::QuadPerEdgeAA::MakeTexturedProcessor( |
| arena, |
| fDesc->fVertexSpec, |
| *caps->shaderCaps(), |
| backendFormat, |
| samplerState, |
| fMetadata.fSwizzle, |
| std::move(fTextureColorSpaceXform), |
| fMetadata.saturate()); |
| |
| SkASSERT(fDesc->fVertexSpec.vertexSize() == gp->vertexStride()); |
| } |
| |
| fDesc->fProgramInfo = GrSimpleMeshDrawOpHelper::CreateProgramInfo( |
| caps, arena, writeView, usesMSAASurface, std::move(appliedClip), dstProxyView, gp, |
| GrProcessorSet::MakeEmptySet(), fDesc->fVertexSpec.primitiveType(), |
| renderPassXferBarriers, colorLoadOp, GrPipeline::InputFlags::kNone); |
| } |
| |
| void onPrePrepareDraws(GrRecordingContext* context, |
| const GrSurfaceProxyView& writeView, |
| GrAppliedClip* clip, |
| const GrDstProxyView& dstProxyView, |
| GrXferBarrierFlags renderPassXferBarriers, |
| GrLoadOp colorLoadOp) override { |
| TRACE_EVENT0("skia.gpu", TRACE_FUNC); |
| |
| SkDEBUGCODE(this->validate();) |
| SkASSERT(!fDesc); |
| |
| SkArenaAlloc* arena = context->priv().recordTimeAllocator(); |
| |
| fDesc = arena->make<Desc>(); |
| this->characterize(fDesc); |
| fDesc->allocatePrePreparedVertices(arena); |
| FillInVertices(*context->priv().caps(), this, fDesc, fDesc->fPrePreparedVertices); |
| |
| // This will call onCreateProgramInfo and register the created program with the DDL. |
| this->INHERITED::onPrePrepareDraws(context, writeView, clip, dstProxyView, |
| renderPassXferBarriers, colorLoadOp); |
| } |
| |
| static void FillInVertices(const GrCaps& caps, |
| TextureOpImpl* texOp, |
| Desc* desc, |
| char* vertexData) { |
| SkASSERT(vertexData); |
| |
| SkDEBUGCODE(int totQuadsSeen = 0;) SkDEBUGCODE(int totVerticesSeen = 0;) |
| SkDEBUGCODE(const size_t vertexSize = desc->fVertexSpec.vertexSize();) |
| SkDEBUGCODE(auto startMark{vertexData};) |
| |
| skgpu::ganesh::QuadPerEdgeAA::Tessellator tessellator( |
| desc->fVertexSpec, vertexData); |
| for (const auto& op : ChainRange<TextureOpImpl>(texOp)) { |
| auto iter = op.fQuads.iterator(); |
| for (unsigned p = 0; p < op.fMetadata.fProxyCount; ++p) { |
| const int quadCnt = op.fViewCountPairs[p].fQuadCnt; |
| SkDEBUGCODE(int meshVertexCnt = quadCnt * desc->fVertexSpec.verticesPerQuad()); |
| |
| for (int i = 0; i < quadCnt && iter.next(); ++i) { |
| SkASSERT(iter.isLocalValid()); |
| const ColorSubsetAndAA& info = iter.metadata(); |
| |
| tessellator.append(iter.deviceQuad(), iter.localQuad(), info.fColor, |
| info.fSubsetRect, info.aaFlags()); |
| } |
| |
| SkASSERT((totVerticesSeen + meshVertexCnt) * vertexSize |
| == (size_t)(tessellator.vertexMark() - startMark)); |
| |
| SkDEBUGCODE(totQuadsSeen += quadCnt;) |
| SkDEBUGCODE(totVerticesSeen += meshVertexCnt); |
| SkASSERT(totQuadsSeen * desc->fVertexSpec.verticesPerQuad() == totVerticesSeen); |
| } |
| |
| // If quad counts per proxy were calculated correctly, the entire iterator |
| // should have been consumed. |
| SkASSERT(!iter.next()); |
| } |
| |
| SkASSERT(desc->totalSizeInBytes() == (size_t)(tessellator.vertexMark() - startMark)); |
| SkASSERT(totQuadsSeen == desc->fNumTotalQuads); |
| SkASSERT(totVerticesSeen == desc->totalNumVertices()); |
| } |
| |
| #ifdef SK_DEBUG |
| static int validate_op(GrTextureType textureType, |
| GrAAType aaType, |
| skgpu::Swizzle swizzle, |
| const TextureOpImpl* op) { |
| SkASSERT(op->fMetadata.fSwizzle == swizzle); |
| |
| int quadCount = 0; |
| for (unsigned p = 0; p < op->fMetadata.fProxyCount; ++p) { |
| auto* proxy = op->fViewCountPairs[p].fProxy->asTextureProxy(); |
| quadCount += op->fViewCountPairs[p].fQuadCnt; |
| SkASSERT(proxy); |
| SkASSERT(proxy->textureType() == textureType); |
| } |
| |
| SkASSERT(aaType == op->fMetadata.aaType()); |
| return quadCount; |
| } |
| |
| void validate() const override { |
| // NOTE: Since this is debug-only code, we use the virtual asTextureProxy() |
| auto textureType = fViewCountPairs[0].fProxy->asTextureProxy()->textureType(); |
