blob: edcadf37c0dd58d45bfdc9274f5af2ed88dd5631 [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/ganesh/GrFragmentProcessor.h"
#include "include/core/SkM44.h"
#include "src/base/SkVx.h"
#include "src/core/SkRuntimeEffectPriv.h"
#include "src/gpu/KeyBuilder.h"
#include "src/gpu/ganesh/GrPipeline.h"
#include "src/gpu/ganesh/GrProcessorAnalysis.h"
#include "src/gpu/ganesh/GrShaderCaps.h"
#include "src/gpu/ganesh/effects/GrBlendFragmentProcessor.h"
#include "src/gpu/ganesh/effects/GrSkSLFP.h"
#include "src/gpu/ganesh/effects/GrTextureEffect.h"
#include "src/gpu/ganesh/glsl/GrGLSLFragmentShaderBuilder.h"
#include "src/gpu/ganesh/glsl/GrGLSLProgramBuilder.h"
#include "src/gpu/ganesh/glsl/GrGLSLProgramDataManager.h"
#include "src/gpu/ganesh/glsl/GrGLSLUniformHandler.h"
bool GrFragmentProcessor::isEqual(const GrFragmentProcessor& that) const {
if (this->classID() != that.classID()) {
return false;
}
if (this->sampleUsage() != that.sampleUsage()) {
return false;
}
if (!this->onIsEqual(that)) {
return false;
}
if (this->numChildProcessors() != that.numChildProcessors()) {
return false;
}
for (int i = 0; i < this->numChildProcessors(); ++i) {
auto thisChild = this->childProcessor(i),
thatChild = that .childProcessor(i);
if (SkToBool(thisChild) != SkToBool(thatChild)) {
return false;
}
if (thisChild && !thisChild->isEqual(*thatChild)) {
return false;
}
}
return true;
}
void GrFragmentProcessor::visitProxies(const GrVisitProxyFunc& func) const {
this->visitTextureEffects([&func](const GrTextureEffect& te) {
func(te.view().proxy(), te.samplerState().mipmapped());
});
}
void GrFragmentProcessor::visitTextureEffects(
const std::function<void(const GrTextureEffect&)>& func) const {
if (auto* te = this->asTextureEffect()) {
func(*te);
}
for (auto& child : fChildProcessors) {
if (child) {
child->visitTextureEffects(func);
}
}
}
void GrFragmentProcessor::visitWithImpls(
const std::function<void(const GrFragmentProcessor&, ProgramImpl&)>& f,
ProgramImpl& impl) const {
f(*this, impl);
SkASSERT(impl.numChildProcessors() == this->numChildProcessors());
for (int i = 0; i < this->numChildProcessors(); ++i) {
if (const auto* child = this->childProcessor(i)) {
child->visitWithImpls(f, *impl.childProcessor(i));
}
}
}
GrTextureEffect* GrFragmentProcessor::asTextureEffect() {
if (this->classID() == kGrTextureEffect_ClassID) {
return static_cast<GrTextureEffect*>(this);
}
return nullptr;
}
const GrTextureEffect* GrFragmentProcessor::asTextureEffect() const {
if (this->classID() == kGrTextureEffect_ClassID) {
return static_cast<const GrTextureEffect*>(this);
}
return nullptr;
}
#if defined(GR_TEST_UTILS)
static void recursive_dump_tree_info(const GrFragmentProcessor& fp,
SkString indent,
SkString* text) {
for (int index = 0; index < fp.numChildProcessors(); ++index) {
text->appendf("\n%s(#%d) -> ", indent.c_str(), index);
if (const GrFragmentProcessor* childFP = fp.childProcessor(index)) {
text->append(childFP->dumpInfo());
indent.append("\t");
recursive_dump_tree_info(*childFP, indent, text);
} else {
text->append("null");
}
}
}
SkString GrFragmentProcessor::dumpTreeInfo() const {
SkString text = this->dumpInfo();
recursive_dump_tree_info(*this, SkString("\t"), &text);
text.append("\n");
return text;
}
#endif
std::unique_ptr<GrFragmentProcessor::ProgramImpl> GrFragmentProcessor::makeProgramImpl() const {
std::unique_ptr<ProgramImpl> impl = this->onMakeProgramImpl();
impl->fChildProcessors.push_back_n(fChildProcessors.size());
for (int i = 0; i < fChildProcessors.size(); ++i) {
impl->fChildProcessors[i] = fChildProcessors[i] ? fChildProcessors[i]->makeProgramImpl()
: nullptr;
}
return impl;
}
int GrFragmentProcessor::numNonNullChildProcessors() const {
return std::count_if(fChildProcessors.begin(), fChildProcessors.end(),
[](const auto& c) { return c != nullptr; });
}
#ifdef SK_DEBUG
bool GrFragmentProcessor::isInstantiated() const {
bool result = true;
this->visitTextureEffects([&result](const GrTextureEffect& te) {
if (!te.texture()) {
result = false;
}
});
return result;
}
#endif
void GrFragmentProcessor::registerChild(std::unique_ptr<GrFragmentProcessor> child,
SkSL::SampleUsage sampleUsage) {
SkASSERT(sampleUsage.isSampled());
if (!child) {
fChildProcessors.push_back(nullptr);
return;
}
// The child should not have been attached to another FP already and not had any sampling
// strategy set on it.
