| /* |
| * Copyright 2015 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/gpu/ganesh/GrFragmentProcessor.h" |
| |
| #include "include/core/SkM44.h" |
| #include "src/base/SkVx.h" |
| #include "src/core/SkRuntimeEffectPriv.h" |
| #include "src/gpu/KeyBuilder.h" |
| #include "src/gpu/ganesh/GrPipeline.h" |
| #include "src/gpu/ganesh/GrProcessorAnalysis.h" |
| #include "src/gpu/ganesh/GrShaderCaps.h" |
| #include "src/gpu/ganesh/effects/GrBlendFragmentProcessor.h" |
| #include "src/gpu/ganesh/effects/GrSkSLFP.h" |
| #include "src/gpu/ganesh/effects/GrTextureEffect.h" |
| #include "src/gpu/ganesh/glsl/GrGLSLFragmentShaderBuilder.h" |
| #include "src/gpu/ganesh/glsl/GrGLSLProgramBuilder.h" |
| #include "src/gpu/ganesh/glsl/GrGLSLProgramDataManager.h" |
| #include "src/gpu/ganesh/glsl/GrGLSLUniformHandler.h" |
| |
| bool GrFragmentProcessor::isEqual(const GrFragmentProcessor& that) const { |
| if (this->classID() != that.classID()) { |
| return false; |
| } |
| if (this->sampleUsage() != that.sampleUsage()) { |
| return false; |
| } |
| if (!this->onIsEqual(that)) { |
| return false; |
| } |
| if (this->numChildProcessors() != that.numChildProcessors()) { |
| return false; |
| } |
| for (int i = 0; i < this->numChildProcessors(); ++i) { |
| auto thisChild = this->childProcessor(i), |
| thatChild = that .childProcessor(i); |
| if (SkToBool(thisChild) != SkToBool(thatChild)) { |
| return false; |
| } |
| if (thisChild && !thisChild->isEqual(*thatChild)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| void GrFragmentProcessor::visitProxies(const GrVisitProxyFunc& func) const { |
| this->visitTextureEffects([&func](const GrTextureEffect& te) { |
| func(te.view().proxy(), te.samplerState().mipmapped()); |
| }); |
| } |
| |
| void GrFragmentProcessor::visitTextureEffects( |
| const std::function<void(const GrTextureEffect&)>& func) const { |
| if (auto* te = this->asTextureEffect()) { |
| func(*te); |
| } |
| for (auto& child : fChildProcessors) { |
| if (child) { |
| child->visitTextureEffects(func); |
| } |
| } |
| } |
| |
| void GrFragmentProcessor::visitWithImpls( |
| const std::function<void(const GrFragmentProcessor&, ProgramImpl&)>& f, |
| ProgramImpl& impl) const { |
| f(*this, impl); |
| SkASSERT(impl.numChildProcessors() == this->numChildProcessors()); |
| for (int i = 0; i < this->numChildProcessors(); ++i) { |
| if (const auto* child = this->childProcessor(i)) { |
| child->visitWithImpls(f, *impl.childProcessor(i)); |
| } |
| } |
| } |
| |
| GrTextureEffect* GrFragmentProcessor::asTextureEffect() { |
| if (this->classID() == kGrTextureEffect_ClassID) { |
| return static_cast<GrTextureEffect*>(this); |
| } |
| return nullptr; |
| } |
| |
| const GrTextureEffect* GrFragmentProcessor::asTextureEffect() const { |
| if (this->classID() == kGrTextureEffect_ClassID) { |
| return static_cast<const GrTextureEffect*>(this); |
| } |
| return nullptr; |
| } |
| |
| #if defined(GR_TEST_UTILS) |
| static void recursive_dump_tree_info(const GrFragmentProcessor& fp, |
| SkString indent, |
| SkString* text) { |
| for (int index = 0; index < fp.numChildProcessors(); ++index) { |
| text->appendf("\n%s(#%d) -> ", indent.c_str(), index); |
| if (const GrFragmentProcessor* childFP = fp.childProcessor(index)) { |
| text->append(childFP->dumpInfo()); |
| indent.append("\t"); |
| recursive_dump_tree_info(*childFP, indent, text); |
| } else { |
| text->append("null"); |
| } |
| } |
| } |
| |
| SkString GrFragmentProcessor::dumpTreeInfo() const { |
| SkString text = this->dumpInfo(); |
| recursive_dump_tree_info(*this, SkString("\t"), &text); |
| text.append("\n"); |
| return text; |
| } |
| #endif |
| |
| std::unique_ptr<GrFragmentProcessor::ProgramImpl> GrFragmentProcessor::makeProgramImpl() const { |
| std::unique_ptr<ProgramImpl> impl = this->onMakeProgramImpl(); |
| impl->fChildProcessors.push_back_n(fChildProcessors.size()); |
| for (int i = 0; i < fChildProcessors.size(); ++i) { |
| impl->fChildProcessors[i] = fChildProcessors[i] ? fChildProcessors[i]->makeProgramImpl() |
| : nullptr; |
| } |
| return impl; |
| } |
| |
| int GrFragmentProcessor::numNonNullChildProcessors() const { |
| return std::count_if(fChildProcessors.begin(), fChildProcessors.end(), |
| [](const auto& c) { return c != nullptr; }); |
| } |
| |
| #ifdef SK_DEBUG |
| bool GrFragmentProcessor::isInstantiated() const { |
| bool result = true; |
| this->visitTextureEffects([&result](const GrTextureEffect& te) { |
| if (!te.texture()) { |
| result = false; |
| } |
| }); |
| return result; |
| } |
| #endif |
| |
| void GrFragmentProcessor::registerChild(std::unique_ptr<GrFragmentProcessor> child, |
| SkSL::SampleUsage sampleUsage) { |
| SkASSERT(sampleUsage.isSampled()); |
| |
| if (!child) { |
| fChildProcessors.push_back(nullptr); |
| return; |
| } |
| |
| // The child should not have been attached to another FP already and not had any sampling |