| GrAAType aaType = fMetadata.aaType(); |
| skgpu::Swizzle swizzle = fMetadata.fSwizzle; |
| |
| int quadCount = validate_op(textureType, aaType, swizzle, this); |
| |
| for (const GrOp* tmp = this->prevInChain(); tmp; tmp = tmp->prevInChain()) { |
| quadCount += validate_op(textureType, aaType, swizzle, |
| static_cast<const TextureOpImpl*>(tmp)); |
| } |
| |
| for (const GrOp* tmp = this->nextInChain(); tmp; tmp = tmp->nextInChain()) { |
| quadCount += validate_op(textureType, aaType, swizzle, |
| static_cast<const TextureOpImpl*>(tmp)); |
| } |
| |
| SkASSERT(quadCount == this->numChainedQuads()); |
| } |
| |
| #endif |
| |
| #if defined(GR_TEST_UTILS) |
| int numQuads() const final { return this->totNumQuads(); } |
| #endif |
| |
| void characterize(Desc* desc) const { |
| SkDEBUGCODE(this->validate();) |
| |
| GrQuad::Type quadType = GrQuad::Type::kAxisAligned; |
| ColorType colorType = ColorType::kNone; |
| GrQuad::Type srcQuadType = GrQuad::Type::kAxisAligned; |
| Subset subset = Subset::kNo; |
| GrAAType overallAAType = fMetadata.aaType(); |
| |
| desc->fNumProxies = 0; |
| desc->fNumTotalQuads = 0; |
| int maxQuadsPerMesh = 0; |
| |
| for (const auto& op : ChainRange<TextureOpImpl>(this)) { |
| if (op.fQuads.deviceQuadType() > quadType) { |
| quadType = op.fQuads.deviceQuadType(); |
| } |
| if (op.fQuads.localQuadType() > srcQuadType) { |
| srcQuadType = op.fQuads.localQuadType(); |
| } |
| if (op.fMetadata.subset() == Subset::kYes) { |
| subset = Subset::kYes; |
| } |
| colorType = std::max(colorType, op.fMetadata.colorType()); |
| desc->fNumProxies += op.fMetadata.fProxyCount; |
| |
| for (unsigned p = 0; p < op.fMetadata.fProxyCount; ++p) { |
| maxQuadsPerMesh = std::max(op.fViewCountPairs[p].fQuadCnt, maxQuadsPerMesh); |
| } |
| desc->fNumTotalQuads += op.totNumQuads(); |
| |
| if (op.fMetadata.aaType() == GrAAType::kCoverage) { |
| overallAAType = GrAAType::kCoverage; |
| } |
| } |
| |
| SkASSERT(desc->fNumTotalQuads == this->numChainedQuads()); |
| |
| SkASSERT(!CombinedQuadCountWillOverflow(overallAAType, false, desc->fNumTotalQuads)); |
| |
| auto indexBufferOption = |
| skgpu::ganesh::QuadPerEdgeAA::CalcIndexBufferOption(overallAAType, maxQuadsPerMesh); |
| |
| desc->fVertexSpec = VertexSpec(quadType, colorType, srcQuadType, /* hasLocal */ true, |
| subset, overallAAType, /* alpha as coverage */ true, |
| indexBufferOption); |
| |
| SkASSERT(desc->fNumTotalQuads <= |
| skgpu::ganesh::QuadPerEdgeAA::QuadLimit(indexBufferOption)); |
| } |
| |
| int totNumQuads() const { |
| #ifdef SK_DEBUG |
| int tmp = 0; |
| for (unsigned p = 0; p < fMetadata.fProxyCount; ++p) { |
| tmp += fViewCountPairs[p].fQuadCnt; |
| } |
| SkASSERT(tmp == fMetadata.fTotalQuadCount); |
| #endif |
| |
| return fMetadata.fTotalQuadCount; |
| } |
| |
| int numChainedQuads() const { |
| int numChainedQuads = this->totNumQuads(); |
| |
| for (const GrOp* tmp = this->prevInChain(); tmp; tmp = tmp->prevInChain()) { |
| numChainedQuads += ((const TextureOpImpl*)tmp)->totNumQuads(); |
| } |
| |
| for (const GrOp* tmp = this->nextInChain(); tmp; tmp = tmp->nextInChain()) { |
| numChainedQuads += ((const TextureOpImpl*)tmp)->totNumQuads(); |
| } |
| |
| return numChainedQuads; |
| } |
| |
| // onPrePrepareDraws may or may not have been called at this point |
| void onPrepareDraws(GrMeshDrawTarget* target) override { |
| TRACE_EVENT0("skia.gpu", TRACE_FUNC); |
| |
| SkDEBUGCODE(this->validate();) |
| |
| SkASSERT(!fDesc || fDesc->fPrePreparedVertices); |
| |
| if (!fDesc) { |
| SkArenaAlloc* arena = target->allocator(); |
| fDesc = arena->make<Desc>(); |
| this->characterize(fDesc); |
| SkASSERT(!fDesc->fPrePreparedVertices); |
| } |
| |
| size_t vertexSize = fDesc->fVertexSpec.vertexSize(); |
| |
| void* vdata = target->makeVertexSpace(vertexSize, fDesc->totalNumVertices(), |
| &fDesc->fVertexBuffer, &fDesc->fBaseVertex); |
| if (!vdata) { |
| SkDebugf("Could not allocate vertices\n"); |
| return; |