SkASSERT(!child->fParent && !child->sampleUsage().isSampled());
// Configure child's sampling state first
child->fUsage = sampleUsage;
// Propagate the "will read dest-color" flag up to parent FPs.
if (child->willReadDstColor()) {
this->setWillReadDstColor();
}
// If this child receives passthrough or matrix transformed coords from its parent then note
// that the parent's coords are used indirectly to ensure that they aren't omitted.
if ((sampleUsage.isPassThrough() || sampleUsage.isUniformMatrix()) &&
child->usesSampleCoords()) {
fFlags |= kUsesSampleCoordsIndirectly_Flag;
}
// Record that the child is attached to us; this FP is the source of any uniform data needed
// to evaluate the child sample matrix.
child->fParent = this;
fChildProcessors.push_back(std::move(child));
// Validate: our sample strategy comes from a parent we shouldn't have yet.
SkASSERT(!fUsage.isSampled() && !fParent);
}
void GrFragmentProcessor::cloneAndRegisterAllChildProcessors(const GrFragmentProcessor& src) {
for (int i = 0; i < src.numChildProcessors(); ++i) {
if (auto fp = src.childProcessor(i)) {
this->registerChild(fp->clone(), fp->sampleUsage());
} else {
this->registerChild(nullptr);
}
}
}
std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::MakeColor(SkPMColor4f color) {
// Use ColorFilter signature/factory to get the constant output for constant input optimization
static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForColorFilter,
"uniform half4 color;"
"half4 main(half4 inColor) { return color; }"
);
SkASSERT(SkRuntimeEffectPriv::SupportsConstantOutputForConstantInput(effect));
return GrSkSLFP::Make(effect, "color_fp", /*inputFP=*/nullptr,
color.isOpaque() ? GrSkSLFP::OptFlags::kPreservesOpaqueInput
: GrSkSLFP::OptFlags::kNone,
"color", color);
}
std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::MulInputByChildAlpha(
std::unique_ptr<GrFragmentProcessor> fp) {
if (!fp) {
return nullptr;
}
return GrBlendFragmentProcessor::Make<SkBlendMode::kSrcIn>(/*src=*/nullptr, std::move(fp));
}
std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::ApplyPaintAlpha(
std::unique_ptr<GrFragmentProcessor> child) {
SkASSERT(child);
static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForColorFilter,
"uniform colorFilter fp;"
"half4 main(half4 inColor) {"
"return fp.eval(inColor.rgb1) * inColor.a;"
"}"
);
return GrSkSLFP::Make(effect, "ApplyPaintAlpha", /*inputFP=*/nullptr,
GrSkSLFP::OptFlags::kPreservesOpaqueInput |
GrSkSLFP::OptFlags::kCompatibleWithCoverageAsAlpha,
"fp", std::move(child));
}
std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::ModulateRGBA(
std::unique_ptr<GrFragmentProcessor> inputFP, const SkPMColor4f& color) {
auto colorFP = MakeColor(color);
return GrBlendFragmentProcessor::Make<SkBlendMode::kModulate>(std::move(colorFP),
std::move(inputFP));
}
std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::ClampOutput(
std::unique_ptr<GrFragmentProcessor> fp) {
SkASSERT(fp);
static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForColorFilter,
"half4 main(half4 inColor) {"
"return saturate(inColor);"
"}"
);
SkASSERT(SkRuntimeEffectPriv::SupportsConstantOutputForConstantInput(effect));
return GrSkSLFP::Make(effect, "Clamp", std::move(fp),
GrSkSLFP::OptFlags::kPreservesOpaqueInput);
}
std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::SwizzleOutput(
std::unique_ptr<GrFragmentProcessor> fp, const skgpu::Swizzle& swizzle) {
class SwizzleFragmentProcessor : public GrFragmentProcessor {
public:
static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> fp,
const skgpu::Swizzle& swizzle) {
return std::unique_ptr<GrFragmentProcessor>(
new SwizzleFragmentProcessor(std::move(fp), swizzle));
}
const char* name() const override { return "Swizzle"; }
std::unique_ptr<GrFragmentProcessor> clone() const override {
return Make(this->childProcessor(0)->clone(), fSwizzle);
