| /* |
| * Copyright 2011 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/gpu/ganesh/gl/GrGLGpu.h" |
| |
| #include "include/core/SkAlphaType.h" |
| #include "include/core/SkColor.h" |
| #include "include/core/SkColorSpace.h" |
| #include "include/core/SkData.h" |
| #include "include/core/SkRect.h" |
| #include "include/core/SkSize.h" |
| #include "include/core/SkString.h" |
| #include "include/core/SkTextureCompressionType.h" |
| #include "include/core/SkTypes.h" |
| #include "include/gpu/GpuTypes.h" |
| #include "include/gpu/GrBackendSurface.h" |
| #include "include/gpu/GrContextOptions.h" |
| #include "include/gpu/GrDirectContext.h" |
| #include "include/gpu/GrDriverBugWorkarounds.h" |
| #include "include/gpu/GrTypes.h" |
| #include "include/gpu/gl/GrGLConfig.h" |
| #include "include/private/base/SkFloatingPoint.h" |
| #include "include/private/base/SkMath.h" |
| #include "include/private/base/SkPoint_impl.h" |
| #include "include/private/base/SkTemplates.h" |
| #include "include/private/base/SkTo.h" |
| #include "src/base/SkScopeExit.h" |
| #include "src/core/SkCompressedDataUtils.h" |
| #include "src/core/SkLRUCache.h" |
| #include "src/core/SkMipmap.h" |
| #include "src/core/SkSLTypeShared.h" |
| #include "src/core/SkTraceEvent.h" |
| #include "src/gpu/SkRenderEngineAbortf.h" |
| #include "src/gpu/Swizzle.h" |
| #include "src/gpu/ganesh/GrAttachment.h" |
| #include "src/gpu/ganesh/GrBackendSurfacePriv.h" |
| #include "src/gpu/ganesh/GrBackendUtils.h" |
| #include "src/gpu/ganesh/GrBuffer.h" |
| #include "src/gpu/ganesh/GrDataUtils.h" |
| #include "src/gpu/ganesh/GrDirectContextPriv.h" |
| #include "src/gpu/ganesh/GrGpuBuffer.h" |
| #include "src/gpu/ganesh/GrImageInfo.h" |
| #include "src/gpu/ganesh/GrPipeline.h" |
| #include "src/gpu/ganesh/GrProgramInfo.h" |
| #include "src/gpu/ganesh/GrRenderTarget.h" |
| #include "src/gpu/ganesh/GrSemaphore.h" |
| #include "src/gpu/ganesh/GrShaderCaps.h" |
| #include "src/gpu/ganesh/GrShaderVar.h" |
| #include "src/gpu/ganesh/GrStagingBufferManager.h" |
| #include "src/gpu/ganesh/GrSurface.h" |
| #include "src/gpu/ganesh/GrTexture.h" |
| #include "src/gpu/ganesh/GrUtil.h" |
| #include "src/gpu/ganesh/GrWindowRectangles.h" |
| #include "src/gpu/ganesh/gl/GrGLAttachment.h" |
| #include "src/gpu/ganesh/gl/GrGLBackendSurfacePriv.h" |
| #include "src/gpu/ganesh/gl/GrGLBuffer.h" |
| #include "src/gpu/ganesh/gl/GrGLOpsRenderPass.h" |
| #include "src/gpu/ganesh/gl/GrGLProgram.h" |
| #include "src/gpu/ganesh/gl/GrGLSemaphore.h" |
| #include "src/gpu/ganesh/gl/GrGLTextureRenderTarget.h" |
| #include "src/gpu/ganesh/gl/builders/GrGLShaderStringBuilder.h" |
| #include "src/sksl/SkSLProgramKind.h" |
| #include "src/sksl/SkSLProgramSettings.h" |
| #include "src/sksl/ir/SkSLProgram.h" |
| |
| #include <algorithm> |
| #include <cmath> |
| #include <functional> |
| #include <memory> |
| #include <string> |
| #include <utility> |
| |
| using namespace skia_private; |
| |
| #define GL_CALL(X) GR_GL_CALL(this->glInterface(), X) |
| #define GL_CALL_RET(RET, X) GR_GL_CALL_RET(this->glInterface(), RET, X) |
| |
| #define GL_ALLOC_CALL(call) \ |
| [&] { \ |
| if (this->glCaps().skipErrorChecks()) { \ |
| GR_GL_CALL(this->glInterface(), call); \ |
| return static_cast<GrGLenum>(GR_GL_NO_ERROR); \ |
| } else { \ |
| this->clearErrorsAndCheckForOOM(); \ |
| GR_GL_CALL_NOERRCHECK(this->glInterface(), call); \ |
| return this->getErrorAndCheckForOOM(); \ |
| } \ |
| }() |
| |
| //#define USE_NSIGHT |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| static const GrGLenum gXfermodeEquation2Blend[] = { |
| // Basic OpenGL blend equations. |
| GR_GL_FUNC_ADD, |
| GR_GL_FUNC_SUBTRACT, |
| GR_GL_FUNC_REVERSE_SUBTRACT, |
| |
| // GL_KHR_blend_equation_advanced. |
| GR_GL_SCREEN, |
| GR_GL_OVERLAY, |
| GR_GL_DARKEN, |
| GR_GL_LIGHTEN, |
| GR_GL_COLORDODGE, |
| GR_GL_COLORBURN, |
| GR_GL_HARDLIGHT, |
| GR_GL_SOFTLIGHT, |
| GR_GL_DIFFERENCE, |
| GR_GL_EXCLUSION, |
| GR_GL_MULTIPLY, |
| GR_GL_HSL_HUE, |
| GR_GL_HSL_SATURATION, |
| GR_GL_HSL_COLOR, |
| GR_GL_HSL_LUMINOSITY, |
| |
| // Illegal... needs to map to something. |
| GR_GL_FUNC_ADD, |
| }; |
| static_assert(0 == (int)skgpu::BlendEquation::kAdd); |
| static_assert(1 == (int)skgpu::BlendEquation::kSubtract); |
| static_assert(2 == (int)skgpu::BlendEquation::kReverseSubtract); |
| static_assert(3 == (int)skgpu::BlendEquation::kScreen); |
| static_assert(4 == (int)skgpu::BlendEquation::kOverlay); |
| static_assert(5 == (int)skgpu::BlendEquation::kDarken); |
| static_assert(6 == (int)skgpu::BlendEquation::kLighten); |
| static_assert(7 == (int)skgpu::BlendEquation::kColorDodge); |
| static_assert(8 == (int)skgpu::BlendEquation::kColorBurn); |
| static_assert(9 == (int)skgpu::BlendEquation::kHardLight); |
| static_assert(10 == (int)skgpu::BlendEquation::kSoftLight); |
| static_assert(11 == (int)skgpu::BlendEquation::kDifference); |
| static_assert(12 == (int)skgpu::BlendEquation::kExclusion); |
| static_assert(13 == (int)skgpu::BlendEquation::kMultiply); |
| static_assert(14 == (int)skgpu::BlendEquation::kHSLHue); |
| static_assert(15 == (int)skgpu::BlendEquation::kHSLSaturation); |
| static_assert(16 == (int)skgpu::BlendEquation::kHSLColor); |
| static_assert(17 == (int)skgpu::BlendEquation::kHSLLuminosity); |
| static_assert(std::size(gXfermodeEquation2Blend) == skgpu::kBlendEquationCnt); |
| |
| static const GrGLenum gXfermodeCoeff2Blend[] = { |
| GR_GL_ZERO, |
| GR_GL_ONE, |
| GR_GL_SRC_COLOR, |
| GR_GL_ONE_MINUS_SRC_COLOR, |
| GR_GL_DST_COLOR, |
| GR_GL_ONE_MINUS_DST_COLOR, |
| GR_GL_SRC_ALPHA, |
| GR_GL_ONE_MINUS_SRC_ALPHA, |
| GR_GL_DST_ALPHA, |
| GR_GL_ONE_MINUS_DST_ALPHA, |
| GR_GL_CONSTANT_COLOR, |
| GR_GL_ONE_MINUS_CONSTANT_COLOR, |
| |
| // extended blend coeffs |
| GR_GL_SRC1_COLOR, |
| GR_GL_ONE_MINUS_SRC1_COLOR, |
| GR_GL_SRC1_ALPHA, |
| GR_GL_ONE_MINUS_SRC1_ALPHA, |
| |
| // Illegal... needs to map to something. |
| GR_GL_ZERO, |
| }; |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| static int gl_target_to_binding_index(GrGLenum target) { |
| switch (target) { |
| case GR_GL_TEXTURE_2D: |
| return 0; |
| case GR_GL_TEXTURE_RECTANGLE: |
| return 1; |
| case GR_GL_TEXTURE_EXTERNAL: |
| return 2; |
| } |
| SK_ABORT("Unexpected GL texture target."); |
| } |
| |
| GrGpuResource::UniqueID GrGLGpu::TextureUnitBindings::boundID(GrGLenum target) const { |
| return fTargetBindings[gl_target_to_binding_index(target)].fBoundResourceID; |
| } |
| |
| bool GrGLGpu::TextureUnitBindings::hasBeenModified(GrGLenum target) const { |
| return fTargetBindings[gl_target_to_binding_index(target)].fHasBeenModified; |
| } |
| |
| void GrGLGpu::TextureUnitBindings::setBoundID(GrGLenum target, GrGpuResource::UniqueID resourceID) { |
| int targetIndex = gl_target_to_binding_index(target); |
| fTargetBindings[targetIndex].fBoundResourceID = resourceID; |
| fTargetBindings[targetIndex].fHasBeenModified = true; |
| } |
| |
| void GrGLGpu::TextureUnitBindings::invalidateForScratchUse(GrGLenum target) { |
| this->setBoundID(target, GrGpuResource::UniqueID()); |
| } |
| |
| void GrGLGpu::TextureUnitBindings::invalidateAllTargets(bool markUnmodified) { |
| for (auto& targetBinding : fTargetBindings) { |
| targetBinding.fBoundResourceID.makeInvalid(); |
| if (markUnmodified) { |
| targetBinding.fHasBeenModified = false; |
| } |
| } |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| static GrGLenum filter_to_gl_mag_filter(GrSamplerState::Filter filter) { |
| switch (filter) { |
| case GrSamplerState::Filter::kNearest: return GR_GL_NEAREST; |
| case GrSamplerState::Filter::kLinear: return GR_GL_LINEAR; |
| } |
| SkUNREACHABLE; |
| } |
| |
| static GrGLenum filter_to_gl_min_filter(GrSamplerState::Filter filter, |
| GrSamplerState::MipmapMode mm) { |
| switch (mm) { |
| case GrSamplerState::MipmapMode::kNone: |
| return filter_to_gl_mag_filter(filter); |
| case GrSamplerState::MipmapMode::kNearest: |
| switch (filter) { |
| case GrSamplerState::Filter::kNearest: return GR_GL_NEAREST_MIPMAP_NEAREST; |
| case GrSamplerState::Filter::kLinear: return GR_GL_LINEAR_MIPMAP_NEAREST; |
| } |
| SkUNREACHABLE; |
| case GrSamplerState::MipmapMode::kLinear: |
| switch (filter) { |
| case GrSamplerState::Filter::kNearest: return GR_GL_NEAREST_MIPMAP_LINEAR; |
| case GrSamplerState::Filter::kLinear: return GR_GL_LINEAR_MIPMAP_LINEAR; |
| } |
| SkUNREACHABLE; |
| } |
| SkUNREACHABLE; |
| } |
| |
| static inline GrGLenum wrap_mode_to_gl_wrap(GrSamplerState::WrapMode wrapMode, |
| const GrCaps& caps) { |
| switch (wrapMode) { |
| case GrSamplerState::WrapMode::kClamp: return GR_GL_CLAMP_TO_EDGE; |
| case GrSamplerState::WrapMode::kRepeat: return GR_GL_REPEAT; |
| case GrSamplerState::WrapMode::kMirrorRepeat: return GR_GL_MIRRORED_REPEAT; |
| case GrSamplerState::WrapMode::kClampToBorder: |
| // May not be supported but should have been caught earlier |
| SkASSERT(caps.clampToBorderSupport()); |
| return GR_GL_CLAMP_TO_BORDER; |
| } |
| SkUNREACHABLE; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| static void cleanup_program(GrGLGpu* gpu, |
| GrGLuint* programID, |
| GrGLuint* vshader, |
| GrGLuint* fshader) { |
| const GrGLInterface* gli = gpu->glInterface(); |
| if (programID) { |
| GR_GL_CALL(gli, DeleteProgram(*programID)); |
| *programID = 0; |
| } |
| if (vshader) { |
| GR_GL_CALL(gli, DeleteShader(*vshader)); |
| *vshader = 0; |
| } |
| if (fshader) { |
| GR_GL_CALL(gli, DeleteShader(*fshader)); |
| *fshader = 0; |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| class GrGLGpu::SamplerObjectCache { |
| public: |
| SamplerObjectCache(GrGLGpu* gpu) : fGpu(gpu) { |
| fNumTextureUnits = fGpu->glCaps().shaderCaps()->fMaxFragmentSamplers; |
| fTextureUnitStates = std::make_unique<UnitState[]>(fNumTextureUnits); |
| } |
| |
| ~SamplerObjectCache() { |
| if (!fNumTextureUnits) { |
| // We've already been abandoned. |
| return; |
| } |
| } |
| |
| void bindSampler(int unitIdx, GrSamplerState state) { |
| if (unitIdx >= fNumTextureUnits) { |
| return; |
| } |
| // In GL the max aniso value is specified in addition to min/mag filters and the driver |
| // is encouraged to consider the other filter settings when doing aniso. |
| uint32_t key = state.asKey(/*anisoIsOrthogonal=*/true); |
| const Sampler* sampler = fSamplers.find(key); |
| if (!sampler) { |
| GrGLuint s; |
| GR_GL_CALL(fGpu->glInterface(), GenSamplers(1, &s)); |
| if (!s) { |
| return; |
| } |
| sampler = fSamplers.insert(key, Sampler(s, fGpu->glInterface())); |
| GrGLenum minFilter = filter_to_gl_min_filter(state.filter(), state.mipmapMode()); |
| GrGLenum magFilter = filter_to_gl_mag_filter(state.filter()); |
| GrGLenum wrapX = wrap_mode_to_gl_wrap(state.wrapModeX(), fGpu->glCaps()); |
| GrGLenum wrapY = wrap_mode_to_gl_wrap(state.wrapModeY(), fGpu->glCaps()); |
| GR_GL_CALL(fGpu->glInterface(), |
| SamplerParameteri(s, GR_GL_TEXTURE_MIN_FILTER, minFilter)); |
| GR_GL_CALL(fGpu->glInterface(), |
| SamplerParameteri(s, GR_GL_TEXTURE_MAG_FILTER, magFilter)); |
| GR_GL_CALL(fGpu->glInterface(), SamplerParameteri(s, GR_GL_TEXTURE_WRAP_S, wrapX)); |
| GR_GL_CALL(fGpu->glInterface(), SamplerParameteri(s, GR_GL_TEXTURE_WRAP_T, wrapY)); |
| SkASSERT(fGpu->glCaps().anisoSupport() || !state.isAniso()); |
| if (fGpu->glCaps().anisoSupport()) { |
| float maxAniso = std::min(static_cast<GrGLfloat>(state.maxAniso()), |
| fGpu->glCaps().maxTextureMaxAnisotropy()); |
| GR_GL_CALL(fGpu->glInterface(), SamplerParameterf(s, |
| GR_GL_TEXTURE_MAX_ANISOTROPY, |
| maxAniso)); |
| } |
| } |
| SkASSERT(sampler && sampler->id()); |
| if (!fTextureUnitStates[unitIdx].fKnown || |
| fTextureUnitStates[unitIdx].fSamplerIDIfKnown != sampler->id()) { |
| GR_GL_CALL(fGpu->glInterface(), BindSampler(unitIdx, sampler->id())); |
| fTextureUnitStates[unitIdx].fSamplerIDIfKnown = sampler->id(); |
| fTextureUnitStates[unitIdx].fKnown = true; |
| } |
| } |
| |
| void unbindSampler(int unitIdx) { |
| if (!fTextureUnitStates[unitIdx].fKnown || |
| fTextureUnitStates[unitIdx].fSamplerIDIfKnown != 0) { |
| GR_GL_CALL(fGpu->glInterface(), BindSampler(unitIdx, 0)); |