| } |
| |
| if (fDesc->fVertexSpec.needsIndexBuffer()) { |
| fDesc->fIndexBuffer = skgpu::ganesh::QuadPerEdgeAA::GetIndexBuffer( |
| target, fDesc->fVertexSpec.indexBufferOption()); |
| if (!fDesc->fIndexBuffer) { |
| SkDebugf("Could not allocate indices\n"); |
| return; |
| } |
| } |
| |
| if (fDesc->fPrePreparedVertices) { |
| memcpy(vdata, fDesc->fPrePreparedVertices, fDesc->totalSizeInBytes()); |
| } else { |
| FillInVertices(target->caps(), this, fDesc, (char*) vdata); |
| } |
| } |
| |
| void onExecute(GrOpFlushState* flushState, const SkRect& chainBounds) override { |
| if (!fDesc->fVertexBuffer) { |
| return; |
| } |
| |
| if (fDesc->fVertexSpec.needsIndexBuffer() && !fDesc->fIndexBuffer) { |
| return; |
| } |
| |
| if (!fDesc->fProgramInfo) { |
| this->createProgramInfo(flushState); |
| SkASSERT(fDesc->fProgramInfo); |
| } |
| |
| flushState->bindPipelineAndScissorClip(*fDesc->fProgramInfo, chainBounds); |
| flushState->bindBuffers(std::move(fDesc->fIndexBuffer), nullptr, |
| std::move(fDesc->fVertexBuffer)); |
| |
| int totQuadsSeen = 0; |
| SkDEBUGCODE(int numDraws = 0;) |
| for (const auto& op : ChainRange<TextureOpImpl>(this)) { |
| for (unsigned p = 0; p < op.fMetadata.fProxyCount; ++p) { |
| const int quadCnt = op.fViewCountPairs[p].fQuadCnt; |
| SkASSERT(numDraws < fDesc->fNumProxies); |
| flushState->bindTextures(fDesc->fProgramInfo->geomProc(), |
| *op.fViewCountPairs[p].fProxy, |
| fDesc->fProgramInfo->pipeline()); |
| skgpu::ganesh::QuadPerEdgeAA::IssueDraw(flushState->caps(), |
| flushState->opsRenderPass(), |
| fDesc->fVertexSpec, |
| totQuadsSeen, |
| quadCnt, |
| fDesc->totalNumVertices(), |
| fDesc->fBaseVertex); |
| totQuadsSeen += quadCnt; |
| SkDEBUGCODE(++numDraws;) |
| } |
| } |
| |
| SkASSERT(totQuadsSeen == fDesc->fNumTotalQuads); |
| SkASSERT(numDraws == fDesc->fNumProxies); |
| } |
| |
| void propagateCoverageAAThroughoutChain() { |
| fMetadata.fAAType = static_cast<uint16_t>(GrAAType::kCoverage); |
| |
| for (GrOp* tmp = this->prevInChain(); tmp; tmp = tmp->prevInChain()) { |
| auto tex = static_cast<TextureOpImpl*>(tmp); |
| SkASSERT(tex->fMetadata.aaType() == GrAAType::kCoverage || |
| tex->fMetadata.aaType() == GrAAType::kNone); |
| tex->fMetadata.fAAType = static_cast<uint16_t>(GrAAType::kCoverage); |
| } |
| |
| for (GrOp* tmp = this->nextInChain(); tmp; tmp = tmp->nextInChain()) { |
| auto tex = static_cast<TextureOpImpl*>(tmp); |
| SkASSERT(tex->fMetadata.aaType() == GrAAType::kCoverage || |
| tex->fMetadata.aaType() == GrAAType::kNone); |
| tex->fMetadata.fAAType = static_cast<uint16_t>(GrAAType::kCoverage); |
| } |
| } |
| |
| CombineResult onCombineIfPossible(GrOp* t, SkArenaAlloc*, const GrCaps& caps) override { |
| TRACE_EVENT0("skia.gpu", TRACE_FUNC); |
| auto that = t->cast<TextureOpImpl>(); |
| |
| SkDEBUGCODE(this->validate();) |
| SkDEBUGCODE(that->validate();) |
| |
| if (fDesc || that->fDesc) { |
| // This should never happen (since only DDL recorded ops should be prePrepared) |
| // but, in any case, we should never combine ops that that been prePrepared |
| return CombineResult::kCannotCombine; |
| } |
| |
| if (fMetadata.subset() != that->fMetadata.subset()) { |
| // It is technically possible to combine operations across subset modes, but performance |
| // testing suggests it's better to make more draw calls where some take advantage of |
| // the more optimal shader path without coordinate clamping. |
| return CombineResult::kCannotCombine; |
| } |
| if (!GrColorSpaceXform::Equals(fTextureColorSpaceXform.get(), |
| that->fTextureColorSpaceXform.get())) { |
| return CombineResult::kCannotCombine; |
| } |
| |
| bool upgradeToCoverageAAOnMerge = false; |
| if (fMetadata.aaType() != that->fMetadata.aaType()) { |
| if (!CanUpgradeAAOnMerge(fMetadata.aaType(), that->fMetadata.aaType())) { |
| return CombineResult::kCannotCombine; |
| } |
| upgradeToCoverageAAOnMerge = true; |
| } |
| |