}
private:
SwizzleFragmentProcessor(std::unique_ptr<GrFragmentProcessor> fp,
const skgpu::Swizzle& swizzle)
: INHERITED(kSwizzleFragmentProcessor_ClassID, ProcessorOptimizationFlags(fp.get()))
, fSwizzle(swizzle) {
this->registerChild(std::move(fp));
}
std::unique_ptr<ProgramImpl> onMakeProgramImpl() const override {
class Impl : public ProgramImpl {
public:
void emitCode(EmitArgs& args) override {
SkString childColor = this->invokeChild(0, args);
const SwizzleFragmentProcessor& sfp = args.fFp.cast<SwizzleFragmentProcessor>();
const skgpu::Swizzle& swizzle = sfp.fSwizzle;
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
fragBuilder->codeAppendf("return %s.%s;",
childColor.c_str(), swizzle.asString().c_str());
}
};
return std::make_unique<Impl>();
}
void onAddToKey(const GrShaderCaps&, skgpu::KeyBuilder* b) const override {
b->add32(fSwizzle.asKey());
}
bool onIsEqual(const GrFragmentProcessor& other) const override {
const SwizzleFragmentProcessor& sfp = other.cast<SwizzleFragmentProcessor>();
return fSwizzle == sfp.fSwizzle;
}
SkPMColor4f constantOutputForConstantInput(const SkPMColor4f& input) const override {
return fSwizzle.applyTo(ConstantOutputForConstantInput(this->childProcessor(0), input));
}
skgpu::Swizzle fSwizzle;
using INHERITED = GrFragmentProcessor;
};
if (!fp) {
return nullptr;
}
if (skgpu::Swizzle::RGBA() == swizzle) {
return fp;
}
return SwizzleFragmentProcessor::Make(std::move(fp), swizzle);
}
//////////////////////////////////////////////////////////////////////////////
std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::OverrideInput(
std::unique_ptr<GrFragmentProcessor> fp, const SkPMColor4f& color) {
if (!fp) {
return nullptr;
}
static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForColorFilter,
"uniform colorFilter fp;" // Declared as colorFilter so we can pass a color
"uniform half4 color;"
"half4 main(half4 inColor) {"
"return fp.eval(color);"
"}"
);
return GrSkSLFP::Make(effect, "OverrideInput", /*inputFP=*/nullptr,
color.isOpaque() ? GrSkSLFP::OptFlags::kPreservesOpaqueInput
: GrSkSLFP::OptFlags::kNone,
"fp", std::move(fp),
"color", color);
}
//////////////////////////////////////////////////////////////////////////////
std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::DisableCoverageAsAlpha(
std::unique_ptr<GrFragmentProcessor> fp) {
if (!fp || !fp->compatibleWithCoverageAsAlpha()) {
return fp;
}
static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForColorFilter,
"half4 main(half4 inColor) { return inColor; }"
);
SkASSERT(SkRuntimeEffectPriv::SupportsConstantOutputForConstantInput(effect));
return GrSkSLFP::Make(effect, "DisableCoverageAsAlpha", std::move(fp),
GrSkSLFP::OptFlags::kPreservesOpaqueInput);
}
//////////////////////////////////////////////////////////////////////////////
std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::DestColor() {
static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForBlender,
"half4 main(half4 src, half4 dst) {"
"return dst;"
"}"
);
return GrSkSLFP::Make(effect, "DestColor", /*inputFP=*/nullptr, GrSkSLFP::OptFlags::kNone);
}
//////////////////////////////////////////////////////////////////////////////
std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::Compose(
std::unique_ptr<GrFragmentProcessor> f, std::unique_ptr<GrFragmentProcessor> g) {
class ComposeProcessor : public GrFragmentProcessor {
public:
static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> f,
std::unique_ptr<GrFragmentProcessor> g) {
return std::unique_ptr<GrFragmentProcessor>(new ComposeProcessor(std::move(f),
std::move(g)));
}
const char* name() const override { return "Compose"; }
std::unique_ptr<GrFragmentProcessor> clone() const override {
return std::unique_ptr<GrFragmentProcessor>(new ComposeProcessor(*this));
}
private:
std::unique_ptr<ProgramImpl> onMakeProgramImpl() const override {
class Impl : public ProgramImpl {
public:
void emitCode(EmitArgs& args) override {
SkString result = this->invokeChild(1, args); // g(x)
result = this->invokeChild(0, result.c_str(), args); // f(g(x))
args.fFragBuilder->codeAppendf("return %s;", result.c_str());
}
};
return std::make_unique<Impl>();
}
ComposeProcessor(std::unique_ptr<GrFragmentProcessor> f,
std::unique_ptr<GrFragmentProcessor> g)
: INHERITED(kSeriesFragmentProcessor_ClassID,
f->optimizationFlags() & g->optimizationFlags()) {
this->registerChild(std::move(f));
this->registerChild(std::move(g));
}
ComposeProcessor(const ComposeProcessor& that) : INHERITED(that) {}
void onAddToKey(const GrShaderCaps&, skgpu::KeyBuilder*) const override {}
bool onIsEqual(const GrFragmentProcessor&) const override { return true; }
SkPMColor4f constantOutputForConstantInput(const SkPMColor4f& inColor) const override {
SkPMColor4f color = inColor;
color = ConstantOutputForConstantInput(this->childProcessor(1), color);
color = ConstantOutputForConstantInput(this->childProcessor(0), color);
return color;
}
using INHERITED = GrFragmentProcessor;
};
// Allow either of the composed functions to be null.
if (f == nullptr) {
return g;
}
if (g == nullptr) {
return f;
}
// Run an optimization pass on this composition.
GrProcessorAnalysisColor inputColor;
inputColor.setToUnknown();
std::unique_ptr<GrFragmentProcessor> series[2] = {std::move(g), std::move(f)};
GrColorFragmentProcessorAnalysis info(inputColor, series, std::size(series));
SkPMColor4f knownColor;
int leadingFPsToEliminate = info.initialProcessorsToEliminate(&knownColor);
switch (leadingFPsToEliminate) {
default:
// We shouldn't eliminate more than we started with.
SkASSERT(leadingFPsToEliminate <= 2);
[[fallthrough]];
case 0:
// Compose the two processors as requested.
return ComposeProcessor::Make(/*f=*/std::move(series[1]), /*g=*/std::move(series[0]));
case 1:
// Replace the first processor with a constant color.
return ComposeProcessor::Make(/*f=*/std::move(series[1]),
/*g=*/MakeColor(knownColor));
case 2:
// Replace the entire composition with a constant color.
return MakeColor(knownColor);
}
}
//////////////////////////////////////////////////////////////////////////////
std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::ColorMatrix(
std::unique_ptr<GrFragmentProcessor> child,
const float matrix[20],
bool unpremulInput,
bool clampRGBOutput,
bool premulOutput) {
static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForColorFilter,
"uniform half4x4 m;"
"uniform half4 v;"
"uniform int unpremulInput;" // always specialized
"uniform int clampRGBOutput;" // always specialized
"uniform int premulOutput;" // always specialized
"half4 main(half4 color) {"
"if (bool(unpremulInput)) {"
"color = unpremul(color);"
"}"
"color = m * color + v;"
"if (bool(clampRGBOutput)) {"
"color = saturate(color);"
"} else {"
"color.a = saturate(color.a);"
"}"
"if (bool(premulOutput)) {"
"color.rgb *= color.a;"
"}"
"return color;"
"}"
);
SkASSERT(SkRuntimeEffectPriv::SupportsConstantOutputForConstantInput(effect));
SkM44 m44(matrix[ 0], matrix[ 1], matrix[ 2], matrix[ 3],
matrix[ 5], matrix[ 6], matrix[ 7], matrix[ 8],
matrix[10], matrix[11], matrix[12], matrix[13],
matrix[15], matrix[16], matrix[17], matrix[18]);
SkV4 v4 = {matrix[4], matrix[9], matrix[14], matrix[19]};
return GrSkSLFP::Make(effect, "ColorMatrix", std::move(child), GrSkSLFP::OptFlags::kNone,
"m", m44,
"v", v4,
"unpremulInput", GrSkSLFP::Specialize(unpremulInput ? 1 : 0),
"clampRGBOutput", GrSkSLFP::Specialize(clampRGBOutput ? 1 : 0),
"premulOutput", GrSkSLFP::Specialize(premulOutput ? 1 : 0));
}
//////////////////////////////////////////////////////////////////////////////
std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::SurfaceColor() {