| fTextureUnitStates[unitIdx].fSamplerIDIfKnown = 0; |
| fTextureUnitStates[unitIdx].fKnown = true; |
| } |
| } |
| |
| void invalidateBindings() { |
| std::fill_n(fTextureUnitStates.get(), fNumTextureUnits, UnitState{}); |
| } |
| |
| void abandon() { |
| fSamplers.foreach([](uint32_t* key, Sampler* sampler) { sampler->abandon(); }); |
| fTextureUnitStates.reset(); |
| fNumTextureUnits = 0; |
| } |
| |
| void release() { |
| if (!fNumTextureUnits) { |
| // We've already been abandoned. |
| return; |
| } |
| fSamplers.reset(); |
| // Deleting a bound sampler implicitly binds sampler 0. We just invalidate all of our |
| // knowledge. |
| std::fill_n(fTextureUnitStates.get(), fNumTextureUnits, UnitState{}); |
| } |
| |
| private: |
| class Sampler { |
| public: |
| Sampler() = default; |
| Sampler(const Sampler&) = delete; |
| |
| Sampler(Sampler&& that) { |
| fID = that.fID; |
| fInterface = that.fInterface; |
| that.fID = 0; |
| } |
| |
| Sampler(GrGLuint id, const GrGLInterface* interface) : fID(id), fInterface(interface) {} |
| |
| ~Sampler() { |
| if (fID) { |
| GR_GL_CALL(fInterface, DeleteSamplers(1, &fID)); |
| } |
| } |
| |
| GrGLuint id() const { return fID; } |
| |
| void abandon() { fID = 0; } |
| |
| private: |
| GrGLuint fID = 0; |
| const GrGLInterface* fInterface = nullptr; |
| }; |
| |
| struct UnitState { |
| bool fKnown = false; |
| GrGLuint fSamplerIDIfKnown = 0; |
| }; |
| |
| static constexpr int kMaxSamplers = 32; |
| |
| SkLRUCache<uint32_t, Sampler> fSamplers{kMaxSamplers}; |
| std::unique_ptr<UnitState[]> fTextureUnitStates; |
| GrGLGpu* fGpu; |
| int fNumTextureUnits; |
| }; |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| std::unique_ptr<GrGpu> GrGLGpu::Make(sk_sp<const GrGLInterface> interface, |
| const GrContextOptions& options, |
| GrDirectContext* direct) { |
| #if !defined(SK_DISABLE_LEGACY_GL_MAKE_NATIVE_INTERFACE) |
| if (!interface) { |
| interface = GrGLMakeNativeInterface(); |
| if (!interface) { |
| return nullptr; |
| } |
| } |
| #else |
| if (!interface) { |
| return nullptr; |
| } |
| #endif |
| #ifdef USE_NSIGHT |
| const_cast<GrContextOptions&>(options).fSuppressPathRendering = true; |
| #endif |
| auto glContext = GrGLContext::Make(std::move(interface), options); |
| if (!glContext) { |
| return nullptr; |
| } |
| return std::unique_ptr<GrGpu>(new GrGLGpu(std::move(glContext), direct)); |
| } |
| |
| GrGLGpu::GrGLGpu(std::unique_ptr<GrGLContext> ctx, GrDirectContext* dContext) |
| : GrGpu(dContext) |
| , fGLContext(std::move(ctx)) |
| , fProgramCache(new ProgramCache(dContext->priv().options().fRuntimeProgramCacheSize)) |
| , fHWProgramID(0) |
| , fTempSrcFBOID(0) |
| , fTempDstFBOID(0) |
| , fStencilClearFBOID(0) |
| , fFinishCallbacks(this) { |
| SkASSERT(fGLContext); |
| // Clear errors so we don't get confused whether we caused an error. |
| this->clearErrorsAndCheckForOOM(); |
| // Toss out any pre-existing OOM that was hanging around before we got started. |
| this->checkAndResetOOMed(); |
| |
| this->initCaps(sk_ref_sp(fGLContext->caps())); |
| |
| fHWTextureUnitBindings.reset(this->numTextureUnits()); |
| |
| this->hwBufferState(GrGpuBufferType::kVertex)->fGLTarget = GR_GL_ARRAY_BUFFER; |
| this->hwBufferState(GrGpuBufferType::kIndex)->fGLTarget = GR_GL_ELEMENT_ARRAY_BUFFER; |
| this->hwBufferState(GrGpuBufferType::kDrawIndirect)->fGLTarget = GR_GL_DRAW_INDIRECT_BUFFER; |
| if (GrGLCaps::TransferBufferType::kChromium == this->glCaps().transferBufferType()) { |
| this->hwBufferState(GrGpuBufferType::kXferCpuToGpu)->fGLTarget = |
| GR_GL_PIXEL_UNPACK_TRANSFER_BUFFER_CHROMIUM; |
| this->hwBufferState(GrGpuBufferType::kXferGpuToCpu)->fGLTarget = |
| GR_GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM; |
| } else { |
| this->hwBufferState(GrGpuBufferType::kXferCpuToGpu)->fGLTarget = GR_GL_PIXEL_UNPACK_BUFFER; |
| this->hwBufferState(GrGpuBufferType::kXferGpuToCpu)->fGLTarget = GR_GL_PIXEL_PACK_BUFFER; |
| } |
| for (int i = 0; i < kGrGpuBufferTypeCount; ++i) { |
| fHWBufferState[i].invalidate(); |
| } |
| |
| if (this->glCaps().useSamplerObjects()) { |
| fSamplerObjectCache = std::make_unique<SamplerObjectCache>(this); |
| } |
| } |
| |
| GrGLGpu::~GrGLGpu() { |
| // Ensure any GrGpuResource objects get deleted first, since they may require a working GrGLGpu |
| // to release the resources held by the objects themselves. |
| fCopyProgramArrayBuffer.reset(); |
| fMipmapProgramArrayBuffer.reset(); |
| if (fProgramCache) { |
| fProgramCache->reset(); |
| } |
| |
| fHWProgram.reset(); |
| if (fHWProgramID) { |
| // detach the current program so there is no confusion on OpenGL's part |
| // that we want it to be deleted |
| GL_CALL(UseProgram(0)); |
| } |
| |
| if (fTempSrcFBOID) { |
| this->deleteFramebuffer(fTempSrcFBOID); |
| } |
| if (fTempDstFBOID) { |
| this->deleteFramebuffer(fTempDstFBOID); |
| } |
| if (fStencilClearFBOID) { |
| this->deleteFramebuffer(fStencilClearFBOID); |
| } |
| |
| for (size_t i = 0; i < std::size(fCopyPrograms); ++i) { |
| if (0 != fCopyPrograms[i].fProgram) { |
| GL_CALL(DeleteProgram(fCopyPrograms[i].fProgram)); |
| } |
| } |
| |
| for (size_t i = 0; i < std::size(fMipmapPrograms); ++i) { |
| if (0 != fMipmapPrograms[i].fProgram) { |
| GL_CALL(DeleteProgram(fMipmapPrograms[i].fProgram)); |
| } |
| } |
| |
| fSamplerObjectCache.reset(); |
| |
| fFinishCallbacks.callAll(true); |
| } |
| |
| void GrGLGpu::disconnect(DisconnectType type) { |
| INHERITED::disconnect(type); |
| if (DisconnectType::kCleanup == type) { |
| if (fHWProgramID) { |
| GL_CALL(UseProgram(0)); |
| } |
| if (fTempSrcFBOID) { |
| this->deleteFramebuffer(fTempSrcFBOID); |
| } |
| if (fTempDstFBOID) { |
| this->deleteFramebuffer(fTempDstFBOID); |
| } |
| if (fStencilClearFBOID) { |
| this->deleteFramebuffer(fStencilClearFBOID); |
| } |
| for (size_t i = 0; i < std::size(fCopyPrograms); ++i) { |
| if (fCopyPrograms[i].fProgram) { |
| GL_CALL(DeleteProgram(fCopyPrograms[i].fProgram)); |
| } |
| } |
| for (size_t i = 0; i < std::size(fMipmapPrograms); ++i) { |
| if (fMipmapPrograms[i].fProgram) { |
| GL_CALL(DeleteProgram(fMipmapPrograms[i].fProgram)); |
| } |
| } |
| |
| if (fSamplerObjectCache) { |
| fSamplerObjectCache->release(); |
| } |
| } else { |
| if (fProgramCache) { |
| fProgramCache->abandon(); |
| } |
| if (fSamplerObjectCache) { |
| fSamplerObjectCache->abandon(); |
| } |
| } |
| |
| fHWProgram.reset(); |
| fProgramCache->reset(); |
| fProgramCache.reset(); |
| |
| fHWProgramID = 0; |
| fTempSrcFBOID = 0; |
| fTempDstFBOID = 0; |
| fStencilClearFBOID = 0; |
| fCopyProgramArrayBuffer.reset(); |
| for (size_t i = 0; i < std::size(fCopyPrograms); ++i) { |
| fCopyPrograms[i].fProgram = 0; |
| } |
| fMipmapProgramArrayBuffer.reset(); |
| for (size_t i = 0; i < std::size(fMipmapPrograms); ++i) { |
| fMipmapPrograms[i].fProgram = 0; |
| } |
| |
| fFinishCallbacks.callAll(/* doDelete */ DisconnectType::kCleanup == type); |
| } |
| |
| GrThreadSafePipelineBuilder* GrGLGpu::pipelineBuilder() { |
| return fProgramCache.get(); |
| } |
| |
| sk_sp<GrThreadSafePipelineBuilder> GrGLGpu::refPipelineBuilder() { |
| return fProgramCache; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| void GrGLGpu::onResetContext(uint32_t resetBits) { |
| if (resetBits & kMisc_GrGLBackendState) { |
| // we don't use the zb at all |
| GL_CALL(Disable(GR_GL_DEPTH_TEST)); |
| GL_CALL(DepthMask(GR_GL_FALSE)); |
| |
| // We don't use face culling. |
| GL_CALL(Disable(GR_GL_CULL_FACE)); |
| // We do use separate stencil. Our algorithms don't care which face is front vs. back so |
| // just set this to the default for self-consistency. |
| GL_CALL(FrontFace(GR_GL_CCW)); |
| |
| this->hwBufferState(GrGpuBufferType::kXferCpuToGpu)->invalidate(); |
| this->hwBufferState(GrGpuBufferType::kXferGpuToCpu)->invalidate(); |
| |
| if (GR_IS_GR_GL(this->glStandard())) { |
| #ifndef USE_NSIGHT |
| // Desktop-only state that we never change |
| if (!this->glCaps().isCoreProfile()) { |
| GL_CALL(Disable(GR_GL_POINT_SMOOTH)); |
| GL_CALL(Disable(GR_GL_LINE_SMOOTH)); |
| GL_CALL(Disable(GR_GL_POLYGON_SMOOTH)); |
| GL_CALL(Disable(GR_GL_POLYGON_STIPPLE)); |
| GL_CALL(Disable(GR_GL_COLOR_LOGIC_OP)); |
| GL_CALL(Disable(GR_GL_INDEX_LOGIC_OP)); |
| } |
| // The windows NVIDIA driver has GL_ARB_imaging in the extension string when using a |
| // core profile. This seems like a bug since the core spec removes any mention of |
| // GL_ARB_imaging. |
| if (this->glCaps().imagingSupport() && !this->glCaps().isCoreProfile()) { |
| GL_CALL(Disable(GR_GL_COLOR_TABLE)); |
| } |
| GL_CALL(Disable(GR_GL_POLYGON_OFFSET_FILL)); |
| |
| fHWWireframeEnabled = kUnknown_TriState; |
| #endif |
| // Since ES doesn't support glPointSize at all we always use the VS to |
| // set the point size |
| GL_CALL(Enable(GR_GL_VERTEX_PROGRAM_POINT_SIZE)); |
| |
| } |
| |
| if (GR_IS_GR_GL_ES(this->glStandard()) && |
| this->glCaps().fbFetchRequiresEnablePerSample()) { |
| // The arm extension requires specifically enabling MSAA fetching per sample. |
| // On some devices this may have a perf hit. Also multiple render targets are disabled |
| GL_CALL(Enable(GR_GL_FETCH_PER_SAMPLE)); |
| } |
| fHWWriteToColor = kUnknown_TriState; |
| // we only ever use lines in hairline mode |
| GL_CALL(LineWidth(1)); |
| GL_CALL(Disable(GR_GL_DITHER)); |
| |
| fHWClearColor[0] = fHWClearColor[1] = fHWClearColor[2] = fHWClearColor[3] = SK_FloatNaN; |
| } |
| |
| if (resetBits & kMSAAEnable_GrGLBackendState) { |
| if (this->glCaps().clientCanDisableMultisample()) { |
| // Restore GL_MULTISAMPLE to its initial state. It being enabled has no effect on draws |
| // to non-MSAA targets. |
| GL_CALL(Enable(GR_GL_MULTISAMPLE)); |
| } |
| fHWConservativeRasterEnabled = kUnknown_TriState; |
| } |
| |
| fHWActiveTextureUnitIdx = -1; // invalid |
| fLastPrimitiveType = static_cast<GrPrimitiveType>(-1); |
| |
| if (resetBits & kTextureBinding_GrGLBackendState) { |
| for (int s = 0; s < this->numTextureUnits(); ++s) { |
| fHWTextureUnitBindings[s].invalidateAllTargets(false); |
| } |
| if (fSamplerObjectCache) { |
| fSamplerObjectCache->invalidateBindings(); |
| } |
| } |
| |
| if (resetBits & kBlend_GrGLBackendState) { |
| fHWBlendState.invalidate(); |
| } |
| |
| if (resetBits & kView_GrGLBackendState) { |
| fHWScissorSettings.invalidate(); |
| fHWWindowRectsState.invalidate(); |
| fHWViewport.invalidate(); |
| } |
| |
| if (resetBits & kStencil_GrGLBackendState) { |
| fHWStencilSettings.invalidate(); |
| fHWStencilTestEnabled = kUnknown_TriState; |
| } |
| |
| // Vertex |
| if (resetBits & kVertex_GrGLBackendState) { |
| fHWVertexArrayState.invalidate(); |
| this->hwBufferState(GrGpuBufferType::kVertex)->invalidate(); |
| this->hwBufferState(GrGpuBufferType::kIndex)->invalidate(); |
| this->hwBufferState(GrGpuBufferType::kDrawIndirect)->invalidate(); |
| } |
| |
| if (resetBits & kRenderTarget_GrGLBackendState) { |
| fHWBoundRenderTargetUniqueID.makeInvalid(); |
| fHWSRGBFramebuffer = kUnknown_TriState; |
| fBoundDrawFramebuffer = 0; |
| } |
| |
| // we assume these values |
| if (resetBits & kPixelStore_GrGLBackendState) { |
| if (this->caps()->writePixelsRowBytesSupport() || |
| this->caps()->transferPixelsToRowBytesSupport()) { |
| GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, 0)); |
| } |
| if (this->glCaps().readPixelsRowBytesSupport()) { |
| GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH, 0)); |
| } |
| if (this->glCaps().packFlipYSupport()) { |
| GL_CALL(PixelStorei(GR_GL_PACK_REVERSE_ROW_ORDER, GR_GL_FALSE)); |
| } |
| } |
| |
| if (resetBits & kProgram_GrGLBackendState) { |
| fHWProgramID = 0; |
| fHWProgram.reset(); |
| } |
| ++fResetTimestampForTextureParameters; |
| } |
| |
| static bool check_backend_texture(const GrBackendTexture& backendTex, |
| const GrGLCaps& caps, |
| GrGLTexture::Desc* desc, |
| bool skipRectTexSupportCheck = false) { |
| GrGLTextureInfo info; |
| if (!GrBackendTextures::GetGLTextureInfo(backendTex, &info) || !info.fID || !info.fFormat) { |
| return false; |
| } |
| |
| desc->fSize = {backendTex.width(), backendTex.height()}; |