| if (CombinedQuadCountWillOverflow(fMetadata.aaType(), upgradeToCoverageAAOnMerge, |
| this->numChainedQuads() + that->numChainedQuads())) { |
| return CombineResult::kCannotCombine; |
| } |
| |
| if (fMetadata.saturate() != that->fMetadata.saturate()) { |
| return CombineResult::kCannotCombine; |
| } |
| if (fMetadata.filter() != that->fMetadata.filter()) { |
| return CombineResult::kCannotCombine; |
| } |
| if (fMetadata.mipmapMode() != that->fMetadata.mipmapMode()) { |
| return CombineResult::kCannotCombine; |
| } |
| if (fMetadata.fSwizzle != that->fMetadata.fSwizzle) { |
| return CombineResult::kCannotCombine; |
| } |
| const auto* thisProxy = fViewCountPairs[0].fProxy.get(); |
| const auto* thatProxy = that->fViewCountPairs[0].fProxy.get(); |
| if (fMetadata.fProxyCount > 1 || that->fMetadata.fProxyCount > 1 || |
| thisProxy != thatProxy) { |
| // We can't merge across different proxies. Check if 'this' can be chained with 'that'. |
| if (GrTextureProxy::ProxiesAreCompatibleAsDynamicState(thisProxy, thatProxy) && |
| caps.dynamicStateArrayGeometryProcessorTextureSupport() && |
| fMetadata.aaType() == that->fMetadata.aaType()) { |
| // We only allow chaining when the aaTypes match bc otherwise the AA type |
| // reported by the chain can be inconsistent. That is, since chaining doesn't |
| // propagate revised AA information throughout the chain, the head of the chain |
| // could have an AA setting of kNone while the chain as a whole could have a |
| // setting of kCoverage. This inconsistency would then interfere with the validity |
| // of the CombinedQuadCountWillOverflow calls. |
| // This problem doesn't occur w/ merging bc we do propagate the AA information |
| // (in propagateCoverageAAThroughoutChain) below. |
| return CombineResult::kMayChain; |
| } |
| return CombineResult::kCannotCombine; |
| } |
| |
| fMetadata.fSubset |= that->fMetadata.fSubset; |
| fMetadata.fColorType = std::max(fMetadata.fColorType, that->fMetadata.fColorType); |
| |
| // Concatenate quad lists together |
| fQuads.concat(that->fQuads); |
| fViewCountPairs[0].fQuadCnt += that->fQuads.count(); |
| fMetadata.fTotalQuadCount += that->fQuads.count(); |
| |
| if (upgradeToCoverageAAOnMerge) { |
| // This merger may be the start of a concatenation of two chains. When one |
| // of the chains mutates its AA the other must follow suit or else the above AA |
| // check may prevent later ops from chaining together. A specific example of this is |
| // when chain2 is prepended onto chain1: |
| // chain1 (that): opA (non-AA/mergeable) opB (non-AA/non-mergeable) |
| // chain2 (this): opC (cov-AA/non-mergeable) opD (cov-AA/mergeable) |
| // W/o this propagation, after opD & opA merge, opB and opC would say they couldn't |
| // chain - which would stop the concatenation process. |
| this->propagateCoverageAAThroughoutChain(); |
| that->propagateCoverageAAThroughoutChain(); |
| } |
| |
| SkDEBUGCODE(this->validate();) |
| |
| return CombineResult::kMerged; |
| } |
| |
| #if defined(GR_TEST_UTILS) |
| SkString onDumpInfo() const override { |
| SkString str = SkStringPrintf("# draws: %d\n", fQuads.count()); |
| auto iter = fQuads.iterator(); |
| for (unsigned p = 0; p < fMetadata.fProxyCount; ++p) { |
| SkString proxyStr = fViewCountPairs[p].fProxy->dump(); |
| str.append(proxyStr); |
| str.appendf(", Filter: %d, MM: %d\n", |
| static_cast<int>(fMetadata.fFilter), |
| static_cast<int>(fMetadata.fMipmapMode)); |
| for (int i = 0; i < fViewCountPairs[p].fQuadCnt && iter.next(); ++i) { |
| const GrQuad* quad = iter.deviceQuad(); |
| GrQuad uv = iter.isLocalValid() ? *(iter.localQuad()) : GrQuad(); |
| const ColorSubsetAndAA& info = iter.metadata(); |
| str.appendf( |
| "%d: Color: 0x%08x, Subset(%d): [L: %.2f, T: %.2f, R: %.2f, B: %.2f]\n" |
| " UVs [(%.2f, %.2f), (%.2f, %.2f), (%.2f, %.2f), (%.2f, %.2f)]\n" |
| " Quad [(%.2f, %.2f), (%.2f, %.2f), (%.2f, %.2f), (%.2f, %.2f)]\n", |