class SurfaceColorProcessor : public GrFragmentProcessor {
public:
static std::unique_ptr<GrFragmentProcessor> Make() {
return std::unique_ptr<GrFragmentProcessor>(new SurfaceColorProcessor());
}
std::unique_ptr<GrFragmentProcessor> clone() const override { return Make(); }
const char* name() const override { return "SurfaceColor"; }
private:
std::unique_ptr<ProgramImpl> onMakeProgramImpl() const override {
class Impl : public ProgramImpl {
public:
void emitCode(EmitArgs& args) override {
const char* dstColor = args.fFragBuilder->dstColor();
args.fFragBuilder->codeAppendf("return %s;", dstColor);
}
};
return std::make_unique<Impl>();
}
SurfaceColorProcessor()
: INHERITED(kSurfaceColorProcessor_ClassID, kNone_OptimizationFlags) {
this->setWillReadDstColor();
}
void onAddToKey(const GrShaderCaps&, skgpu::KeyBuilder*) const override {}
bool onIsEqual(const GrFragmentProcessor&) const override { return true; }
using INHERITED = GrFragmentProcessor;
};
return SurfaceColorProcessor::Make();
}
//////////////////////////////////////////////////////////////////////////////
std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::DeviceSpace(
std::unique_ptr<GrFragmentProcessor> fp) {
if (!fp) {
return nullptr;
}
class DeviceSpace : GrFragmentProcessor {
public:
static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> fp) {
return std::unique_ptr<GrFragmentProcessor>(new DeviceSpace(std::move(fp)));
}
private:
DeviceSpace(std::unique_ptr<GrFragmentProcessor> fp)
: GrFragmentProcessor(kDeviceSpace_ClassID, fp->optimizationFlags()) {
// Passing FragCoord here is the reason this is a subclass and not a runtime-FP.
this->registerChild(std::move(fp), SkSL::SampleUsage::FragCoord());
}
std::unique_ptr<GrFragmentProcessor> clone() const override {
auto child = this->childProcessor(0)->clone();
return std::unique_ptr<GrFragmentProcessor>(new DeviceSpace(std::move(child)));
}
SkPMColor4f constantOutputForConstantInput(const SkPMColor4f& f) const override {
return this->childProcessor(0)->constantOutputForConstantInput(f);
}
std::unique_ptr<ProgramImpl> onMakeProgramImpl() const override {
class Impl : public ProgramImpl {
public:
Impl() = default;
void emitCode(ProgramImpl::EmitArgs& args) override {
auto child = this->invokeChild(0, args.fInputColor, args, "sk_FragCoord.xy");
args.fFragBuilder->codeAppendf("return %s;", child.c_str());
}
};
return std::make_unique<Impl>();
}
void onAddToKey(const GrShaderCaps&, skgpu::KeyBuilder*) const override {}
bool onIsEqual(const GrFragmentProcessor& processor) const override { return true; }
const char* name() const override { return "DeviceSpace"; }
};
return DeviceSpace::Make(std::move(fp));
}
//////////////////////////////////////////////////////////////////////////////
#define CLIP_EDGE_SKSL \
"const int kFillBW = 0;" \
"const int kFillAA = 1;" \
"const int kInverseFillBW = 2;" \
"const int kInverseFillAA = 3;"
static_assert(static_cast<int>(GrClipEdgeType::kFillBW) == 0);
static_assert(static_cast<int>(GrClipEdgeType::kFillAA) == 1);
static_assert(static_cast<int>(GrClipEdgeType::kInverseFillBW) == 2);
static_assert(static_cast<int>(GrClipEdgeType::kInverseFillAA) == 3);
std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::Rect(
std::unique_ptr<GrFragmentProcessor> inputFP, GrClipEdgeType edgeType, SkRect rect) {
static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForShader,
CLIP_EDGE_SKSL
"uniform int edgeType;" // GrClipEdgeType, specialized
"uniform float4 rectUniform;"
"half4 main(float2 xy) {"
"half coverage;"
"if (edgeType == kFillBW || edgeType == kInverseFillBW) {"
// non-AA
"coverage = half(all(greaterThan(float4(sk_FragCoord.xy, rectUniform.zw),"
"float4(rectUniform.xy, sk_FragCoord.xy))));"
"} else {"
// compute coverage relative to left and right edges, add, then subtract 1 to
// account for double counting. And similar for top/bottom.