| desc->fTarget = info.fTarget; |
| desc->fID = info.fID; |
| desc->fFormat = GrGLFormatFromGLEnum(info.fFormat); |
| desc->fIsProtected = info.fProtected; |
| |
| if (desc->fFormat == GrGLFormat::kUnknown) { |
| return false; |
| } |
| if (GR_GL_TEXTURE_EXTERNAL == desc->fTarget) { |
| if (!caps.shaderCaps()->fExternalTextureSupport) { |
| return false; |
| } |
| } else if (GR_GL_TEXTURE_RECTANGLE == desc->fTarget) { |
| if (!caps.rectangleTextureSupport() && !skipRectTexSupportCheck) { |
| return false; |
| } |
| } else if (GR_GL_TEXTURE_2D != desc->fTarget) { |
| return false; |
| } |
| if (desc->fIsProtected == skgpu::Protected::kYes && !caps.supportsProtectedContent()) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static sk_sp<GrGLTextureParameters> get_gl_texture_params(const GrBackendTexture& backendTex) { |
| const GrBackendTextureData* btd = GrBackendSurfacePriv::GetBackendData(backendTex); |
| auto glTextureData = static_cast<const GrGLBackendTextureData*>(btd); |
| SkASSERT(glTextureData); |
| return glTextureData->info().refParameters(); |
| } |
| |
| sk_sp<GrTexture> GrGLGpu::onWrapBackendTexture(const GrBackendTexture& backendTex, |
| GrWrapOwnership ownership, |
| GrWrapCacheable cacheable, |
| GrIOType ioType) { |
| GrGLTexture::Desc desc; |
| if (!check_backend_texture(backendTex, this->glCaps(), &desc)) { |
| return nullptr; |
| } |
| |
| if (kBorrow_GrWrapOwnership == ownership) { |
| desc.fOwnership = GrBackendObjectOwnership::kBorrowed; |
| } else { |
| desc.fOwnership = GrBackendObjectOwnership::kOwned; |
| } |
| |
| GrMipmapStatus mipmapStatus = backendTex.hasMipmaps() ? GrMipmapStatus::kValid |
| : GrMipmapStatus::kNotAllocated; |
| |
| auto texture = GrGLTexture::MakeWrapped(this, |
| mipmapStatus, |
| desc, |
| get_gl_texture_params(backendTex), |
| cacheable, |
| ioType, |
| backendTex.getLabel()); |
| if (this->glCaps().isFormatRenderable(backendTex.getBackendFormat(), 1)) { |
| // Pessimistically assume this external texture may have been bound to a FBO. |
| texture->baseLevelWasBoundToFBO(); |
| } |
| return texture; |
| } |
| |
| static bool check_compressed_backend_texture(const GrBackendTexture& backendTex, |
| const GrGLCaps& caps, GrGLTexture::Desc* desc, |
| bool skipRectTexSupportCheck = false) { |
| GrGLTextureInfo info; |
| if (!GrBackendTextures::GetGLTextureInfo(backendTex, &info) || !info.fID || !info.fFormat) { |
| return false; |
| } |
| |
| desc->fSize = {backendTex.width(), backendTex.height()}; |
| desc->fTarget = info.fTarget; |
| desc->fID = info.fID; |
| desc->fFormat = GrGLFormatFromGLEnum(info.fFormat); |
| desc->fIsProtected = info.fProtected; |
| |
| if (desc->fFormat == GrGLFormat::kUnknown) { |
| return false; |
| } |
| |
| if (GR_GL_TEXTURE_2D != desc->fTarget) { |
| return false; |
| } |
| if (desc->fIsProtected == skgpu::Protected::kYes && !caps.supportsProtectedContent()) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| sk_sp<GrTexture> GrGLGpu::onWrapCompressedBackendTexture(const GrBackendTexture& backendTex, |
| GrWrapOwnership ownership, |
| GrWrapCacheable cacheable) { |
| GrGLTexture::Desc desc; |
| if (!check_compressed_backend_texture(backendTex, this->glCaps(), &desc)) { |
| return nullptr; |
| } |
| |
| if (kBorrow_GrWrapOwnership == ownership) { |
| desc.fOwnership = GrBackendObjectOwnership::kBorrowed; |
| } else { |
| desc.fOwnership = GrBackendObjectOwnership::kOwned; |
| } |
| |
| GrMipmapStatus mipmapStatus = backendTex.hasMipmaps() ? GrMipmapStatus::kValid |
| : GrMipmapStatus::kNotAllocated; |
| |
| return GrGLTexture::MakeWrapped(this, |
| mipmapStatus, |
| desc, |
| get_gl_texture_params(backendTex), |
| cacheable, |
| kRead_GrIOType, |
| backendTex.getLabel()); |
| } |
| |
| sk_sp<GrTexture> GrGLGpu::onWrapRenderableBackendTexture(const GrBackendTexture& backendTex, |
| int sampleCnt, |
| GrWrapOwnership ownership, |
| GrWrapCacheable cacheable) { |
| const GrGLCaps& caps = this->glCaps(); |
| |
| GrGLTexture::Desc desc; |
| if (!check_backend_texture(backendTex, this->glCaps(), &desc)) { |
| return nullptr; |
| } |
| SkASSERT(caps.isFormatRenderable(desc.fFormat, sampleCnt)); |
| SkASSERT(caps.isFormatTexturable(desc.fFormat)); |
| |
| // We don't support rendering to a EXTERNAL texture. |
| if (GR_GL_TEXTURE_EXTERNAL == desc.fTarget) { |
| return nullptr; |
| } |
| |
| if (kBorrow_GrWrapOwnership == ownership) { |
| desc.fOwnership = GrBackendObjectOwnership::kBorrowed; |
| } else { |
| desc.fOwnership = GrBackendObjectOwnership::kOwned; |
| } |
| |
| |
| sampleCnt = caps.getRenderTargetSampleCount(sampleCnt, desc.fFormat); |
| SkASSERT(sampleCnt); |
| |
| GrGLRenderTarget::IDs rtIDs; |
| if (!this->createRenderTargetObjects(desc, sampleCnt, &rtIDs)) { |
| return nullptr; |
| } |
| |
| GrMipmapStatus mipmapStatus = backendTex.hasMipmaps() ? GrMipmapStatus::kDirty |
| : GrMipmapStatus::kNotAllocated; |
| |
| sk_sp<GrGLTextureRenderTarget> texRT( |
| GrGLTextureRenderTarget::MakeWrapped(this, |
| sampleCnt, |
| desc, |
| get_gl_texture_params(backendTex), |
| rtIDs, |
| cacheable, |
| mipmapStatus, |
| backendTex.getLabel())); |
| texRT->baseLevelWasBoundToFBO(); |
| return texRT; |
| } |
| |
| sk_sp<GrRenderTarget> GrGLGpu::onWrapBackendRenderTarget(const GrBackendRenderTarget& backendRT) { |
| GrGLFramebufferInfo info; |
| if (!GrBackendRenderTargets::GetGLFramebufferInfo(backendRT, &info)) { |
| return nullptr; |
| } |
| |
| if (backendRT.isProtected() && !this->glCaps().supportsProtectedContent()) { |
| return nullptr; |
| } |
| |
| const auto format = GrBackendFormats::AsGLFormat(backendRT.getBackendFormat()); |
| if (!this->glCaps().isFormatRenderable(format, backendRT.sampleCnt())) { |
| return nullptr; |
| } |
| |
| int sampleCount = this->glCaps().getRenderTargetSampleCount(backendRT.sampleCnt(), format); |
| |
| GrGLRenderTarget::IDs rtIDs; |
| if (sampleCount <= 1) { |
| rtIDs.fSingleSampleFBOID = info.fFBOID; |
| rtIDs.fMultisampleFBOID = GrGLRenderTarget::kUnresolvableFBOID; |
| } else { |
| rtIDs.fSingleSampleFBOID = GrGLRenderTarget::kUnresolvableFBOID; |
| rtIDs.fMultisampleFBOID = info.fFBOID; |
| } |
| rtIDs.fMSColorRenderbufferID = 0; |
| rtIDs.fRTFBOOwnership = GrBackendObjectOwnership::kBorrowed; |
| rtIDs.fTotalMemorySamplesPerPixel = sampleCount; |
| |
| return GrGLRenderTarget::MakeWrapped(this, |
| backendRT.dimensions(), |
| format, |
| sampleCount, |
| rtIDs, |
| backendRT.stencilBits(), |
| skgpu::Protected(backendRT.isProtected()), |
| /*label=*/"GLGpu_WrapBackendRenderTarget"); |
| } |
| |
| static bool check_write_and_transfer_input(GrGLTexture* glTex) { |
| if (!glTex) { |
| return false; |
| } |
| |
| // Write or transfer of pixels is not implemented for TEXTURE_EXTERNAL textures |
| if (GR_GL_TEXTURE_EXTERNAL == glTex->target()) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool GrGLGpu::onWritePixels(GrSurface* surface, |
| SkIRect rect, |
| GrColorType surfaceColorType, |
| GrColorType srcColorType, |
| const GrMipLevel texels[], |
| int mipLevelCount, |
| bool prepForTexSampling) { |
| auto glTex = static_cast<GrGLTexture*>(surface->asTexture()); |
| |
| if (!check_write_and_transfer_input(glTex)) { |
| return false; |
| } |
| |
| this->bindTextureToScratchUnit(glTex->target(), glTex->textureID()); |
| |
| // If we have mips make sure the base/max levels cover the full range so that the uploads go to |
| // the right levels. We've found some Radeons require this. |
| if (mipLevelCount && this->glCaps().mipmapLevelControlSupport()) { |
| auto params = glTex->parameters(); |
| GrGLTextureParameters::NonsamplerState nonsamplerState = params->nonsamplerState(); |
| int maxLevel = glTex->maxMipmapLevel(); |
| if (params->nonsamplerState().fBaseMipMapLevel != 0) { |
| GL_CALL(TexParameteri(glTex->target(), GR_GL_TEXTURE_BASE_LEVEL, 0)); |
| nonsamplerState.fBaseMipMapLevel = 0; |
| } |
| if (params->nonsamplerState().fMaxMipmapLevel != maxLevel) { |
| GL_CALL(TexParameteri(glTex->target(), GR_GL_TEXTURE_MAX_LEVEL, maxLevel)); |
| nonsamplerState.fBaseMipMapLevel = maxLevel; |
| } |
| params->set(nullptr, nonsamplerState, fResetTimestampForTextureParameters); |
| } |
| |
| if (this->glCaps().flushBeforeWritePixels()) { |
| GL_CALL(Flush()); |
| } |
| |
| SkASSERT(!GrGLFormatIsCompressed(glTex->format())); |
| return this->uploadColorTypeTexData(glTex->format(), |
| surfaceColorType, |
| glTex->dimensions(), |
| glTex->target(), |
| rect, |
| srcColorType, |
| texels, |
| mipLevelCount); |
| } |
| |
| bool GrGLGpu::onTransferFromBufferToBuffer(sk_sp<GrGpuBuffer> src, |
| size_t srcOffset, |
| sk_sp<GrGpuBuffer> dst, |
| size_t dstOffset, |
| size_t size) { |
| SkASSERT(!src->isMapped()); |
| SkASSERT(!dst->isMapped()); |
| |
| auto glSrc = static_cast<const GrGLBuffer*>(src.get()); |
| auto glDst = static_cast<const GrGLBuffer*>(dst.get()); |
| |
| // If we refactored bindBuffer() to use something other than GrGpuBufferType to indicate the |
| // binding target then we could use the COPY_READ and COPY_WRITE targets here. But |
| // CopyBufferSubData is documented to work with all the targets so it's not clear it's worth it. |
| this->bindBuffer(GrGpuBufferType::kXferCpuToGpu, glSrc); |
| this->bindBuffer(GrGpuBufferType::kXferGpuToCpu, glDst); |
| |
| GL_CALL(CopyBufferSubData(GR_GL_PIXEL_UNPACK_BUFFER, |
| GR_GL_PIXEL_PACK_BUFFER, |
| srcOffset, |
| dstOffset, |
| size)); |
| return true; |
| } |
| |
| bool GrGLGpu::onTransferPixelsTo(GrTexture* texture, |
| SkIRect rect, |
| GrColorType textureColorType, |
| GrColorType bufferColorType, |
| sk_sp<GrGpuBuffer> transferBuffer, |
| size_t offset, |
| size_t rowBytes) { |
| GrGLTexture* glTex = static_cast<GrGLTexture*>(texture); |
| |
| // Can't transfer compressed data |
| SkASSERT(!GrGLFormatIsCompressed(glTex->format())); |
| |
| if (!check_write_and_transfer_input(glTex)) { |
| return false; |
| } |
| |
| static_assert(sizeof(int) == sizeof(int32_t), ""); |
| |
| this->bindTextureToScratchUnit(glTex->target(), glTex->textureID()); |
| |
| SkASSERT(!transferBuffer->isMapped()); |
| SkASSERT(!transferBuffer->isCpuBuffer()); |
| const GrGLBuffer* glBuffer = static_cast<const GrGLBuffer*>(transferBuffer.get()); |
| this->bindBuffer(GrGpuBufferType::kXferCpuToGpu, glBuffer); |
| |
| SkASSERT(SkIRect::MakeSize(texture->dimensions()).contains(rect)); |
| |
| size_t bpp = GrColorTypeBytesPerPixel(bufferColorType); |
| const size_t trimRowBytes = rect.width() * bpp; |
| const void* pixels = (void*)offset; |
| |
| SkASSERT(glBuffer->size() >= offset + rowBytes*(rect.height() - 1) + trimRowBytes); |
| |
| bool restoreGLRowLength = false; |
| if (trimRowBytes != rowBytes) { |
| // we should have checked for this support already |
| SkASSERT(this->glCaps().transferPixelsToRowBytesSupport()); |
| GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, rowBytes / bpp)); |
| restoreGLRowLength = true; |
| } |
| |
| GrGLFormat textureFormat = glTex->format(); |
| // External format and type come from the upload data. |
| GrGLenum externalFormat = 0; |
| GrGLenum externalType = 0; |
| this->glCaps().getTexSubImageExternalFormatAndType( |
| textureFormat, textureColorType, bufferColorType, &externalFormat, &externalType); |
| if (!externalFormat || !externalType) { |
| return false; |
| } |
| |
| GL_CALL(PixelStorei(GR_GL_UNPACK_ALIGNMENT, 1)); |
| GL_CALL(TexSubImage2D(glTex->target(), |
| 0, |
| rect.left(), |
| rect.top(), |
| rect.width(), |
| rect.height(), |
| externalFormat, |
| externalType, |
| pixels)); |
| |
| if (restoreGLRowLength) { |
| GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, 0)); |
| } |
| |
| return true; |
| } |
| |
| bool GrGLGpu::onTransferPixelsFrom(GrSurface* surface, |
| SkIRect rect, |
| GrColorType surfaceColorType, |
| GrColorType dstColorType, |
| sk_sp<GrGpuBuffer> transferBuffer, |
| size_t offset) { |
| auto* glBuffer = static_cast<GrGLBuffer*>(transferBuffer.get()); |
| SkASSERT(glBuffer->size() >= offset + (rect.width() * |
| rect.height()* |
| GrColorTypeBytesPerPixel(dstColorType))); |
| |
| this->bindBuffer(GrGpuBufferType::kXferGpuToCpu, glBuffer); |