| i, info.fColor.toBytes_RGBA(), fMetadata.fSubset, info.fSubsetRect.fLeft, |
| info.fSubsetRect.fTop, info.fSubsetRect.fRight, info.fSubsetRect.fBottom, |
| quad->point(0).fX, quad->point(0).fY, quad->point(1).fX, quad->point(1).fY, |
| quad->point(2).fX, quad->point(2).fY, quad->point(3).fX, quad->point(3).fY, |
| uv.point(0).fX, uv.point(0).fY, uv.point(1).fX, uv.point(1).fY, |
| uv.point(2).fX, uv.point(2).fY, uv.point(3).fX, uv.point(3).fY); |
| } |
| } |
| return str; |
| } |
| #endif |
| |
| GrQuadBuffer<ColorSubsetAndAA> fQuads; |
| sk_sp<GrColorSpaceXform> fTextureColorSpaceXform; |
| // Most state of TextureOp is packed into these two field to minimize the op's size. |
| // Historically, increasing the size of TextureOp has caused surprising perf regressions, so |
| // consider/measure changes with care. |
| Desc* fDesc; |
| Metadata fMetadata; |
| |
| // This field must go last. When allocating this op, we will allocate extra space to hold |
| // additional ViewCountPairs immediately after the op's allocation so we can treat this |
| // as an fProxyCnt-length array. |
| ViewCountPair fViewCountPairs[1]; |
| |
| using INHERITED = GrMeshDrawOp; |
| }; |
| |
| } // anonymous namespace |
| |
| namespace skgpu::ganesh { |
| |
| #if defined(GR_TEST_UTILS) |
| uint32_t TextureOp::ClassID() { |
| return TextureOpImpl::ClassID(); |
| } |
| #endif |
| |
| std::tuple<bool /* filter */, bool /* mipmap */> FilterAndMipmapHaveNoEffect( |
| const GrQuad& srcQuad, const GrQuad& dstQuad) { |
| // If not axis-aligned in src or dst, then always say it has an effect |
| if (srcQuad.quadType() != GrQuad::Type::kAxisAligned || |
| dstQuad.quadType() != GrQuad::Type::kAxisAligned) { |
| return {true, true}; |
| } |
| |
| SkRect srcRect; |
| SkRect dstRect; |
| if (srcQuad.asRect(&srcRect) && dstQuad.asRect(&dstRect)) { |
| // Disable filtering when there is no scaling (width and height are the same), and the |
| // top-left corners have the same fraction (so src and dst snap to the pixel grid |
| // identically). |
| SkASSERT(srcRect.isSorted()); |
| bool filter = srcRect.width() != dstRect.width() || srcRect.height() != dstRect.height() || |
| SkScalarFraction(srcRect.fLeft) != SkScalarFraction(dstRect.fLeft) || |
| SkScalarFraction(srcRect.fTop) != SkScalarFraction(dstRect.fTop); |
| bool mm = srcRect.width() > dstRect.width() || srcRect.height() > dstRect.height(); |
| return {filter, mm}; |
| } |
| // Extract edge lengths |
| SkSize srcSize = axis_aligned_quad_size(srcQuad); |
| SkSize dstSize = axis_aligned_quad_size(dstQuad); |
| // Although the quads are axis-aligned, the local coordinate system is transformed such |
| // that fractionally-aligned sample centers will not align with the device coordinate system |
| // So disable filtering when edges are the same length and both srcQuad and dstQuad |
| // 0th vertex is integer aligned. |
| bool filter = srcSize != dstSize || !SkScalarIsInt(srcQuad.x(0)) || |
| !SkScalarIsInt(srcQuad.y(0)) || !SkScalarIsInt(dstQuad.x(0)) || |
| !SkScalarIsInt(dstQuad.y(0)); |
| bool mm = srcSize.fWidth > dstSize.fWidth || srcSize.fHeight > dstSize.fHeight; |
| return {filter, mm}; |
| } |
| |
| GrOp::Owner TextureOp::Make(GrRecordingContext* context, |
| GrSurfaceProxyView proxyView, |
| SkAlphaType alphaType, |
| sk_sp<GrColorSpaceXform> textureXform, |
| GrSamplerState::Filter filter, |
| GrSamplerState::MipmapMode mm, |
| const SkPMColor4f& color, |
| Saturate saturate, |
| SkBlendMode blendMode, |
| GrAAType aaType, |
| DrawQuad* quad, |
| const SkRect* subset) { |
| // Apply optimizations that are valid whether or not using TextureOp or FillRectOp |
| if (subset && subset->contains(proxyView.proxy()->backingStoreBoundsRect())) { |
| // No need for a shader-based subset if hardware clamping achieves the same effect |
| subset = nullptr; |
| } |
| |
| if (filter != GrSamplerState::Filter::kNearest || mm != GrSamplerState::MipmapMode::kNone) { |