"half4 dists4 = saturate(half4(1, 1, -1, -1) *"
"half4(sk_FragCoord.xyxy - rectUniform));"
"half2 dists2 = dists4.xy + dists4.zw - 1;"
"coverage = dists2.x * dists2.y;"
"}"
"if (edgeType == kInverseFillBW || edgeType == kInverseFillAA) {"
"coverage = 1.0 - coverage;"
"}"
"return half4(coverage);"
"}"
);
SkASSERT(rect.isSorted());
// The AA math in the shader evaluates to 0 at the uploaded coordinates, so outset by 0.5
// to interpolate from 0 at a half pixel inset and 1 at a half pixel outset of rect.
SkRect rectUniform = GrClipEdgeTypeIsAA(edgeType) ? rect.makeOutset(.5f, .5f) : rect;
auto rectFP = GrSkSLFP::Make(effect, "Rect", /*inputFP=*/nullptr,
GrSkSLFP::OptFlags::kCompatibleWithCoverageAsAlpha,
"edgeType", GrSkSLFP::Specialize(static_cast<int>(edgeType)),
"rectUniform", rectUniform);
return GrBlendFragmentProcessor::Make<SkBlendMode::kModulate>(std::move(rectFP),
std::move(inputFP));
}
GrFPResult GrFragmentProcessor::Circle(std::unique_ptr<GrFragmentProcessor> inputFP,
GrClipEdgeType edgeType,
SkPoint center,
float radius) {
// A radius below half causes the implicit insetting done by this processor to become
// inverted. We could handle this case by making the processor code more complicated.
if (radius < .5f && GrClipEdgeTypeIsInverseFill(edgeType)) {
return GrFPFailure(std::move(inputFP));
}
static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForShader,
CLIP_EDGE_SKSL
"uniform int edgeType;" // GrClipEdgeType, specialized
// The circle uniform is (center.x, center.y, radius + 0.5, 1 / (radius + 0.5)) for regular
// fills and (..., radius - 0.5, 1 / (radius - 0.5)) for inverse fills.
"uniform float4 circle;"
"half4 main(float2 xy) {"
// TODO: Right now the distance to circle calculation is performed in a space normalized
// to the radius and then denormalized. This is to mitigate overflow on devices that
// don't have full float.
"half d;"
"if (edgeType == kInverseFillBW || edgeType == kInverseFillAA) {"
"d = half((length((circle.xy - sk_FragCoord.xy) * circle.w) - 1.0) * circle.z);"
"} else {"
"d = half((1.0 - length((circle.xy - sk_FragCoord.xy) * circle.w)) * circle.z);"
"}"
"return half4((edgeType == kFillAA || edgeType == kInverseFillAA)"
"? saturate(d)"
": (d > 0.5 ? 1 : 0));"
"}"
);
SkScalar effectiveRadius = radius;
if (GrClipEdgeTypeIsInverseFill(edgeType)) {
effectiveRadius -= 0.5f;
// When the radius is 0.5 effectiveRadius is 0 which causes an inf * 0 in the shader.
effectiveRadius = std::max(0.001f, effectiveRadius);
} else {
effectiveRadius += 0.5f;
}
SkV4 circle = {center.fX, center.fY, effectiveRadius, SkScalarInvert(effectiveRadius)};
auto circleFP = GrSkSLFP::Make(effect, "Circle", /*inputFP=*/nullptr,
GrSkSLFP::OptFlags::kCompatibleWithCoverageAsAlpha,
"edgeType", GrSkSLFP::Specialize(static_cast<int>(edgeType)),
"circle", circle);
return GrFPSuccess(GrBlendFragmentProcessor::Make<SkBlendMode::kModulate>(std::move(inputFP),
std::move(circleFP)));
}
GrFPResult GrFragmentProcessor::Ellipse(std::unique_ptr<GrFragmentProcessor> inputFP,
GrClipEdgeType edgeType,
SkPoint center,
SkPoint radii,
const GrShaderCaps& caps) {
const bool medPrecision = !caps.fFloatIs32Bits;
// Small radii produce bad results on devices without full float.
if (medPrecision && (radii.fX < 0.5f || radii.fY < 0.5f)) {
return GrFPFailure(std::move(inputFP));
}
// Very narrow ellipses produce bad results on devices without full float
if (medPrecision && (radii.fX > 255*radii.fY || radii.fY > 255*radii.fX)) {
return GrFPFailure(std::move(inputFP));
}
// Very large ellipses produce bad results on devices without full float
if (medPrecision && (radii.fX > 16384 || radii.fY > 16384)) {
return GrFPFailure(std::move(inputFP));
}
static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForShader,
CLIP_EDGE_SKSL
"uniform int edgeType;" // GrClipEdgeType, specialized
"uniform int medPrecision;" // !sk_Caps.floatIs32Bits, specialized
"uniform float4 ellipse;"
"uniform float2 scale;" // only for medPrecision
"half4 main(float2 xy) {"
// d is the offset to the ellipse center
"float2 d = sk_FragCoord.xy - ellipse.xy;"
// If we're on a device with a "real" mediump then we'll do the distance computation in
// a space that is normalized by the larger radius or 128, whichever is smaller. The
// scale uniform will be scale, 1/scale. The inverse squared radii uniform values are
// already in this normalized space. The center is not.