| |
| auto offsetAsPtr = reinterpret_cast<void*>(offset); |
| return this->readOrTransferPixelsFrom(surface, |
| rect, |
| surfaceColorType, |
| dstColorType, |
| offsetAsPtr, |
| rect.width()); |
| } |
| |
| void GrGLGpu::unbindXferBuffer(GrGpuBufferType type) { |
| if (this->glCaps().transferBufferType() != GrGLCaps::TransferBufferType::kARB_PBO && |
| this->glCaps().transferBufferType() != GrGLCaps::TransferBufferType::kNV_PBO) { |
| return; |
| } |
| SkASSERT(type == GrGpuBufferType::kXferCpuToGpu || type == GrGpuBufferType::kXferGpuToCpu); |
| auto* xferBufferState = this->hwBufferState(type); |
| if (!xferBufferState->fBufferZeroKnownBound) { |
| GL_CALL(BindBuffer(xferBufferState->fGLTarget, 0)); |
| xferBufferState->fBoundBufferUniqueID.makeInvalid(); |
| xferBufferState->fBufferZeroKnownBound = true; |
| } |
| } |
| |
| bool GrGLGpu::uploadColorTypeTexData(GrGLFormat textureFormat, |
| GrColorType textureColorType, |
| SkISize texDims, |
| GrGLenum target, |
| SkIRect dstRect, |
| GrColorType srcColorType, |
| const GrMipLevel texels[], |
| int mipLevelCount) { |
| // If we're uploading compressed data then we should be using uploadCompressedTexData |
| SkASSERT(!GrGLFormatIsCompressed(textureFormat)); |
| |
| SkASSERT(this->glCaps().isFormatTexturable(textureFormat)); |
| |
| size_t bpp = GrColorTypeBytesPerPixel(srcColorType); |
| |
| // External format and type come from the upload data. |
| GrGLenum externalFormat; |
| GrGLenum externalType; |
| this->glCaps().getTexSubImageExternalFormatAndType( |
| textureFormat, textureColorType, srcColorType, &externalFormat, &externalType); |
| if (!externalFormat || !externalType) { |
| return false; |
| } |
| this->uploadTexData(texDims, target, dstRect, externalFormat, externalType, bpp, texels, |
| mipLevelCount); |
| return true; |
| } |
| |
| bool GrGLGpu::uploadColorToTex(GrGLFormat textureFormat, |
| SkISize texDims, |
| GrGLenum target, |
| std::array<float, 4> color, |
| uint32_t levelMask) { |
| GrColorType colorType; |
| GrGLenum externalFormat, externalType; |
| this->glCaps().getTexSubImageDefaultFormatTypeAndColorType(textureFormat, &externalFormat, |
| &externalType, &colorType); |
| if (colorType == GrColorType::kUnknown) { |
| return false; |
| } |
| |
| std::unique_ptr<char[]> pixelStorage; |
| size_t bpp = 0; |
| int numLevels = SkMipmap::ComputeLevelCount(texDims) + 1; |
| STArray<16, GrMipLevel> levels; |
| levels.resize(numLevels); |
| SkISize levelDims = texDims; |
| for (int i = 0; i < numLevels; ++i, levelDims = {std::max(levelDims.width() >> 1, 1), |
| std::max(levelDims.height() >> 1, 1)}) { |
| if (levelMask & (1 << i)) { |
| if (!pixelStorage) { |
| // Make one tight image at the first size and reuse it for smaller levels. |
| GrImageInfo ii(colorType, kUnpremul_SkAlphaType, nullptr, levelDims); |
| size_t rb = ii.minRowBytes(); |
| pixelStorage.reset(new char[rb * levelDims.height()]); |
| if (!GrClearImage(ii, pixelStorage.get(), ii.minRowBytes(), color)) { |
| return false; |
| } |
| bpp = ii.bpp(); |
| } |
| levels[i] = {pixelStorage.get(), levelDims.width()*bpp, nullptr}; |
| } |
| } |
| this->uploadTexData(texDims, target, SkIRect::MakeSize(texDims), externalFormat, externalType, |
| bpp, levels.begin(), levels.size()); |
| return true; |
| } |
| |
| void GrGLGpu::uploadTexData(SkISize texDims, |
| GrGLenum target, |
| SkIRect dstRect, |
| GrGLenum externalFormat, |
| GrGLenum externalType, |
| size_t bpp, |
| const GrMipLevel texels[], |
| int mipLevelCount) { |
| SkASSERT(!texDims.isEmpty()); |
| SkASSERT(!dstRect.isEmpty()); |
| SkASSERT(SkIRect::MakeSize(texDims).contains(dstRect)); |
| SkASSERT(mipLevelCount > 0 && mipLevelCount <= SkMipmap::ComputeLevelCount(texDims) + 1); |
| SkASSERT(mipLevelCount == 1 || dstRect == SkIRect::MakeSize(texDims)); |
| |
| const GrGLCaps& caps = this->glCaps(); |
| |
| bool restoreGLRowLength = false; |
| |
| this->unbindXferBuffer(GrGpuBufferType::kXferCpuToGpu); |
| GL_CALL(PixelStorei(GR_GL_UNPACK_ALIGNMENT, 1)); |
| |
| SkISize dims = dstRect.size(); |
| for (int level = 0; level < mipLevelCount; ++level, dims = {std::max(dims.width() >> 1, 1), |
| std::max(dims.height() >> 1, 1)}) { |
| if (!texels[level].fPixels) { |
| continue; |
| } |
| const size_t trimRowBytes = dims.width() * bpp; |
| const size_t rowBytes = texels[level].fRowBytes; |
| |
| if (caps.writePixelsRowBytesSupport() && (rowBytes != trimRowBytes || restoreGLRowLength)) { |
| GrGLint rowLength = static_cast<GrGLint>(rowBytes / bpp); |
| GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, rowLength)); |
| restoreGLRowLength = true; |
| } else { |
| SkASSERT(rowBytes == trimRowBytes); |
| } |
| |
| GL_CALL(TexSubImage2D(target, level, dstRect.x(), dstRect.y(), dims.width(), dims.height(), |
| externalFormat, externalType, texels[level].fPixels)); |
| } |
| if (restoreGLRowLength) { |
| SkASSERT(caps.writePixelsRowBytesSupport()); |
| GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, 0)); |
| } |
| } |
| |
| bool GrGLGpu::uploadCompressedTexData(SkTextureCompressionType compressionType, |
| GrGLFormat format, |
| SkISize dimensions, |
| skgpu::Mipmapped mipmapped, |
| GrGLenum target, |
| const void* data, |
| size_t dataSize) { |
| SkASSERT(format != GrGLFormat::kUnknown); |
| const GrGLCaps& caps = this->glCaps(); |
| |
| // We only need the internal format for compressed 2D textures. |
| GrGLenum internalFormat = caps.getTexImageOrStorageInternalFormat(format); |
| if (!internalFormat) { |
| return false; |
| } |
| |
| SkASSERT(compressionType != SkTextureCompressionType::kNone); |
| |
| bool useTexStorage = caps.formatSupportsTexStorage(format); |
| |
| int numMipLevels = 1; |
| if (mipmapped == skgpu::Mipmapped::kYes) { |
| numMipLevels = SkMipmap::ComputeLevelCount(dimensions.width(), dimensions.height())+1; |
| } |
| |
| this->unbindXferBuffer(GrGpuBufferType::kXferCpuToGpu); |
| |
| // TODO: Make sure that the width and height that we pass to OpenGL |
| // is a multiple of the block size. |
| |
| if (useTexStorage) { |
| // We never resize or change formats of textures. |
| GrGLenum error = GL_ALLOC_CALL(TexStorage2D(target, numMipLevels, internalFormat, |
| dimensions.width(), dimensions.height())); |
| if (error != GR_GL_NO_ERROR) { |
| return false; |
| } |
| |
| size_t offset = 0; |
| for (int level = 0; level < numMipLevels; ++level) { |
| |
| size_t levelDataSize = SkCompressedDataSize(compressionType, dimensions, |
| nullptr, false); |
| |
| error = GL_ALLOC_CALL(CompressedTexSubImage2D(target, |
| level, |
| 0, // left |
| 0, // top |
| dimensions.width(), |
| dimensions.height(), |
| internalFormat, |
| SkToInt(levelDataSize), |
| &((const char*)data)[offset])); |
| |
| if (error != GR_GL_NO_ERROR) { |
| return false; |
| } |
| |
| offset += levelDataSize; |
| dimensions = {std::max(1, dimensions.width()/2), std::max(1, dimensions.height()/2)}; |
| } |
| } else { |
| size_t offset = 0; |
| |
| for (int level = 0; level < numMipLevels; ++level) { |
| size_t levelDataSize = SkCompressedDataSize(compressionType, dimensions, |
| nullptr, false); |
| |
| const char* rawLevelData = &((const char*)data)[offset]; |
| GrGLenum error = GL_ALLOC_CALL(CompressedTexImage2D(target, |
| level, |
| internalFormat, |
| dimensions.width(), |
| dimensions.height(), |
| 0, // border |
| SkToInt(levelDataSize), |
| rawLevelData)); |
| |
| if (error != GR_GL_NO_ERROR) { |
| return false; |
| } |
| |
| offset += levelDataSize; |
| dimensions = {std::max(1, dimensions.width()/2), std::max(1, dimensions.height()/2)}; |
| } |
| } |
| return true; |
| } |
| |
| bool GrGLGpu::renderbufferStorageMSAA(const GrGLContext& ctx, int sampleCount, GrGLenum format, |
| int width, int height) { |
| SkASSERT(GrGLCaps::kNone_MSFBOType != ctx.caps()->msFBOType()); |
| GrGLenum error; |
| switch (ctx.caps()->msFBOType()) { |
| case GrGLCaps::kStandard_MSFBOType: |
| error = GL_ALLOC_CALL(RenderbufferStorageMultisample(GR_GL_RENDERBUFFER, sampleCount, |
| format, width, height)); |
| break; |
| case GrGLCaps::kES_Apple_MSFBOType: |
| error = GL_ALLOC_CALL(RenderbufferStorageMultisampleES2APPLE( |
| GR_GL_RENDERBUFFER, sampleCount, format, width, height)); |
| break; |
| case GrGLCaps::kES_EXT_MsToTexture_MSFBOType: |
| case GrGLCaps::kES_IMG_MsToTexture_MSFBOType: |
| error = GL_ALLOC_CALL(RenderbufferStorageMultisampleES2EXT( |
| GR_GL_RENDERBUFFER, sampleCount, format, width, height)); |
| break; |
| case GrGLCaps::kNone_MSFBOType: |
| SkUNREACHABLE; |
| } |
| return error == GR_GL_NO_ERROR; |
| } |
| |
| bool GrGLGpu::createRenderTargetObjects(const GrGLTexture::Desc& desc, |
| int sampleCount, |
| GrGLRenderTarget::IDs* rtIDs) { |
| rtIDs->fMSColorRenderbufferID = 0; |
| rtIDs->fMultisampleFBOID = 0; |
| rtIDs->fRTFBOOwnership = GrBackendObjectOwnership::kOwned; |
| rtIDs->fSingleSampleFBOID = 0; |
| rtIDs->fTotalMemorySamplesPerPixel = 0; |
| |
| SkScopeExit cleanupOnFail([&] { |
| if (rtIDs->fMSColorRenderbufferID) { |
| GL_CALL(DeleteRenderbuffers(1, &rtIDs->fMSColorRenderbufferID)); |
| } |
| if (rtIDs->fMultisampleFBOID != rtIDs->fSingleSampleFBOID) { |
| this->deleteFramebuffer(rtIDs->fMultisampleFBOID); |
| } |
| if (rtIDs->fSingleSampleFBOID) { |
| this->deleteFramebuffer(rtIDs->fSingleSampleFBOID); |
| } |
| }); |
| |
| GrGLenum colorRenderbufferFormat = 0; // suppress warning |
| |
| if (desc.fFormat == GrGLFormat::kUnknown) { |
| return false; |
| } |
| |
| if (sampleCount > 1 && GrGLCaps::kNone_MSFBOType == this->glCaps().msFBOType()) { |
| return false; |
| } |
| |
| GL_CALL(GenFramebuffers(1, &rtIDs->fSingleSampleFBOID)); |
| if (!rtIDs->fSingleSampleFBOID) { |
| RENDERENGINE_ABORTF("%s failed to GenFramebuffers!", __func__); |
| return false; |
| } |
| |
| // If we are using multisampling we will create two FBOS. We render to one and then resolve to |
| // the texture bound to the other. The exception is the IMG multisample extension. With this |
| // extension the texture is multisampled when rendered to and then auto-resolves it when it is |
| // rendered from. |
| if (sampleCount <= 1) { |
| rtIDs->fMultisampleFBOID = GrGLRenderTarget::kUnresolvableFBOID; |
| } else if (this->glCaps().usesImplicitMSAAResolve()) { |
| // GrGLRenderTarget target will configure the FBO as multisample or not base on need. |
| rtIDs->fMultisampleFBOID = rtIDs->fSingleSampleFBOID; |
| } else { |
| GL_CALL(GenFramebuffers(1, &rtIDs->fMultisampleFBOID)); |
| if (!rtIDs->fMultisampleFBOID) { |
| return false; |
| } |
| GL_CALL(GenRenderbuffers(1, &rtIDs->fMSColorRenderbufferID)); |
| if (!rtIDs->fMSColorRenderbufferID) { |
| return false; |
| } |
| colorRenderbufferFormat = this->glCaps().getRenderbufferInternalFormat(desc.fFormat); |
| } |
| |
| #if defined(__has_feature) |
| #define IS_TSAN __has_feature(thread_sanitizer) |
| #else |
| #define IS_TSAN 0 |
| #endif |
| |
| // below here we may bind the FBO |
| fHWBoundRenderTargetUniqueID.makeInvalid(); |
| if (rtIDs->fMSColorRenderbufferID) { |
| SkASSERT(sampleCount > 1); |
| GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER, rtIDs->fMSColorRenderbufferID)); |
| if (!this->renderbufferStorageMSAA(*fGLContext, sampleCount, colorRenderbufferFormat, |
| desc.fSize.width(), desc.fSize.height())) { |
| return false; |
| } |
| this->bindFramebuffer(GR_GL_FRAMEBUFFER, rtIDs->fMultisampleFBOID); |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, |
| GR_GL_COLOR_ATTACHMENT0, |
| GR_GL_RENDERBUFFER, |
| rtIDs->fMSColorRenderbufferID)); |
| // See skbug.com/12644 |
| #if !IS_TSAN |
| if (!this->glCaps().skipErrorChecks()) { |
| GrGLenum status; |
| GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); |
| if (status != GR_GL_FRAMEBUFFER_COMPLETE) { |
| return false; |
| } |
| if (this->glCaps().rebindColorAttachmentAfterCheckFramebufferStatus()) { |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, |
| GR_GL_COLOR_ATTACHMENT0, |
| GR_GL_RENDERBUFFER, |
| 0)); |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, |
| GR_GL_COLOR_ATTACHMENT0, |
| GR_GL_RENDERBUFFER, |
| rtIDs->fMSColorRenderbufferID)); |