| auto [mustFilter, mustMM] = FilterAndMipmapHaveNoEffect(quad->fLocal, quad->fDevice); |
| if (!mustFilter) { |
| filter = GrSamplerState::Filter::kNearest; |
| } |
| if (!mustMM) { |
| mm = GrSamplerState::MipmapMode::kNone; |
| } |
| } |
| |
| if (blendMode == SkBlendMode::kSrcOver) { |
| return TextureOpImpl::Make(context, std::move(proxyView), std::move(textureXform), filter, |
| mm, color, saturate, aaType, std::move(quad), subset); |
| } else { |
| // Emulate complex blending using FillRectOp |
| GrSamplerState samplerState(GrSamplerState::WrapMode::kClamp, filter, mm); |
| GrPaint paint; |
| paint.setColor4f(color); |
| paint.setXPFactory(GrXPFactory::FromBlendMode(blendMode)); |
| |
| std::unique_ptr<GrFragmentProcessor> fp; |
| const auto& caps = *context->priv().caps(); |
| if (subset) { |
| SkRect localRect; |
| if (quad->fLocal.asRect(&localRect)) { |
| fp = GrTextureEffect::MakeSubset(std::move(proxyView), alphaType, SkMatrix::I(), |
| samplerState, *subset, localRect, caps); |
| } else { |
| fp = GrTextureEffect::MakeSubset(std::move(proxyView), alphaType, SkMatrix::I(), |
| samplerState, *subset, caps); |
| } |
| } else { |
| fp = GrTextureEffect::Make(std::move(proxyView), alphaType, SkMatrix::I(), samplerState, |
| caps); |
| } |
| fp = GrColorSpaceXformEffect::Make(std::move(fp), std::move(textureXform)); |
| fp = GrBlendFragmentProcessor::Make<SkBlendMode::kModulate>(std::move(fp), nullptr); |
| if (saturate == Saturate::kYes) { |
| fp = GrFragmentProcessor::ClampOutput(std::move(fp)); |
| } |
| paint.setColorFragmentProcessor(std::move(fp)); |
| return ganesh::FillRectOp::Make(context, std::move(paint), aaType, quad); |
| } |
| } |
| |
| // A helper class that assists in breaking up bulk API quad draws into manageable chunks. |
| class TextureOp::BatchSizeLimiter { |
| public: |
| BatchSizeLimiter(ganesh::SurfaceDrawContext* sdc, |
| const GrClip* clip, |
| GrRecordingContext* rContext, |
| int numEntries, |
| GrSamplerState::Filter filter, |
| GrSamplerState::MipmapMode mm, |
| Saturate saturate, |
| SkCanvas::SrcRectConstraint constraint, |
| const SkMatrix& viewMatrix, |
| sk_sp<GrColorSpaceXform> textureColorSpaceXform) |
| : fSDC(sdc) |
| , fClip(clip) |
| , fContext(rContext) |
| , fFilter(filter) |
| , fMipmapMode(mm) |
| , fSaturate(saturate) |
| , fConstraint(constraint) |
| , fViewMatrix(viewMatrix) |
| , fTextureColorSpaceXform(textureColorSpaceXform) |
| , fNumLeft(numEntries) {} |
| |
| void createOp(GrTextureSetEntry set[], int clumpSize, GrAAType aaType) { |
| |
| int clumpProxyCount = proxy_run_count(&set[fNumClumped], clumpSize); |
| GrOp::Owner op = TextureOpImpl::Make(fContext, |
| &set[fNumClumped], |
| clumpSize, |
| clumpProxyCount, |
| fFilter, |
| fMipmapMode, |
| fSaturate, |
| aaType, |
| fConstraint, |
| fViewMatrix, |
| fTextureColorSpaceXform); |
| fSDC->addDrawOp(fClip, std::move(op)); |
| |
| fNumLeft -= clumpSize; |
| fNumClumped += clumpSize; |
| } |
| |
| int numLeft() const { return fNumLeft; } |
| int baseIndex() const { return fNumClumped; } |
| |
| private: |
| ganesh::SurfaceDrawContext* fSDC; |
| const GrClip* fClip; |
| GrRecordingContext* fContext; |
| GrSamplerState::Filter fFilter; |
| GrSamplerState::MipmapMode fMipmapMode; |
| Saturate fSaturate; |
| SkCanvas::SrcRectConstraint fConstraint; |
| const SkMatrix& fViewMatrix; |
| sk_sp<GrColorSpaceXform> fTextureColorSpaceXform; |
| |
| int fNumLeft; |
| int fNumClumped = 0; // also the offset for the start of the next clump |
| }; |
| |
| // Greedily clump quad draws together until the index buffer limit is exceeded. |
| void TextureOp::AddTextureSetOps(ganesh::SurfaceDrawContext* sdc, |
| const GrClip* clip, |
| GrRecordingContext* context, |
| GrTextureSetEntry set[], |
| int cnt, |
| int proxyRunCnt, |
| GrSamplerState::Filter filter, |
| GrSamplerState::MipmapMode mm, |
| Saturate saturate, |
| SkBlendMode blendMode, |
| GrAAType aaType, |
| SkCanvas::SrcRectConstraint constraint, |