"if (bool(medPrecision)) {"
"d *= scale.y;"
"}"
"float2 Z = d * ellipse.zw;"
// implicit is the evaluation of (x/rx)^2 + (y/ry)^2 - 1.
"float implicit = dot(Z, d) - 1;"
// grad_dot is the squared length of the gradient of the implicit.
"float grad_dot = 4 * dot(Z, Z);"
// Avoid calling inversesqrt on zero.
"if (bool(medPrecision)) {"
"grad_dot = max(grad_dot, 6.1036e-5);"
"} else {"
"grad_dot = max(grad_dot, 1.1755e-38);"
"}"
"float approx_dist = implicit * inversesqrt(grad_dot);"
"if (bool(medPrecision)) {"
"approx_dist *= scale.x;"
"}"
"half alpha;"
"if (edgeType == kFillBW) {"
"alpha = approx_dist > 0.0 ? 0.0 : 1.0;"
"} else if (edgeType == kFillAA) {"
"alpha = saturate(0.5 - half(approx_dist));"
"} else if (edgeType == kInverseFillBW) {"
"alpha = approx_dist > 0.0 ? 1.0 : 0.0;"
"} else {" // edgeType == kInverseFillAA
"alpha = saturate(0.5 + half(approx_dist));"
"}"
"return half4(alpha);"
"}"
);
float invRXSqd;
float invRYSqd;
SkV2 scale = {1, 1};
// If we're using a scale factor to work around precision issues, choose the larger radius as
// the scale factor. The inv radii need to be pre-adjusted by the scale factor.
if (medPrecision) {
if (radii.fX > radii.fY) {
invRXSqd = 1.f;
invRYSqd = (radii.fX * radii.fX) / (radii.fY * radii.fY);
scale = {radii.fX, 1.f / radii.fX};
} else {
invRXSqd = (radii.fY * radii.fY) / (radii.fX * radii.fX);
invRYSqd = 1.f;
scale = {radii.fY, 1.f / radii.fY};
}
} else {
invRXSqd = 1.f / (radii.fX * radii.fX);
invRYSqd = 1.f / (radii.fY * radii.fY);
}
SkV4 ellipse = {center.fX, center.fY, invRXSqd, invRYSqd};
auto ellipseFP = GrSkSLFP::Make(effect, "Ellipse", /*inputFP=*/nullptr,
GrSkSLFP::OptFlags::kCompatibleWithCoverageAsAlpha,
"edgeType", GrSkSLFP::Specialize(static_cast<int>(edgeType)),
"medPrecision", GrSkSLFP::Specialize<int>(medPrecision),
"ellipse", ellipse,
"scale", scale);
return GrFPSuccess(GrBlendFragmentProcessor::Make<SkBlendMode::kModulate>(std::move(ellipseFP),
std::move(inputFP)));
}
//////////////////////////////////////////////////////////////////////////////
std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::HighPrecision(
std::unique_ptr<GrFragmentProcessor> fp) {
class HighPrecisionFragmentProcessor : public GrFragmentProcessor {
public:
static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> fp) {
return std::unique_ptr<GrFragmentProcessor>(
new HighPrecisionFragmentProcessor(std::move(fp)));
}
const char* name() const override { return "HighPrecision"; }
std::unique_ptr<GrFragmentProcessor> clone() const override {
return Make(this->childProcessor(0)->clone());
}
private:
HighPrecisionFragmentProcessor(std::unique_ptr<GrFragmentProcessor> fp)
: INHERITED(kHighPrecisionFragmentProcessor_ClassID,
ProcessorOptimizationFlags(fp.get())) {
this->registerChild(std::move(fp));
}
std::unique_ptr<ProgramImpl> onMakeProgramImpl() const override {
class Impl : public ProgramImpl {
public:
void emitCode(EmitArgs& args) override {
SkString childColor = this->invokeChild(0, args);
args.fFragBuilder->forceHighPrecision();
args.fFragBuilder->codeAppendf("return %s;", childColor.c_str());
}
};
return std::make_unique<Impl>();
}
void onAddToKey(const GrShaderCaps&, skgpu::KeyBuilder*) const override {}
bool onIsEqual(const GrFragmentProcessor& other) const override { return true; }
SkPMColor4f constantOutputForConstantInput(const SkPMColor4f& input) const override {
return ConstantOutputForConstantInput(this->childProcessor(0), input);
}
using INHERITED = GrFragmentProcessor;
};
return HighPrecisionFragmentProcessor::Make(std::move(fp));
}
//////////////////////////////////////////////////////////////////////////////
using ProgramImpl = GrFragmentProcessor::ProgramImpl;
void ProgramImpl::setData(const GrGLSLProgramDataManager& pdman,
const GrFragmentProcessor& processor) {
this->onSetData(pdman, processor);
}
SkString ProgramImpl::invokeChild(int childIndex,
const char* inputColor,
const char* destColor,
EmitArgs& args,
std::string_view skslCoords) {
SkASSERT(childIndex >= 0);
if (!inputColor) {
inputColor = args.fInputColor;
}
const GrFragmentProcessor* childProc = args.fFp.childProcessor(childIndex);
if (!childProc) {
// If no child processor is provided, return the input color as-is.