| } |
| } |
| #endif |
| rtIDs->fTotalMemorySamplesPerPixel += sampleCount; |
| } |
| this->bindFramebuffer(GR_GL_FRAMEBUFFER, rtIDs->fSingleSampleFBOID); |
| GL_CALL(FramebufferTexture2D(GR_GL_FRAMEBUFFER, |
| GR_GL_COLOR_ATTACHMENT0, |
| desc.fTarget, |
| desc.fID, |
| 0)); |
| // See skbug.com/12644 |
| #if !IS_TSAN |
| if (!this->glCaps().skipErrorChecks()) { |
| GrGLenum status; |
| GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); |
| if (status != GR_GL_FRAMEBUFFER_COMPLETE) { |
| return false; |
| } |
| if (this->glCaps().rebindColorAttachmentAfterCheckFramebufferStatus()) { |
| GL_CALL(FramebufferTexture2D(GR_GL_FRAMEBUFFER, |
| GR_GL_COLOR_ATTACHMENT0, |
| desc.fTarget, |
| 0, |
| 0)); |
| GL_CALL(FramebufferTexture2D(GR_GL_FRAMEBUFFER, |
| GR_GL_COLOR_ATTACHMENT0, |
| desc.fTarget, |
| desc.fID, |
| 0)); |
| } |
| } |
| #endif |
| |
| #undef IS_TSAN |
| ++rtIDs->fTotalMemorySamplesPerPixel; |
| |
| // We did it! |
| cleanupOnFail.clear(); |
| return true; |
| } |
| |
| // good to set a break-point here to know when createTexture fails |
| static sk_sp<GrTexture> return_null_texture() { |
| // SkDEBUGFAIL("null texture"); |
| return nullptr; |
| } |
| |
| static GrGLTextureParameters::SamplerOverriddenState set_initial_texture_params( |
| const GrGLInterface* interface, |
| const GrGLCaps& caps, |
| GrGLenum target) { |
| // Some drivers like to know filter/wrap before seeing glTexImage2D. Some |
| // drivers have a bug where an FBO won't be complete if it includes a |
| // texture that is not mipmap complete (considering the filter in use). |
| GrGLTextureParameters::SamplerOverriddenState state; |
| state.fMinFilter = GR_GL_NEAREST; |
| state.fMagFilter = GR_GL_NEAREST; |
| state.fWrapS = GR_GL_CLAMP_TO_EDGE; |
| state.fWrapT = GR_GL_CLAMP_TO_EDGE; |
| GR_GL_CALL(interface, TexParameteri(target, GR_GL_TEXTURE_MAG_FILTER, state.fMagFilter)); |
| GR_GL_CALL(interface, TexParameteri(target, GR_GL_TEXTURE_MIN_FILTER, state.fMinFilter)); |
| GR_GL_CALL(interface, TexParameteri(target, GR_GL_TEXTURE_WRAP_S, state.fWrapS)); |
| GR_GL_CALL(interface, TexParameteri(target, GR_GL_TEXTURE_WRAP_T, state.fWrapT)); |
| return state; |
| } |
| |
| sk_sp<GrTexture> GrGLGpu::onCreateTexture(SkISize dimensions, |
| const GrBackendFormat& format, |
| GrRenderable renderable, |
| int renderTargetSampleCnt, |
| skgpu::Budgeted budgeted, |
| GrProtected isProtected, |
| int mipLevelCount, |
| uint32_t levelClearMask, |
| std::string_view label) { |
| if (isProtected == GrProtected::kYes && !this->glCaps().supportsProtectedContent()) { |
| return nullptr; |
| } |
| SkASSERT(GrGLCaps::kNone_MSFBOType != this->glCaps().msFBOType() || renderTargetSampleCnt == 1); |
| |
| SkASSERT(mipLevelCount > 0); |
| GrMipmapStatus mipmapStatus = |
| mipLevelCount > 1 ? GrMipmapStatus::kDirty : GrMipmapStatus::kNotAllocated; |
| GrGLTextureParameters::SamplerOverriddenState initialState; |
| GrGLTexture::Desc texDesc; |
| texDesc.fSize = dimensions; |
| switch (format.textureType()) { |
| case GrTextureType::kExternal: |
| case GrTextureType::kNone: |
| return nullptr; |
| case GrTextureType::k2D: |
| texDesc.fTarget = GR_GL_TEXTURE_2D; |
| break; |
| case GrTextureType::kRectangle: |
| if (mipLevelCount > 1 || !this->glCaps().rectangleTextureSupport()) { |
| return nullptr; |
| } |
| texDesc.fTarget = GR_GL_TEXTURE_RECTANGLE; |
| break; |
| } |
| texDesc.fFormat = GrBackendFormats::AsGLFormat(format); |
| texDesc.fOwnership = GrBackendObjectOwnership::kOwned; |
| SkASSERT(texDesc.fFormat != GrGLFormat::kUnknown); |
| SkASSERT(!GrGLFormatIsCompressed(texDesc.fFormat)); |
| texDesc.fIsProtected = isProtected; |
| |
| texDesc.fID = this->createTexture(dimensions, texDesc.fFormat, texDesc.fTarget, renderable, |
| &initialState, mipLevelCount, texDesc.fIsProtected, label); |
| if (!texDesc.fID) { |
| return return_null_texture(); |
| } |
| |
| sk_sp<GrGLTexture> tex; |
| if (renderable == GrRenderable::kYes) { |
| // unbind the texture from the texture unit before binding it to the frame buffer |
| GL_CALL(BindTexture(texDesc.fTarget, 0)); |
| GrGLRenderTarget::IDs rtIDDesc; |
| |
| if (!this->createRenderTargetObjects(texDesc, renderTargetSampleCnt, &rtIDDesc)) { |
| GL_CALL(DeleteTextures(1, &texDesc.fID)); |
| return return_null_texture(); |
| } |
| tex = sk_make_sp<GrGLTextureRenderTarget>(this, |
| budgeted, |
| renderTargetSampleCnt, |
| texDesc, |
| rtIDDesc, |
| mipmapStatus, |
| label); |
| tex->baseLevelWasBoundToFBO(); |
| } else { |
| tex = sk_make_sp<GrGLTexture>(this, budgeted, texDesc, mipmapStatus, label); |
| } |
| // The non-sampler params are still at their default values. |
| tex->parameters()->set(&initialState, GrGLTextureParameters::NonsamplerState(), |
| fResetTimestampForTextureParameters); |
| if (levelClearMask) { |
| if (this->glCaps().clearTextureSupport()) { |
| GrGLenum externalFormat, externalType; |
| GrColorType colorType; |
| this->glCaps().getTexSubImageDefaultFormatTypeAndColorType( |
| texDesc.fFormat, &externalFormat, &externalType, &colorType); |
| for (int i = 0; i < mipLevelCount; ++i) { |
| if (levelClearMask & (1U << i)) { |
| GL_CALL(ClearTexImage(tex->textureID(), i, externalFormat, externalType, |
| nullptr)); |
| } |
| } |
| } else if (this->glCaps().canFormatBeFBOColorAttachment( |
| GrBackendFormats::AsGLFormat(format)) && |
| !this->glCaps().performColorClearsAsDraws()) { |
| this->flushScissorTest(GrScissorTest::kDisabled); |
| this->disableWindowRectangles(); |
| this->flushColorWrite(true); |
| this->flushClearColor({0, 0, 0, 0}); |
| for (int i = 0; i < mipLevelCount; ++i) { |
| if (levelClearMask & (1U << i)) { |
| this->bindSurfaceFBOForPixelOps(tex.get(), i, GR_GL_FRAMEBUFFER, |
| kDst_TempFBOTarget); |
| GL_CALL(Clear(GR_GL_COLOR_BUFFER_BIT)); |
| this->unbindSurfaceFBOForPixelOps(tex.get(), i, GR_GL_FRAMEBUFFER); |
| } |
| } |
| fHWBoundRenderTargetUniqueID.makeInvalid(); |
| } else { |
| this->bindTextureToScratchUnit(texDesc.fTarget, tex->textureID()); |
| std::array<float, 4> zeros = {}; |
| this->uploadColorToTex(texDesc.fFormat, |
| texDesc.fSize, |
| texDesc.fTarget, |
| zeros, |
| levelClearMask); |
| } |
| } |
| return tex; |
| } |
| |
| sk_sp<GrTexture> GrGLGpu::onCreateCompressedTexture(SkISize dimensions, |
| const GrBackendFormat& format, |
| skgpu::Budgeted budgeted, |
| skgpu::Mipmapped mipmapped, |
| GrProtected isProtected, |
| const void* data, |
| size_t dataSize) { |
| if (isProtected == GrProtected::kYes && !this->glCaps().supportsProtectedContent()) { |
| return nullptr; |
| } |
| SkTextureCompressionType compression = GrBackendFormatToCompressionType(format); |
| |
| GrGLTextureParameters::SamplerOverriddenState initialState; |
| GrGLTexture::Desc desc; |
| desc.fSize = dimensions; |
| desc.fTarget = GR_GL_TEXTURE_2D; |
| desc.fOwnership = GrBackendObjectOwnership::kOwned; |
| desc.fFormat = GrBackendFormats::AsGLFormat(format); |
| desc.fIsProtected = isProtected; |
| desc.fID = this->createCompressedTexture2D(desc.fSize, compression, desc.fFormat, |
| mipmapped, desc.fIsProtected, &initialState); |
| if (!desc.fID) { |
| return nullptr; |
| } |
| |
| if (data) { |
| if (!this->uploadCompressedTexData(compression, desc.fFormat, dimensions, mipmapped, |
| GR_GL_TEXTURE_2D, data, dataSize)) { |
| GL_CALL(DeleteTextures(1, &desc.fID)); |
| return nullptr; |
| } |
| } |
| |
| // Unbind this texture from the scratch texture unit. |
| this->bindTextureToScratchUnit(GR_GL_TEXTURE_2D, 0); |
| |
| GrMipmapStatus mipmapStatus = mipmapped == skgpu::Mipmapped::kYes |
| ? GrMipmapStatus::kValid |
| : GrMipmapStatus::kNotAllocated; |
| |
| auto tex = sk_make_sp<GrGLTexture>(this, budgeted, desc, mipmapStatus, |
| /*label=*/"GLGpuCreateCompressedTexture"); |
| // The non-sampler params are still at their default values. |
| tex->parameters()->set(&initialState, GrGLTextureParameters::NonsamplerState(), |
| fResetTimestampForTextureParameters); |
| return tex; |
| } |
| |
| GrBackendTexture GrGLGpu::onCreateCompressedBackendTexture(SkISize dimensions, |
| const GrBackendFormat& format, |
| skgpu::Mipmapped mipmapped, |
| GrProtected isProtected) { |
| if (isProtected == GrProtected::kYes && !this->glCaps().supportsProtectedContent()) { |
| return {}; |
| } |
| |
| this->handleDirtyContext(); |
| |
| GrGLFormat glFormat = GrBackendFormats::AsGLFormat(format); |
| if (glFormat == GrGLFormat::kUnknown) { |
| return {}; |
| } |
| |
| SkTextureCompressionType compression = GrBackendFormatToCompressionType(format); |
| |
| GrGLTextureInfo info; |
| GrGLTextureParameters::SamplerOverriddenState initialState; |
| |
| info.fTarget = GR_GL_TEXTURE_2D; |
| info.fFormat = GrGLFormatToEnum(glFormat); |
| info.fProtected = isProtected; |
| info.fID = this->createCompressedTexture2D(dimensions, compression, glFormat, |
| mipmapped, info.fProtected, &initialState); |
| if (!info.fID) { |
| return {}; |
| } |
| |
| // Unbind this texture from the scratch texture unit. |
| this->bindTextureToScratchUnit(GR_GL_TEXTURE_2D, 0); |
| |
| auto parameters = sk_make_sp<GrGLTextureParameters>(); |
| // The non-sampler params are still at their default values. |
| parameters->set(&initialState, GrGLTextureParameters::NonsamplerState(), |
| fResetTimestampForTextureParameters); |
| |
| return GrBackendTextures::MakeGL( |
| dimensions.width(), dimensions.height(), mipmapped, info, std::move(parameters)); |
| } |
| |
| bool GrGLGpu::onUpdateCompressedBackendTexture(const GrBackendTexture& backendTexture, |
| sk_sp<skgpu::RefCntedCallback> finishedCallback, |
| const void* data, |
| size_t length) { |
| GrGLTextureInfo info; |
| SkAssertResult(GrBackendTextures::GetGLTextureInfo(backendTexture, &info)); |
| |
| GrBackendFormat format = backendTexture.getBackendFormat(); |
| GrGLFormat glFormat = GrBackendFormats::AsGLFormat(format); |
| if (glFormat == GrGLFormat::kUnknown) { |
| return false; |
| } |
| SkTextureCompressionType compression = GrBackendFormatToCompressionType(format); |
| |
| skgpu::Mipmapped mipmapped = |
| backendTexture.hasMipmaps() ? skgpu::Mipmapped::kYes : skgpu::Mipmapped::kNo; |
| |
| this->bindTextureToScratchUnit(info.fTarget, info.fID); |
| |
| // If we have mips make sure the base level is set to 0 and the max level set to numMipLevels-1 |
| // so that the uploads go to the right levels. |
| if (backendTexture.hasMipmaps() && this->glCaps().mipmapLevelControlSupport()) { |
| auto params = get_gl_texture_params(backendTexture); |
| GrGLTextureParameters::NonsamplerState nonsamplerState = params->nonsamplerState(); |
| if (params->nonsamplerState().fBaseMipMapLevel != 0) { |
| GL_CALL(TexParameteri(info.fTarget, GR_GL_TEXTURE_BASE_LEVEL, 0)); |
| nonsamplerState.fBaseMipMapLevel = 0; |
| } |
| int numMipLevels = |
| SkMipmap::ComputeLevelCount(backendTexture.width(), backendTexture.height()) + 1; |
| if (params->nonsamplerState().fMaxMipmapLevel != (numMipLevels - 1)) { |
| GL_CALL(TexParameteri(info.fTarget, GR_GL_TEXTURE_MAX_LEVEL, numMipLevels - 1)); |
| nonsamplerState.fBaseMipMapLevel = numMipLevels - 1; |
| } |
| params->set(nullptr, nonsamplerState, fResetTimestampForTextureParameters); |
| } |
| |
| bool result = this->uploadCompressedTexData(compression, |
| glFormat, |
| backendTexture.dimensions(), |
| mipmapped, |
| GR_GL_TEXTURE_2D, |
| data, |
| length); |
| |
| // Unbind this texture from the scratch texture unit. |
| this->bindTextureToScratchUnit(info.fTarget, 0); |
| |
| return result; |
| } |
| |
| int GrGLGpu::getCompatibleStencilIndex(GrGLFormat format) { |
| static const int kSize = 16; |
| SkASSERT(this->glCaps().canFormatBeFBOColorAttachment(format)); |
| |
| if (!this->glCaps().hasStencilFormatBeenDeterminedForFormat(format)) { |
| // Default to unsupported, set this if we find a stencil format that works. |
| int firstWorkingStencilFormatIndex = -1; |
| |
| GrGLuint colorID = this->createTexture({kSize, kSize}, format, GR_GL_TEXTURE_2D, |
| GrRenderable::kYes, |
| nullptr, |
| 1, |
| GrProtected::kNo, |
| /*label=*/"Skia"); |
| if (!colorID) { |
| return -1; |
| } |