| const SkMatrix& viewMatrix, |
| sk_sp<GrColorSpaceXform> textureColorSpaceXform) { |
| // Ensure that the index buffer limits are lower than the proxy and quad count limits of |
| // the op's metadata so we don't need to worry about overflow. |
| SkDEBUGCODE(TextureOpImpl::ValidateResourceLimits();) |
| SkASSERT(proxy_run_count(set, cnt) == proxyRunCnt); |
| |
| // First check if we can support batches as a single op |
| if (blendMode != SkBlendMode::kSrcOver || |
| !context->priv().caps()->dynamicStateArrayGeometryProcessorTextureSupport()) { |
| // Append each entry as its own op; these may still be GrTextureOps if the blend mode is |
| // src-over but the backend doesn't support dynamic state changes. Otherwise Make() |
| // automatically creates the appropriate FillRectOp to emulate TextureOp. |
| SkMatrix ctm; |
| for (int i = 0; i < cnt; ++i) { |
| ctm = viewMatrix; |
| if (set[i].fPreViewMatrix) { |
| ctm.preConcat(*set[i].fPreViewMatrix); |
| } |
| |
| DrawQuad quad; |
| quad.fEdgeFlags = set[i].fAAFlags; |
| if (set[i].fDstClipQuad) { |
| quad.fDevice = GrQuad::MakeFromSkQuad(set[i].fDstClipQuad, ctm); |
| |
| SkPoint srcPts[4]; |
| GrMapRectPoints(set[i].fDstRect, set[i].fSrcRect, set[i].fDstClipQuad, srcPts, 4); |
| quad.fLocal = GrQuad::MakeFromSkQuad(srcPts, SkMatrix::I()); |
| } else { |
| quad.fDevice = GrQuad::MakeFromRect(set[i].fDstRect, ctm); |
| quad.fLocal = GrQuad(set[i].fSrcRect); |
| } |
| |
| const SkRect* subset = constraint == SkCanvas::kStrict_SrcRectConstraint |
| ? &set[i].fSrcRect : nullptr; |
| |
| auto op = Make(context, set[i].fProxyView, set[i].fSrcAlphaType, textureColorSpaceXform, |
| filter, mm, set[i].fColor, saturate, blendMode, aaType, &quad, subset); |
| sdc->addDrawOp(clip, std::move(op)); |
| } |
| return; |
| } |
| |
| // Second check if we can always just make a single op and avoid the extra iteration |
| // needed to clump things together. |
| if (cnt <= std::min(GrResourceProvider::MaxNumNonAAQuads(), |
| GrResourceProvider::MaxNumAAQuads())) { |
| auto op = TextureOpImpl::Make(context, set, cnt, proxyRunCnt, filter, mm, saturate, aaType, |
| constraint, viewMatrix, std::move(textureColorSpaceXform)); |
| sdc->addDrawOp(clip, std::move(op)); |
| return; |
| } |
| |
| BatchSizeLimiter state(sdc, clip, context, cnt, filter, mm, saturate, constraint, viewMatrix, |
| std::move(textureColorSpaceXform)); |
| |
| // kNone and kMSAA never get altered |
| if (aaType == GrAAType::kNone || aaType == GrAAType::kMSAA) { |
| // Clump these into series of MaxNumNonAAQuads-sized GrTextureOps |
| while (state.numLeft() > 0) { |
| int clumpSize = std::min(state.numLeft(), GrResourceProvider::MaxNumNonAAQuads()); |
| |
| state.createOp(set, clumpSize, aaType); |
| } |
| } else { |
| // kCoverage can be downgraded to kNone. Note that the following is conservative. kCoverage |
| // can also get downgraded to kNone if all the quads are on integer coordinates and |
| // axis-aligned. |
| SkASSERT(aaType == GrAAType::kCoverage); |
| |
| while (state.numLeft() > 0) { |
| GrAAType runningAA = GrAAType::kNone; |
| bool clumped = false; |
| |
| for (int i = 0; i < state.numLeft(); ++i) { |
| int absIndex = state.baseIndex() + i; |
| |
| if (set[absIndex].fAAFlags != GrQuadAAFlags::kNone || |
| runningAA == GrAAType::kCoverage) { |
| |
| if (i >= GrResourceProvider::MaxNumAAQuads()) { |
| // Here we either need to boost the AA type to kCoverage, but doing so with |
| // all the accumulated quads would overflow, or we have a set of AA quads |
| // that has just gotten too large. In either case, calve off the existing |
| // quads as their own TextureOp. |
| state.createOp( |
| set, |
| runningAA == GrAAType::kNone ? i : GrResourceProvider::MaxNumAAQuads(), |
| runningAA); // maybe downgrading AA here |
| clumped = true; |
| break; |
| } |
| |
| runningAA = GrAAType::kCoverage; |
| } else if (runningAA == GrAAType::kNone) { |
| |