return SkString(inputColor);
}
auto invocation = SkStringPrintf("%s(%s", this->childProcessor(childIndex)->functionName(),
inputColor);
if (childProc->isBlendFunction()) {
if (!destColor) {
destColor = args.fFp.isBlendFunction() ? args.fDestColor : "half4(1)";
}
invocation.appendf(", %s", destColor);
}
// Assert that the child has no sample matrix. A uniform matrix sample call would go through
// invokeChildWithMatrix, not here.
SkASSERT(!childProc->sampleUsage().isUniformMatrix());
if (args.fFragBuilder->getProgramBuilder()->fragmentProcessorHasCoordsParam(childProc)) {
SkASSERT(!childProc->sampleUsage().isFragCoord() || skslCoords == "sk_FragCoord.xy");
// The child's function takes a half4 color and a float2 coordinate
if (!skslCoords.empty()) {
invocation.appendf(", %.*s", (int)skslCoords.size(), skslCoords.data());
} else {
invocation.appendf(", %s", args.fSampleCoord);
}
}
invocation.append(")");
return invocation;
}
SkString ProgramImpl::invokeChildWithMatrix(int childIndex,
const char* inputColor,
const char* destColor,
EmitArgs& args) {
SkASSERT(childIndex >= 0);
if (!inputColor) {
inputColor = args.fInputColor;
}
const GrFragmentProcessor* childProc = args.fFp.childProcessor(childIndex);
if (!childProc) {
// If no child processor is provided, return the input color as-is.
return SkString(inputColor);
}
SkASSERT(childProc->sampleUsage().isUniformMatrix());
// Every uniform matrix has the same (initial) name. Resolve that into the mangled name:
GrShaderVar uniform = args.fUniformHandler->getUniformMapping(
args.fFp, SkString(SkSL::SampleUsage::MatrixUniformName()));
SkASSERT(uniform.getType() == SkSLType::kFloat3x3);
const SkString& matrixName(uniform.getName());
auto invocation = SkStringPrintf("%s(%s", this->childProcessor(childIndex)->functionName(),
inputColor);
if (childProc->isBlendFunction()) {
if (!destColor) {
destColor = args.fFp.isBlendFunction() ? args.fDestColor : "half4(1)";
}
invocation.appendf(", %s", destColor);
}
// Produce a string containing the call to the helper function. We have a uniform variable
// containing our transform (matrixName). If the parent coords were produced by uniform
// transforms, then the entire expression (matrixName * coords) is lifted to a vertex shader
// and is stored in a varying. In that case, childProc will not be sampled explicitly, so its
// function signature will not take in coords.
//
// In all other cases, we need to insert sksl to compute matrix * parent coords and then invoke
// the function.
if (args.fFragBuilder->getProgramBuilder()->fragmentProcessorHasCoordsParam(childProc)) {
// Only check perspective for this specific matrix transform, not the aggregate FP property.
// Any parent perspective will have already been applied when evaluated in the FS.
if (childProc->sampleUsage().hasPerspective()) {
invocation.appendf(", proj((%s) * %s.xy1)", matrixName.c_str(), args.fSampleCoord);
} else if (args.fShaderCaps->fNonsquareMatrixSupport) {
invocation.appendf(", float3x2(%s) * %s.xy1", matrixName.c_str(), args.fSampleCoord);
} else {
invocation.appendf(", ((%s) * %s.xy1).xy", matrixName.c_str(), args.fSampleCoord);
}
}
invocation.append(")");
return invocation;
}