| // unbind the texture from the texture unit before binding it to the frame buffer |
| GL_CALL(BindTexture(GR_GL_TEXTURE_2D, 0)); |
| |
| // Create Framebuffer |
| GrGLuint fb = 0; |
| GL_CALL(GenFramebuffers(1, &fb)); |
| this->bindFramebuffer(GR_GL_FRAMEBUFFER, fb); |
| fHWBoundRenderTargetUniqueID.makeInvalid(); |
| GL_CALL(FramebufferTexture2D(GR_GL_FRAMEBUFFER, |
| GR_GL_COLOR_ATTACHMENT0, |
| GR_GL_TEXTURE_2D, |
| colorID, |
| 0)); |
| GrGLuint sbRBID = 0; |
| GL_CALL(GenRenderbuffers(1, &sbRBID)); |
| |
| // look over formats till I find a compatible one |
| int stencilFmtCnt = this->glCaps().stencilFormats().size(); |
| if (sbRBID) { |
| GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER, sbRBID)); |
| for (int i = 0; i < stencilFmtCnt && sbRBID; ++i) { |
| GrGLFormat sFmt = this->glCaps().stencilFormats()[i]; |
| GrGLenum error = GL_ALLOC_CALL(RenderbufferStorage( |
| GR_GL_RENDERBUFFER, GrGLFormatToEnum(sFmt), kSize, kSize)); |
| if (error == GR_GL_NO_ERROR) { |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, |
| GR_GL_STENCIL_ATTACHMENT, |
| GR_GL_RENDERBUFFER, sbRBID)); |
| if (GrGLFormatIsPackedDepthStencil(sFmt)) { |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, |
| GR_GL_DEPTH_ATTACHMENT, |
| GR_GL_RENDERBUFFER, sbRBID)); |
| } else { |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, |
| GR_GL_DEPTH_ATTACHMENT, |
| GR_GL_RENDERBUFFER, 0)); |
| } |
| GrGLenum status; |
| GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); |
| if (status == GR_GL_FRAMEBUFFER_COMPLETE) { |
| firstWorkingStencilFormatIndex = i; |
| break; |
| } |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, |
| GR_GL_STENCIL_ATTACHMENT, |
| GR_GL_RENDERBUFFER, 0)); |
| if (GrGLFormatIsPackedDepthStencil(sFmt)) { |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, |
| GR_GL_DEPTH_ATTACHMENT, |
| GR_GL_RENDERBUFFER, 0)); |
| } |
| } |
| } |
| GL_CALL(DeleteRenderbuffers(1, &sbRBID)); |
| } |
| GL_CALL(DeleteTextures(1, &colorID)); |
| this->bindFramebuffer(GR_GL_FRAMEBUFFER, 0); |
| this->deleteFramebuffer(fb); |
| fGLContext->caps()->setStencilFormatIndexForFormat(format, firstWorkingStencilFormatIndex); |
| } |
| return this->glCaps().getStencilFormatIndexForFormat(format); |
| } |
| |
| static void set_khr_debug_label(GrGLGpu* gpu, const GrGLuint id, std::string_view label) { |
| const std::string khr_debug_label = label.empty() ? "Skia" : std::string(label); |
| if (gpu->glCaps().debugSupport()) { |
| GR_GL_CALL(gpu->glInterface(), ObjectLabel(GR_GL_TEXTURE, id, -1, khr_debug_label.c_str())); |
| } |
| } |
| |
| GrGLuint GrGLGpu::createCompressedTexture2D( |
| SkISize dimensions, |
| SkTextureCompressionType compression, |
| GrGLFormat format, |
| skgpu::Mipmapped mipmapped, |
| GrProtected isProtected, |
| GrGLTextureParameters::SamplerOverriddenState* initialState) { |
| if (format == GrGLFormat::kUnknown) { |
| return 0; |
| } |
| GrGLuint id = 0; |
| GL_CALL(GenTextures(1, &id)); |
| if (!id) { |
| return 0; |
| } |
| |
| this->bindTextureToScratchUnit(GR_GL_TEXTURE_2D, id); |
| |
| set_khr_debug_label(this, id, /*label=*/"Skia"); |
| |
| *initialState = set_initial_texture_params(this->glInterface(), |
| this->glCaps(), |
| GR_GL_TEXTURE_2D); |
| |
| if (GrProtected::kYes == isProtected) { |
| if (this->glCaps().supportsProtectedContent()) { |
| GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_PROTECTED_EXT, GR_GL_TRUE)); |
| } else { |
| GL_CALL(DeleteTextures(1, &id)); |
| return 0; |
| } |
| } |
| |
| return id; |
| } |
| |
| GrGLuint GrGLGpu::createTexture(SkISize dimensions, |
| GrGLFormat format, |
| GrGLenum target, |
| GrRenderable renderable, |
| GrGLTextureParameters::SamplerOverriddenState* initialState, |
| int mipLevelCount, |
| GrProtected isProtected, |
| std::string_view label) { |
| SkASSERT(format != GrGLFormat::kUnknown); |
| SkASSERT(!GrGLFormatIsCompressed(format)); |
| |
| GrGLuint id = 0; |
| GL_CALL(GenTextures(1, &id)); |
| |
| if (!id) { |
| return 0; |
| } |
| |
| this->bindTextureToScratchUnit(target, id); |
| |
| set_khr_debug_label(this, id, label); |
| |
| if (GrRenderable::kYes == renderable && this->glCaps().textureUsageSupport()) { |
| // provides a hint about how this texture will be used |
| GL_CALL(TexParameteri(target, GR_GL_TEXTURE_USAGE, GR_GL_FRAMEBUFFER_ATTACHMENT)); |
| } |
| |
| if (initialState) { |
| *initialState = set_initial_texture_params(this->glInterface(), this->glCaps(), target); |
| } else { |
| set_initial_texture_params(this->glInterface(), this->glCaps(), target); |
| } |
| |
| if (GrProtected::kYes == isProtected) { |
| if (this->glCaps().supportsProtectedContent()) { |
| GL_CALL(TexParameteri(target, GR_GL_TEXTURE_PROTECTED_EXT, GR_GL_TRUE)); |
| } else { |
| GL_CALL(DeleteTextures(1, &id)); |
| return 0; |
| } |
| } |
| |
| GrGLenum internalFormat = this->glCaps().getTexImageOrStorageInternalFormat(format); |
| |
| bool success = false; |
| if (internalFormat) { |
| if (this->glCaps().formatSupportsTexStorage(format)) { |
| auto levelCount = std::max(mipLevelCount, 1); |
| GrGLenum error = GL_ALLOC_CALL(TexStorage2D(target, levelCount, internalFormat, |
| dimensions.width(), dimensions.height())); |
| success = (error == GR_GL_NO_ERROR); |
| } else { |
| GrGLenum externalFormat, externalType; |
| this->glCaps().getTexImageExternalFormatAndType(format, &externalFormat, &externalType); |
| GrGLenum error = GR_GL_NO_ERROR; |
| if (externalFormat && externalType) { |
| // If we don't unbind here then nullptr is treated as a zero offset into the bound |
| // transfer buffer rather than an indication that there is no data to copy. |
| this->unbindXferBuffer(GrGpuBufferType::kXferCpuToGpu); |
| for (int level = 0; level < mipLevelCount && error == GR_GL_NO_ERROR; level++) { |
| const int twoToTheMipLevel = 1 << level; |
| const int currentWidth = std::max(1, dimensions.width() / twoToTheMipLevel); |
| const int currentHeight = std::max(1, dimensions.height() / twoToTheMipLevel); |
| error = GL_ALLOC_CALL(TexImage2D(target, level, internalFormat, currentWidth, |
| currentHeight, 0, externalFormat, externalType, |
| nullptr)); |
| } |
| success = (error == GR_GL_NO_ERROR); |
| } |
| } |
| } |
| if (success) { |
| return id; |
| } |
| GL_CALL(DeleteTextures(1, &id)); |
| return 0; |
| } |
| |
| sk_sp<GrAttachment> GrGLGpu::makeStencilAttachment(const GrBackendFormat& colorFormat, |
| SkISize dimensions, int numStencilSamples) { |
| int sIdx = this->getCompatibleStencilIndex(GrBackendFormats::AsGLFormat(colorFormat)); |
| if (sIdx < 0) { |
| return nullptr; |
| } |
| GrGLFormat sFmt = this->glCaps().stencilFormats()[sIdx]; |
| |
| auto stencil = GrGLAttachment::MakeStencil(this, dimensions, numStencilSamples, sFmt); |
| if (stencil) { |
| fStats.incStencilAttachmentCreates(); |
| } |
| return stencil; |
| } |
| |
| sk_sp<GrAttachment> GrGLGpu::makeMSAAAttachment(SkISize dimensions, const GrBackendFormat& format, |
| int numSamples, GrProtected isProtected, |
| GrMemoryless isMemoryless) { |
| SkASSERT(isMemoryless == GrMemoryless::kNo); |
| return GrGLAttachment::MakeMSAA( |
| this, dimensions, numSamples, GrBackendFormats::AsGLFormat(format)); |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| sk_sp<GrGpuBuffer> GrGLGpu::onCreateBuffer(size_t size, |
| GrGpuBufferType intendedType, |
| GrAccessPattern accessPattern) { |
| return GrGLBuffer::Make(this, size, intendedType, accessPattern); |
| } |
| |
| void GrGLGpu::flushScissorTest(GrScissorTest scissorTest) { |
| if (GrScissorTest::kEnabled == scissorTest) { |
| if (kYes_TriState != fHWScissorSettings.fEnabled) { |
| GL_CALL(Enable(GR_GL_SCISSOR_TEST)); |
| fHWScissorSettings.fEnabled = kYes_TriState; |
| } |
| } else { |
| if (kNo_TriState != fHWScissorSettings.fEnabled) { |
| GL_CALL(Disable(GR_GL_SCISSOR_TEST)); |
| fHWScissorSettings.fEnabled = kNo_TriState; |
| } |
| } |
| } |
| |
| void GrGLGpu::flushScissorRect(const SkIRect& scissor, int rtHeight, GrSurfaceOrigin rtOrigin) { |
| SkASSERT(fHWScissorSettings.fEnabled == TriState::kYes_TriState); |
| auto nativeScissor = GrNativeRect::MakeRelativeTo(rtOrigin, rtHeight, scissor); |
| if (fHWScissorSettings.fRect != nativeScissor) { |
| GL_CALL(Scissor(nativeScissor.fX, nativeScissor.fY, nativeScissor.fWidth, |
| nativeScissor.fHeight)); |
| fHWScissorSettings.fRect = nativeScissor; |
| } |
| } |
| |
| void GrGLGpu::flushViewport(const SkIRect& viewport, int rtHeight, GrSurfaceOrigin rtOrigin) { |
| auto nativeViewport = GrNativeRect::MakeRelativeTo(rtOrigin, rtHeight, viewport); |
| if (fHWViewport != nativeViewport) { |
| GL_CALL(Viewport(nativeViewport.fX, nativeViewport.fY, |
| nativeViewport.fWidth, nativeViewport.fHeight)); |
| fHWViewport = nativeViewport; |
| } |
| } |
| |
| void GrGLGpu::flushWindowRectangles(const GrWindowRectsState& windowState, |
| const GrGLRenderTarget* rt, GrSurfaceOrigin origin) { |
| #ifndef USE_NSIGHT |
| typedef GrWindowRectsState::Mode Mode; |
| // Window rects can't be used on-screen. |
| SkASSERT(!windowState.enabled() || !rt->glRTFBOIDis0()); |
| SkASSERT(windowState.numWindows() <= this->caps()->maxWindowRectangles()); |
| |
| if (!this->caps()->maxWindowRectangles() || |
| fHWWindowRectsState.knownEqualTo(origin, rt->width(), rt->height(), windowState)) { |
| return; |
| } |
| |
| // This is purely a workaround for a spurious warning generated by gcc. Otherwise the above |
| // assert would be sufficient. https://gcc.gnu.org/bugzilla/show_bug.cgi?id=5912 |
| int numWindows = std::min(windowState.numWindows(), int(GrWindowRectangles::kMaxWindows)); |
| SkASSERT(windowState.numWindows() == numWindows); |
| |
| GrNativeRect glwindows[GrWindowRectangles::kMaxWindows]; |
| const SkIRect* skwindows = windowState.windows().data(); |
| for (int i = 0; i < numWindows; ++i) { |
| glwindows[i].setRelativeTo(origin, rt->height(), skwindows[i]); |
| } |
| |
| GrGLenum glmode = (Mode::kExclusive == windowState.mode()) ? GR_GL_EXCLUSIVE : GR_GL_INCLUSIVE; |
| GL_CALL(WindowRectangles(glmode, numWindows, glwindows->asInts())); |
| |
| fHWWindowRectsState.set(origin, rt->width(), rt->height(), windowState); |
| #endif |
| } |
| |
| void GrGLGpu::disableWindowRectangles() { |
| #ifndef USE_NSIGHT |
| if (!this->caps()->maxWindowRectangles() || fHWWindowRectsState.knownDisabled()) { |
| return; |
| } |
| GL_CALL(WindowRectangles(GR_GL_EXCLUSIVE, 0, nullptr)); |
| fHWWindowRectsState.setDisabled(); |
| #endif |
| } |
| |
| bool GrGLGpu::flushGLState(GrRenderTarget* renderTarget, bool useMultisampleFBO, |
| const GrProgramInfo& programInfo) { |
| this->handleDirtyContext(); |
| |
| sk_sp<GrGLProgram> program = fProgramCache->findOrCreateProgram(this->getContext(), |
| programInfo); |
| if (!program) { |
| GrCapsDebugf(this->caps(), "Failed to create program!\n"); |
| return false; |
| } |
| |
| this->flushProgram(std::move(program)); |
| |
| // Swizzle the blend to match what the shader will output. |
| this->flushBlendAndColorWrite(programInfo.pipeline().getXferProcessor().getBlendInfo(), |
| programInfo.pipeline().writeSwizzle()); |
| |
| fHWProgram->updateUniforms(renderTarget, programInfo); |
| |
| GrGLRenderTarget* glRT = static_cast<GrGLRenderTarget*>(renderTarget); |
| GrStencilSettings stencil; |
| if (programInfo.isStencilEnabled()) { |
| SkASSERT(glRT->getStencilAttachment(useMultisampleFBO)); |
| stencil.reset(*programInfo.userStencilSettings(), |
| programInfo.pipeline().hasStencilClip(), |
| glRT->numStencilBits(useMultisampleFBO)); |
| } |
| this->flushStencil(stencil, programInfo.origin()); |
| this->flushScissorTest(GrScissorTest(programInfo.pipeline().isScissorTestEnabled())); |
| this->flushWindowRectangles(programInfo.pipeline().getWindowRectsState(), |
| glRT, programInfo.origin()); |
| this->flushConservativeRasterState(programInfo.pipeline().usesConservativeRaster()); |
| this->flushWireframeState(programInfo.pipeline().isWireframe()); |
| |
| // This must come after textures are flushed because a texture may need |
| // to be msaa-resolved (which will modify bound FBO state). |
| this->flushRenderTarget(glRT, useMultisampleFBO); |