| if (i >= GrResourceProvider::MaxNumNonAAQuads()) { |
| // Here we've found a consistent batch of non-AA quads that has gotten too |
| // large. Calve it off as its own TextureOp. |
| state.createOp(set, GrResourceProvider::MaxNumNonAAQuads(), |
| GrAAType::kNone); // definitely downgrading AA here |
| clumped = true; |
| break; |
| } |
| } |
| } |
| |
| if (!clumped) { |
| // We ran through the above loop w/o hitting a limit. Spit out this last clump of |
| // quads and call it a day. |
| state.createOp(set, state.numLeft(), runningAA); // maybe downgrading AA here |
| } |
| } |
| } |
| } |
| |
| } // namespace skgpu::ganesh |
| |
| #if defined(GR_TEST_UTILS) |
| GR_DRAW_OP_TEST_DEFINE(TextureOpImpl) { |
| SkISize dims; |
| dims.fHeight = random->nextULessThan(90) + 10; |
| dims.fWidth = random->nextULessThan(90) + 10; |
| auto origin = random->nextBool() ? kTopLeft_GrSurfaceOrigin : kBottomLeft_GrSurfaceOrigin; |
| skgpu::Mipmapped mipmapped = |
| random->nextBool() ? skgpu::Mipmapped::kYes : skgpu::Mipmapped::kNo; |
| SkBackingFit fit = SkBackingFit::kExact; |
| if (mipmapped == skgpu::Mipmapped::kNo) { |
| fit = random->nextBool() ? SkBackingFit::kApprox : SkBackingFit::kExact; |
| } |
| const GrBackendFormat format = |
| context->priv().caps()->getDefaultBackendFormat(GrColorType::kRGBA_8888, |
| GrRenderable::kNo); |
| GrProxyProvider* proxyProvider = context->priv().proxyProvider(); |
| sk_sp<GrTextureProxy> proxy = proxyProvider->createProxy(format, |
| dims, |
| GrRenderable::kNo, |
| 1, |
| mipmapped, |
| fit, |
| skgpu::Budgeted::kNo, |
| GrProtected::kNo, |
| /*label=*/"TextureOp", |
| GrInternalSurfaceFlags::kNone); |
| |
| SkRect rect = GrTest::TestRect(random); |
| SkRect srcRect; |
| srcRect.fLeft = random->nextRangeScalar(0.f, proxy->width() / 2.f); |
| srcRect.fRight = random->nextRangeScalar(0.f, proxy->width()) + proxy->width() / 2.f; |
| srcRect.fTop = random->nextRangeScalar(0.f, proxy->height() / 2.f); |
| srcRect.fBottom = random->nextRangeScalar(0.f, proxy->height()) + proxy->height() / 2.f; |
| SkMatrix viewMatrix = GrTest::TestMatrixPreservesRightAngles(random); |
| SkPMColor4f color = SkPMColor4f::FromBytes_RGBA(SkColorToPremulGrColor(random->nextU())); |
| GrSamplerState::Filter filter = (GrSamplerState::Filter)random->nextULessThan( |
| static_cast<uint32_t>(GrSamplerState::Filter::kLast) + 1); |
| GrSamplerState::MipmapMode mm = GrSamplerState::MipmapMode::kNone; |
| if (mipmapped == skgpu::Mipmapped::kYes) { |
| mm = (GrSamplerState::MipmapMode)random->nextULessThan( |
| static_cast<uint32_t>(GrSamplerState::MipmapMode::kLast) + 1); |
| } |
| |
| auto texXform = GrTest::TestColorXform(random); |
| GrAAType aaType = GrAAType::kNone; |
| if (random->nextBool()) { |
| aaType = (numSamples > 1) ? GrAAType::kMSAA : GrAAType::kCoverage; |
| } |
| GrQuadAAFlags aaFlags = GrQuadAAFlags::kNone; |
| aaFlags |= random->nextBool() ? GrQuadAAFlags::kLeft : GrQuadAAFlags::kNone; |
| aaFlags |= random->nextBool() ? GrQuadAAFlags::kTop : GrQuadAAFlags::kNone; |
| aaFlags |= random->nextBool() ? GrQuadAAFlags::kRight : GrQuadAAFlags::kNone; |
| aaFlags |= random->nextBool() ? GrQuadAAFlags::kBottom : GrQuadAAFlags::kNone; |
| bool useSubset = random->nextBool(); |
| auto saturate = random->nextBool() ? TextureOp::Saturate::kYes |
| : TextureOp::Saturate::kNo; |
| GrSurfaceProxyView proxyView( |
| std::move(proxy), origin, |
| context->priv().caps()->getReadSwizzle(format, GrColorType::kRGBA_8888)); |
| auto alphaType = static_cast<SkAlphaType>( |
| random->nextRangeU(kUnknown_SkAlphaType + 1, kLastEnum_SkAlphaType)); |
| |
| DrawQuad quad = {GrQuad::MakeFromRect(rect, viewMatrix), GrQuad(srcRect), aaFlags}; |
| return TextureOp::Make(context, std::move(proxyView), alphaType, |
| std::move(texXform), filter, mm, color, saturate, |
| SkBlendMode::kSrcOver, aaType, &quad, |
| useSubset ? &srcRect : nullptr); |
| } |
| |
| #endif // defined(GR_TEST_UTILS) |