| |
| return true; |
| } |
| |
| void GrGLGpu::flushProgram(sk_sp<GrGLProgram> program) { |
| if (!program) { |
| fHWProgram.reset(); |
| fHWProgramID = 0; |
| return; |
| } |
| SkASSERT((program == fHWProgram) == (fHWProgramID == program->programID())); |
| if (program == fHWProgram) { |
| return; |
| } |
| auto id = program->programID(); |
| SkASSERT(id); |
| GL_CALL(UseProgram(id)); |
| fHWProgram = std::move(program); |
| fHWProgramID = id; |
| } |
| |
| void GrGLGpu::flushProgram(GrGLuint id) { |
| SkASSERT(id); |
| if (fHWProgramID == id) { |
| SkASSERT(!fHWProgram); |
| return; |
| } |
| fHWProgram.reset(); |
| GL_CALL(UseProgram(id)); |
| fHWProgramID = id; |
| } |
| |
| void GrGLGpu::didDrawTo(GrRenderTarget* rt) { |
| SkASSERT(fHWWriteToColor != kUnknown_TriState); |
| if (fHWWriteToColor == kYes_TriState) { |
| // The bounds are only used to check for empty and we don't know the bounds. The origin |
| // is irrelevant if there are no bounds. |
| this->didWriteToSurface(rt, kTopLeft_GrSurfaceOrigin, /*bounds=*/nullptr); |
| } |
| } |
| |
| GrGLenum GrGLGpu::bindBuffer(GrGpuBufferType type, const GrBuffer* buffer) { |
| this->handleDirtyContext(); |
| |
| // Index buffer state is tied to the vertex array. |
| if (GrGpuBufferType::kIndex == type) { |
| this->bindVertexArray(0); |
| } |
| |
| auto* bufferState = this->hwBufferState(type); |
| if (buffer->isCpuBuffer()) { |
| if (!bufferState->fBufferZeroKnownBound) { |
| GL_CALL(BindBuffer(bufferState->fGLTarget, 0)); |
| bufferState->fBufferZeroKnownBound = true; |
| bufferState->fBoundBufferUniqueID.makeInvalid(); |
| } |
| } else if (static_cast<const GrGpuBuffer*>(buffer)->uniqueID() != |
| bufferState->fBoundBufferUniqueID) { |
| const GrGLBuffer* glBuffer = static_cast<const GrGLBuffer*>(buffer); |
| GL_CALL(BindBuffer(bufferState->fGLTarget, glBuffer->bufferID())); |
| bufferState->fBufferZeroKnownBound = false; |
| bufferState->fBoundBufferUniqueID = glBuffer->uniqueID(); |
| } |
| |
| return bufferState->fGLTarget; |
| } |
| |
| void GrGLGpu::clear(const GrScissorState& scissor, |
| std::array<float, 4> color, |
| GrRenderTarget* target, |
| bool useMultisampleFBO, |
| GrSurfaceOrigin origin) { |
| // parent class should never let us get here with no RT |
| SkASSERT(target); |
| SkASSERT(!this->caps()->performColorClearsAsDraws()); |
| SkASSERT(!scissor.enabled() || !this->caps()->performPartialClearsAsDraws()); |
| |
| this->handleDirtyContext(); |
| |
| GrGLRenderTarget* glRT = static_cast<GrGLRenderTarget*>(target); |
| |
| this->flushRenderTarget(glRT, useMultisampleFBO); |
| this->flushScissor(scissor, glRT->height(), origin); |
| this->disableWindowRectangles(); |
| this->flushColorWrite(true); |
| this->flushClearColor(color); |
| GL_CALL(Clear(GR_GL_COLOR_BUFFER_BIT)); |
| this->didWriteToSurface(glRT, origin, scissor.enabled() ? &scissor.rect() : nullptr); |
| } |
| |
| static bool use_tiled_rendering(const GrGLCaps& glCaps, |
| const GrOpsRenderPass::StencilLoadAndStoreInfo& stencilLoadStore) { |
| // Only use the tiled rendering extension if we can explicitly clear and discard the stencil. |
| // Otherwise it's faster to just not use it. |
| return glCaps.tiledRenderingSupport() && GrLoadOp::kClear == stencilLoadStore.fLoadOp && |
| GrStoreOp::kDiscard == stencilLoadStore.fStoreOp; |
| } |
| |
| void GrGLGpu::beginCommandBuffer(GrGLRenderTarget* rt, bool useMultisampleFBO, |
| const SkIRect& bounds, GrSurfaceOrigin origin, |
| const GrOpsRenderPass::LoadAndStoreInfo& colorLoadStore, |
| const GrOpsRenderPass::StencilLoadAndStoreInfo& stencilLoadStore) { |
| SkASSERT(!fIsExecutingCommandBuffer_DebugOnly); |
| |
| this->handleDirtyContext(); |
| |
| this->flushRenderTarget(rt, useMultisampleFBO); |
| SkDEBUGCODE(fIsExecutingCommandBuffer_DebugOnly = true); |
| |
| if (use_tiled_rendering(this->glCaps(), stencilLoadStore)) { |
| auto nativeBounds = GrNativeRect::MakeRelativeTo(origin, rt->height(), bounds); |
| GrGLbitfield preserveMask = (GrLoadOp::kLoad == colorLoadStore.fLoadOp) |
| ? GR_GL_COLOR_BUFFER_BIT0 : GR_GL_NONE; |
| SkASSERT(GrLoadOp::kLoad != stencilLoadStore.fLoadOp); // Handled by use_tiled_rendering(). |
| GL_CALL(StartTiling(nativeBounds.fX, nativeBounds.fY, nativeBounds.fWidth, |
| nativeBounds.fHeight, preserveMask)); |
| } |
| |
| GrGLbitfield clearMask = 0; |
| if (GrLoadOp::kClear == colorLoadStore.fLoadOp) { |
| SkASSERT(!this->caps()->performColorClearsAsDraws()); |
| this->flushClearColor(colorLoadStore.fClearColor); |
| this->flushColorWrite(true); |
| clearMask |= GR_GL_COLOR_BUFFER_BIT; |
| } |
| if (GrLoadOp::kClear == stencilLoadStore.fLoadOp) { |
| SkASSERT(!this->caps()->performStencilClearsAsDraws()); |
| GL_CALL(StencilMask(0xffffffff)); |
| GL_CALL(ClearStencil(0)); |
| clearMask |= GR_GL_STENCIL_BUFFER_BIT; |
| } |
| if (clearMask) { |
| this->flushScissorTest(GrScissorTest::kDisabled); |
| this->disableWindowRectangles(); |
| GL_CALL(Clear(clearMask)); |
| if (clearMask & GR_GL_COLOR_BUFFER_BIT) { |
| this->didWriteToSurface(rt, origin, nullptr); |
| } |
| } |
| } |
| |
| void GrGLGpu::endCommandBuffer(GrGLRenderTarget* rt, bool useMultisampleFBO, |
| const GrOpsRenderPass::LoadAndStoreInfo& colorLoadStore, |
| const GrOpsRenderPass::StencilLoadAndStoreInfo& stencilLoadStore) { |
| SkASSERT(fIsExecutingCommandBuffer_DebugOnly); |
| |
| this->handleDirtyContext(); |
| |
| if (rt->uniqueID() != fHWBoundRenderTargetUniqueID || |
| useMultisampleFBO != fHWBoundFramebufferIsMSAA) { |
| // The framebuffer binding changed in the middle of a command buffer. We should have already |
| // printed a warning during onFBOChanged. |
| return; |
| } |
| |
| if (GrGLCaps::kNone_InvalidateFBType != this->glCaps().invalidateFBType()) { |
| STArray<2, GrGLenum> discardAttachments; |
| if (GrStoreOp::kDiscard == colorLoadStore.fStoreOp) { |
| discardAttachments.push_back( |
| rt->isFBO0(useMultisampleFBO) ? GR_GL_COLOR : GR_GL_COLOR_ATTACHMENT0); |
| } |
| if (GrStoreOp::kDiscard == stencilLoadStore.fStoreOp) { |
| discardAttachments.push_back( |
| rt->isFBO0(useMultisampleFBO) ? GR_GL_STENCIL : GR_GL_STENCIL_ATTACHMENT); |
| } |
| |
| if (!discardAttachments.empty()) { |
| if (GrGLCaps::kInvalidate_InvalidateFBType == this->glCaps().invalidateFBType()) { |
| GL_CALL(InvalidateFramebuffer(GR_GL_FRAMEBUFFER, discardAttachments.size(), |
| discardAttachments.begin())); |
| } else { |
| SkASSERT(GrGLCaps::kDiscard_InvalidateFBType == this->glCaps().invalidateFBType()); |
| GL_CALL(DiscardFramebuffer(GR_GL_FRAMEBUFFER, discardAttachments.size(), |
| discardAttachments.begin())); |
| } |
| } |
| } |
| |
| if (use_tiled_rendering(this->glCaps(), stencilLoadStore)) { |
| GrGLbitfield preserveMask = (GrStoreOp::kStore == colorLoadStore.fStoreOp) |
| ? GR_GL_COLOR_BUFFER_BIT0 : GR_GL_NONE; |
| // Handled by use_tiled_rendering(). |
| SkASSERT(GrStoreOp::kStore != stencilLoadStore.fStoreOp); |
| GL_CALL(EndTiling(preserveMask)); |
| } |
| |
| SkDEBUGCODE(fIsExecutingCommandBuffer_DebugOnly = false); |
| } |
| |
| void GrGLGpu::clearStencilClip(const GrScissorState& scissor, bool insideStencilMask, |
| GrRenderTarget* target, bool useMultisampleFBO, |
| GrSurfaceOrigin origin) { |
| SkASSERT(target); |
| SkASSERT(!this->caps()->performStencilClearsAsDraws()); |
| SkASSERT(!scissor.enabled() || !this->caps()->performPartialClearsAsDraws()); |
| this->handleDirtyContext(); |
| |
| GrAttachment* sb = target->getStencilAttachment(useMultisampleFBO); |
| if (!sb) { |
| // We should only get here if we marked a proxy as requiring a SB. However, |
| // the SB creation could later fail. Likely clipping is going to go awry now. |
| return; |
| } |
| |
| GrGLint stencilBitCount = GrBackendFormatStencilBits(sb->backendFormat()); |
| #if 0 |
| SkASSERT(stencilBitCount > 0); |
| GrGLint clipStencilMask = (1 << (stencilBitCount - 1)); |
| #else |
| // we could just clear the clip bit but when we go through |
| // ANGLE a partial stencil mask will cause clears to be |
| // turned into draws. Our contract on OpsTask says that |
| // changing the clip between stencil passes may or may not |
| // zero the client's clip bits. So we just clear the whole thing. |
| static const GrGLint clipStencilMask = ~0; |
| #endif |
| GrGLint value; |
| if (insideStencilMask) { |
| value = (1 << (stencilBitCount - 1)); |
| } else { |
| value = 0; |
| } |
| GrGLRenderTarget* glRT = static_cast<GrGLRenderTarget*>(target); |
| this->flushRenderTarget(glRT, useMultisampleFBO); |
| |
| this->flushScissor(scissor, glRT->height(), origin); |
| this->disableWindowRectangles(); |
| |
| GL_CALL(StencilMask((uint32_t) clipStencilMask)); |
| GL_CALL(ClearStencil(value)); |
| GL_CALL(Clear(GR_GL_STENCIL_BUFFER_BIT)); |
| fHWStencilSettings.invalidate(); |
| } |
| |
| bool GrGLGpu::readOrTransferPixelsFrom(GrSurface* surface, |
| SkIRect rect, |
| GrColorType surfaceColorType, |
| GrColorType dstColorType, |
| void* offsetOrPtr, |
| int rowWidthInPixels) { |
| SkASSERT(surface); |
| |
| auto format = GrBackendFormats::AsGLFormat(surface->backendFormat()); |
| GrGLRenderTarget* renderTarget = static_cast<GrGLRenderTarget*>(surface->asRenderTarget()); |
| if (!renderTarget && !this->glCaps().isFormatRenderable(format, 1)) { |
| return false; |
| } |
| GrGLenum externalFormat = 0; |
| GrGLenum externalType = 0; |
| this->glCaps().getReadPixelsFormat( |
| format, surfaceColorType, dstColorType, &externalFormat, &externalType); |
| if (!externalFormat || !externalType) { |
| return false; |
| } |
| |
| if (renderTarget) { |
| // Always bind the single sample FBO since we can't read pixels from an MSAA framebuffer. |
| constexpr bool useMultisampleFBO = false; |
| if (renderTarget->numSamples() > 1 && renderTarget->isFBO0(useMultisampleFBO)) { |
| return false; |
| } |
| this->flushRenderTarget(renderTarget, useMultisampleFBO); |
| } else { |
| // Use a temporary FBO. |
| this->bindSurfaceFBOForPixelOps(surface, 0, GR_GL_FRAMEBUFFER, kSrc_TempFBOTarget); |
| fHWBoundRenderTargetUniqueID.makeInvalid(); |
| } |
| |
| // determine if GL can read using the passed rowBytes or if we need a scratch buffer. |
| if (rowWidthInPixels != rect.width()) { |
| SkASSERT(this->glCaps().readPixelsRowBytesSupport()); |
| GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH, rowWidthInPixels)); |
| } |
| GL_CALL(PixelStorei(GR_GL_PACK_ALIGNMENT, 1)); |
| |
| GL_CALL(ReadPixels(rect.left(), |
| rect.top(), |
| rect.width(), |
| rect.height(), |
| externalFormat, |
| externalType, |
| offsetOrPtr)); |
| |
| if (rowWidthInPixels != rect.width()) { |
| SkASSERT(this->glCaps().readPixelsRowBytesSupport()); |
| GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH, 0)); |
| } |
| |
| if (!renderTarget) { |
| this->unbindSurfaceFBOForPixelOps(surface, 0, GR_GL_FRAMEBUFFER); |
| } |
| return true; |
| } |
| |
| bool GrGLGpu::onReadPixels(GrSurface* surface, |
| SkIRect rect, |
| GrColorType surfaceColorType, |
| GrColorType dstColorType, |
| void* buffer, |
| size_t rowBytes) { |
| SkASSERT(surface); |
| |
| size_t bytesPerPixel = GrColorTypeBytesPerPixel(dstColorType); |
| |
| // GL_PACK_ROW_LENGTH is in terms of pixels not bytes. |
| int rowPixelWidth; |
| |
| if (rowBytes == SkToSizeT(rect.width()*bytesPerPixel)) { |
| rowPixelWidth = rect.width(); |
| } else { |
| SkASSERT(!(rowBytes % bytesPerPixel)); |
| rowPixelWidth = rowBytes / bytesPerPixel; |
| } |
| this->unbindXferBuffer(GrGpuBufferType::kXferGpuToCpu); |
| return this->readOrTransferPixelsFrom(surface, |
| rect, |
| surfaceColorType, |
| dstColorType, |
| buffer, |
| rowPixelWidth); |
| } |
| |
| GrOpsRenderPass* GrGLGpu::onGetOpsRenderPass( |
| GrRenderTarget* rt, |
| bool useMultisampleFBO, |
| GrAttachment*, |
| GrSurfaceOrigin origin, |
| const SkIRect& bounds, |
| const GrOpsRenderPass::LoadAndStoreInfo& colorInfo, |
| const GrOpsRenderPass::StencilLoadAndStoreInfo& stencilInfo, |
| const TArray<GrSurfaceProxy*, true>& sampledProxies, |
| GrXferBarrierFlags renderPassXferBarriers) { |
| if (!fCachedOpsRenderPass) { |
| fCachedOpsRenderPass = std::make_unique<GrGLOpsRenderPass>(this); |
| } |
| if (useMultisampleFBO && rt->numSamples() == 1) { |
| // We will be using dynamic msaa. Ensure there is an attachment. |
| auto glRT = static_cast<GrGLRenderTarget*>(rt); |
| if (!glRT->ensureDynamicMSAAAttachment()) { |
| SkDebugf("WARNING: Failed to make dmsaa attachment. Render pass will be dropped."); |
| return nullptr; |
| } |
| } |
| fCachedOpsRenderPass->set(rt, useMultisampleFBO, bounds, origin, colorInfo, stencilInfo); |
| return fCachedOpsRenderPass.get(); |
| } |
| |
| void GrGLGpu::flushRenderTarget(GrGLRenderTarget* target, bool useMultisampleFBO) { |
| SkASSERT(target); |
| GrGpuResource::UniqueID rtID = target->uniqueID(); |
| if (fHWBoundRenderTargetUniqueID != rtID || |
| fHWBoundFramebufferIsMSAA != useMultisampleFBO || |
| target->mustRebind(useMultisampleFBO)) { |
| target->bind(useMultisampleFBO); |
| #ifdef SK_DEBUG |
| // don't do this check in Chromium -- this is causing |
| // lots of repeated command buffer flushes when the compositor is |
| // rendering with Ganesh, which is really slow; even too slow for |
| // Debug mode. |
| // Also don't do this when we know glCheckFramebufferStatus() may have side effects. |
| if (!this->glCaps().skipErrorChecks() && |
| !this->glCaps().rebindColorAttachmentAfterCheckFramebufferStatus()) { |
| GrGLenum status; |
| GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); |
| if (status != GR_GL_FRAMEBUFFER_COMPLETE) { |
| SkDebugf("GrGLGpu::flushRenderTargetNoColorWrites glCheckFramebufferStatus %x\n", |
| status); |
| } |
| } |
| #endif |
| fHWBoundRenderTargetUniqueID = rtID; |
| fHWBoundFramebufferIsMSAA = useMultisampleFBO; |
| this->flushViewport(SkIRect::MakeSize(target->dimensions()), |
| target->height(), |
| kTopLeft_GrSurfaceOrigin); // the origin is irrelevant in this case |
| } |
| if (this->caps()->workarounds().force_update_scissor_state_when_binding_fbo0) { |
| // The driver forgets the correct scissor state when using FBO 0. |
| if (!fHWScissorSettings.fRect.isInvalid()) { |
| const GrNativeRect& r = fHWScissorSettings.fRect; |
| GL_CALL(Scissor(r.fX, r.fY, r.fWidth, r.fHeight)); |
| } |
| if (fHWScissorSettings.fEnabled == kYes_TriState) { |
| GL_CALL(Disable(GR_GL_SCISSOR_TEST)); |
| GL_CALL(Enable(GR_GL_SCISSOR_TEST)); |
| } else if (fHWScissorSettings.fEnabled == kNo_TriState) { |
| GL_CALL(Enable(GR_GL_SCISSOR_TEST)); |
| GL_CALL(Disable(GR_GL_SCISSOR_TEST)); |
| } |
| } |
| |
| if (this->glCaps().srgbWriteControl()) { |
| this->flushFramebufferSRGB(this->caps()->isFormatSRGB(target->backendFormat())); |
| } |
| |
| if (this->glCaps().shouldQueryImplementationReadSupport(target->format())) { |
| GrGLint format; |
| GrGLint type; |
| GR_GL_GetIntegerv(this->glInterface(), GR_GL_IMPLEMENTATION_COLOR_READ_FORMAT, &format); |
| GR_GL_GetIntegerv(this->glInterface(), GR_GL_IMPLEMENTATION_COLOR_READ_TYPE, &type); |
| this->glCaps().didQueryImplementationReadSupport(target->format(), format, type); |
| } |
| } |
| |
| void GrGLGpu::flushFramebufferSRGB(bool enable) { |
| if (enable && kYes_TriState != fHWSRGBFramebuffer) { |
| GL_CALL(Enable(GR_GL_FRAMEBUFFER_SRGB)); |
| fHWSRGBFramebuffer = kYes_TriState; |
| } else if (!enable && kNo_TriState != fHWSRGBFramebuffer) { |
| GL_CALL(Disable(GR_GL_FRAMEBUFFER_SRGB)); |
| fHWSRGBFramebuffer = kNo_TriState; |
| } |
| } |
| |
| GrGLenum GrGLGpu::prepareToDraw(GrPrimitiveType primitiveType) { |
| fStats.incNumDraws(); |
| |
| if (this->glCaps().requiresCullFaceEnableDisableWhenDrawingLinesAfterNonLines() && |
| GrIsPrimTypeLines(primitiveType) && !GrIsPrimTypeLines(fLastPrimitiveType)) { |
| GL_CALL(Enable(GR_GL_CULL_FACE)); |
| GL_CALL(Disable(GR_GL_CULL_FACE)); |
| } |
| fLastPrimitiveType = primitiveType; |
| |
| switch (primitiveType) { |
| case GrPrimitiveType::kTriangles: |
| return GR_GL_TRIANGLES; |
| case GrPrimitiveType::kTriangleStrip: |
| return GR_GL_TRIANGLE_STRIP; |
| case GrPrimitiveType::kPoints: |
| return GR_GL_POINTS; |
| case GrPrimitiveType::kLines: |
| return GR_GL_LINES; |
| case GrPrimitiveType::kLineStrip: |
| return GR_GL_LINE_STRIP; |
| } |
| SK_ABORT("invalid GrPrimitiveType"); |
| } |
| |
| void GrGLGpu::onResolveRenderTarget(GrRenderTarget* target, const SkIRect& resolveRect) { |
| auto glRT = static_cast<GrGLRenderTarget*>(target); |
| if (this->glCaps().framebufferResolvesMustBeFullSize()) { |
| this->resolveRenderFBOs(glRT, SkIRect::MakeSize(glRT->dimensions()), |
| ResolveDirection::kMSAAToSingle); |
| } else { |
| this->resolveRenderFBOs(glRT, resolveRect, ResolveDirection::kMSAAToSingle); |
| } |
| } |
| |
| void GrGLGpu::resolveRenderFBOs(GrGLRenderTarget* rt, const SkIRect& resolveRect, |
| ResolveDirection resolveDirection, |
| bool invalidateReadBufferAfterBlit) { |
| this->handleDirtyContext(); |
| rt->bindForResolve(resolveDirection); |
| |
| const GrGLCaps& caps = this->glCaps(); |
| |
| // make sure we go through flushRenderTarget() since we've modified |
| // the bound DRAW FBO ID. |
| fHWBoundRenderTargetUniqueID.makeInvalid(); |
| if (GrGLCaps::kES_Apple_MSFBOType == caps.msFBOType()) { |
| // The Apple extension doesn't support blitting from single to multisample. |
| SkASSERT(resolveDirection != ResolveDirection::kSingleToMSAA); |
| SkASSERT(resolveRect == SkIRect::MakeSize(rt->dimensions())); |
| // Apple's extension uses the scissor as the blit bounds. |
| // Passing in kTopLeft_GrSurfaceOrigin will make sure no transformation of the rect |
| // happens inside flushScissor since resolveRect is already in native device coordinates. |
| GrScissorState scissor(rt->dimensions()); |
| SkAssertResult(scissor.set(resolveRect)); |
| this->flushScissor(scissor, rt->height(), kTopLeft_GrSurfaceOrigin); |
| this->disableWindowRectangles(); |
| GL_CALL(ResolveMultisampleFramebuffer()); |
| } else { |
| SkASSERT(!caps.framebufferResolvesMustBeFullSize() || |
| resolveRect == SkIRect::MakeSize(rt->dimensions())); |
| int l = resolveRect.x(); |
| int b = resolveRect.y(); |
| int r = resolveRect.x() + resolveRect.width(); |
| int t = resolveRect.y() + resolveRect.height(); |
| |
| // BlitFrameBuffer respects the scissor, so disable it. |
| this->flushScissorTest(GrScissorTest::kDisabled); |
| this->disableWindowRectangles(); |
| GL_CALL(BlitFramebuffer(l, b, r, t, l, b, r, t, GR_GL_COLOR_BUFFER_BIT, GR_GL_NEAREST)); |
| } |
| |
| if (caps.invalidateFBType() != GrGLCaps::kNone_InvalidateFBType && |
| invalidateReadBufferAfterBlit) { |
| // Invalidate the read FBO attachment after the blit, in hopes that this allows the driver |
| // to perform tiling optimizations. |
| bool readBufferIsMSAA = resolveDirection == ResolveDirection::kMSAAToSingle; |
| GrGLenum colorDiscardAttachment = rt->isFBO0(readBufferIsMSAA) ? GR_GL_COLOR |
| : GR_GL_COLOR_ATTACHMENT0; |
| if (caps.invalidateFBType() == GrGLCaps::kInvalidate_InvalidateFBType) { |
| GL_CALL(InvalidateFramebuffer(GR_GL_READ_FRAMEBUFFER, 1, &colorDiscardAttachment)); |
| } else { |
| SkASSERT(caps.invalidateFBType() == GrGLCaps::kDiscard_InvalidateFBType); |
| // glDiscardFramebuffer only accepts GL_FRAMEBUFFER. |
| rt->bind(readBufferIsMSAA); |
| GL_CALL(DiscardFramebuffer(GR_GL_FRAMEBUFFER, 1, &colorDiscardAttachment)); |
| } |
| } |
| } |
| |
| namespace { |
| |
| |
| GrGLenum gr_to_gl_stencil_op(GrStencilOp op) { |
| static const GrGLenum gTable[kGrStencilOpCount] = { |
| GR_GL_KEEP, // kKeep |
| GR_GL_ZERO, // kZero |
| GR_GL_REPLACE, // kReplace |
| GR_GL_INVERT, // kInvert |
| GR_GL_INCR_WRAP, // kIncWrap |
| GR_GL_DECR_WRAP, // kDecWrap |
| GR_GL_INCR, // kIncClamp |
| GR_GL_DECR, // kDecClamp |
| }; |
| static_assert(0 == (int)GrStencilOp::kKeep); |
| static_assert(1 == (int)GrStencilOp::kZero); |
| static_assert(2 == (int)GrStencilOp::kReplace); |
| static_assert(3 == (int)GrStencilOp::kInvert); |
| static_assert(4 == (int)GrStencilOp::kIncWrap); |
| static_assert(5 == (int)GrStencilOp::kDecWrap); |
| static_assert(6 == (int)GrStencilOp::kIncClamp); |
| static_assert(7 == (int)GrStencilOp::kDecClamp); |
| SkASSERT(op < (GrStencilOp)kGrStencilOpCount); |
| return gTable[(int)op]; |
| } |
| |
| void set_gl_stencil(const GrGLInterface* gl, |
| const GrStencilSettings::Face& face, |
| GrGLenum glFace) { |
| GrGLenum glFunc = GrToGLStencilFunc(face.fTest); |
| GrGLenum glFailOp = gr_to_gl_stencil_op(face.fFailOp); |
| GrGLenum glPassOp = gr_to_gl_stencil_op(face.fPassOp); |
| |
| GrGLint ref = face.fRef; |
| GrGLint mask = face.fTestMask; |
| GrGLint writeMask = face.fWriteMask; |
| |
| if (GR_GL_FRONT_AND_BACK == glFace) { |
| // we call the combined func just in case separate stencil is not |
| // supported. |
| GR_GL_CALL(gl, StencilFunc(glFunc, ref, mask)); |
| GR_GL_CALL(gl, StencilMask(writeMask)); |
| GR_GL_CALL(gl, StencilOp(glFailOp, GR_GL_KEEP, glPassOp)); |
| } else { |
| GR_GL_CALL(gl, StencilFuncSeparate(glFace, glFunc, ref, mask)); |
| GR_GL_CALL(gl, StencilMaskSeparate(glFace, writeMask)); |
| GR_GL_CALL(gl, StencilOpSeparate(glFace, glFailOp, GR_GL_KEEP, glPassOp)); |
| } |
| } |
| } // namespace |
| |
| void GrGLGpu::flushStencil(const GrStencilSettings& stencilSettings, GrSurfaceOrigin origin) { |
| if (stencilSettings.isDisabled()) { |
| this->disableStencil(); |
| } else if (fHWStencilSettings != stencilSettings || |
| (stencilSettings.isTwoSided() && fHWStencilOrigin != origin)) { |
| if (kYes_TriState != fHWStencilTestEnabled) { |
| GL_CALL(Enable(GR_GL_STENCIL_TEST)); |
| |
| fHWStencilTestEnabled = kYes_TriState; |
| } |
| if (!stencilSettings.isTwoSided()) { |
| set_gl_stencil(this->glInterface(), stencilSettings.singleSidedFace(), |
| GR_GL_FRONT_AND_BACK); |
| } else { |
| set_gl_stencil(this->glInterface(), stencilSettings.postOriginCWFace(origin), |
| GR_GL_FRONT); |
| set_gl_stencil(this->glInterface(), stencilSettings.postOriginCCWFace(origin), |
| GR_GL_BACK); |
| } |
| fHWStencilSettings = stencilSettings; |
| fHWStencilOrigin = origin; |
| } |
| } |
| |
| void GrGLGpu::disableStencil() { |
| if (kNo_TriState != fHWStencilTestEnabled) { |
| GL_CALL(Disable(GR_GL_STENCIL_TEST)); |
| |
| fHWStencilTestEnabled = kNo_TriState; |
| fHWStencilSettings.invalidate(); |
| } |
| } |
| |
| void GrGLGpu::flushConservativeRasterState(bool enabled) { |
| if (this->caps()->conservativeRasterSupport()) { |
| if (enabled) { |
| if (kYes_TriState != fHWConservativeRasterEnabled) { |
| GL_CALL(Enable(GR_GL_CONSERVATIVE_RASTERIZATION)); |
| fHWConservativeRasterEnabled = kYes_TriState; |
| } |
| } else { |
| if (kNo_TriState != fHWConservativeRasterEnabled) { |
| GL_CALL(Disable(GR_GL_CONSERVATIVE_RASTERIZATION)); |
| fHWConservativeRasterEnabled = kNo_TriState; |
| } |
| } |
| } |
| } |
| |
| void GrGLGpu::flushWireframeState(bool enabled) { |
| if (this->caps()->wireframeSupport()) { |
| if (this->caps()->wireframeMode() || enabled) { |
| if (kYes_TriState != fHWWireframeEnabled) { |
| GL_CALL(PolygonMode(GR_GL_FRONT_AND_BACK, GR_GL_LINE)); |
| fHWWireframeEnabled = kYes_TriState; |
| } |
| } else { |
| if (kNo_TriState != fHWWireframeEnabled) { |
| GL_CALL(PolygonMode(GR_GL_FRONT_AND_BACK, GR_GL_FILL)); |
| fHWWireframeEnabled = kNo_TriState; |
| } |
| } |
| } |
| } |
| |
| void GrGLGpu::flushBlendAndColorWrite(const skgpu::BlendInfo& blendInfo, |
| const skgpu::Swizzle& swizzle) { |
| if (this->glCaps().neverDisableColorWrites() && !blendInfo.fWritesColor) { |
| // We need to work around a driver bug by using a blend state that preserves the dst color, |
| // rather than disabling color writes. |
| skgpu::BlendInfo preserveDstBlend; |
| preserveDstBlend.fSrcBlend = skgpu::BlendCoeff::kZero; |
| preserveDstBlend.fDstBlend = skgpu::BlendCoeff::kOne; |
| this->flushBlendAndColorWrite(preserveDstBlend, swizzle); |
| return; |
| } |
| |
| skgpu::BlendEquation equation = blendInfo.fEquation; |
| skgpu::BlendCoeff srcCoeff = blendInfo.fSrcBlend; |
| skgpu::BlendCoeff dstCoeff = blendInfo.fDstBlend; |
| |
| // Any optimization to disable blending should have already been applied and |
| // tweaked the equation to "add "or "subtract", and the coeffs to (1, 0). |
| bool blendOff = |