| // strategy set on it. |
| SkASSERT(!child->fParent && !child->sampleUsage().isSampled()); |
| |
| // Configure child's sampling state first |
| child->fUsage = sampleUsage; |
| |
| // Propagate the "will read dest-color" flag up to parent FPs. |
| if (child->willReadDstColor()) { |
| this->setWillReadDstColor(); |
| } |
| |
| // If this child receives passthrough or matrix transformed coords from its parent then note |
| // that the parent's coords are used indirectly to ensure that they aren't omitted. |
| if ((sampleUsage.isPassThrough() || sampleUsage.isUniformMatrix()) && |
| child->usesSampleCoords()) { |
| fFlags |= kUsesSampleCoordsIndirectly_Flag; |
| } |
| |
| // Record that the child is attached to us; this FP is the source of any uniform data needed |
| // to evaluate the child sample matrix. |
| child->fParent = this; |
| fChildProcessors.push_back(std::move(child)); |
| |
| // Validate: our sample strategy comes from a parent we shouldn't have yet. |
| SkASSERT(!fUsage.isSampled() && !fParent); |
| } |
| |
| void GrFragmentProcessor::cloneAndRegisterAllChildProcessors(const GrFragmentProcessor& src) { |
| for (int i = 0; i < src.numChildProcessors(); ++i) { |
| if (auto fp = src.childProcessor(i)) { |
| this->registerChild(fp->clone(), fp->sampleUsage()); |
| } else { |
| this->registerChild(nullptr); |
| } |
| } |
| } |
| |
| std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::MakeColor(SkPMColor4f color) { |
| // Use ColorFilter signature/factory to get the constant output for constant input optimization |
| static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForColorFilter, |
| "uniform half4 color;" |
| "half4 main(half4 inColor) { return color; }" |
| ); |
| SkASSERT(SkRuntimeEffectPriv::SupportsConstantOutputForConstantInput(effect)); |
| return GrSkSLFP::Make(effect, "color_fp", /*inputFP=*/nullptr, |
| color.isOpaque() ? GrSkSLFP::OptFlags::kPreservesOpaqueInput |
| : GrSkSLFP::OptFlags::kNone, |
| "color", color); |
| } |
| |
| std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::MulInputByChildAlpha( |
| std::unique_ptr<GrFragmentProcessor> fp) { |
| if (!fp) { |
| return nullptr; |
| } |
| return GrBlendFragmentProcessor::Make<SkBlendMode::kSrcIn>(/*src=*/nullptr, std::move(fp)); |
| } |
| |
| std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::ApplyPaintAlpha( |
| std::unique_ptr<GrFragmentProcessor> child) { |
| SkASSERT(child); |
| static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForColorFilter, |
| "uniform colorFilter fp;" |
| "half4 main(half4 inColor) {" |
| "return fp.eval(inColor.rgb1) * inColor.a;" |
| "}" |
| ); |
| return GrSkSLFP::Make(effect, "ApplyPaintAlpha", /*inputFP=*/nullptr, |
| GrSkSLFP::OptFlags::kPreservesOpaqueInput | |
| GrSkSLFP::OptFlags::kCompatibleWithCoverageAsAlpha, |
| "fp", std::move(child)); |
| } |
| |
| std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::ModulateRGBA( |
| std::unique_ptr<GrFragmentProcessor> inputFP, const SkPMColor4f& color) { |
| auto colorFP = MakeColor(color); |
| return GrBlendFragmentProcessor::Make<SkBlendMode::kModulate>(std::move(colorFP), |
| std::move(inputFP)); |
| } |
| |
| std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::ClampOutput( |
| std::unique_ptr<GrFragmentProcessor> fp) { |
| SkASSERT(fp); |
| static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForColorFilter, |
| "half4 main(half4 inColor) {" |
| "return saturate(inColor);" |
| "}" |
| ); |
| SkASSERT(SkRuntimeEffectPriv::SupportsConstantOutputForConstantInput(effect)); |
| return GrSkSLFP::Make(effect, "Clamp", std::move(fp), |
| GrSkSLFP::OptFlags::kPreservesOpaqueInput); |
| } |
| |
| std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::SwizzleOutput( |
| std::unique_ptr<GrFragmentProcessor> fp, const skgpu::Swizzle& swizzle) { |
| class SwizzleFragmentProcessor : public GrFragmentProcessor { |
| public: |
| static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> fp, |
| const skgpu::Swizzle& swizzle) { |
| return std::unique_ptr<GrFragmentProcessor>( |
| new SwizzleFragmentProcessor(std::move(fp), swizzle)); |
| } |
| |
| const char* name() const override { return "Swizzle"; } |
| |
| std::unique_ptr<GrFragmentProcessor> clone() const override { |
| return Make(this->childProcessor(0)->clone(), fSwizzle); |
| } |
| |
| private: |
| SwizzleFragmentProcessor(std::unique_ptr<GrFragmentProcessor> fp, |
| const skgpu::Swizzle& swizzle) |
| : INHERITED(kSwizzleFragmentProcessor_ClassID, ProcessorOptimizationFlags(fp.get())) |
| , fSwizzle(swizzle) { |
| this->registerChild(std::move(fp)); |
| } |
| |
| std::unique_ptr<ProgramImpl> onMakeProgramImpl() const override { |
| class Impl : public ProgramImpl { |
| public: |
| void emitCode(EmitArgs& args) override { |
| SkString childColor = this->invokeChild(0, args); |
| |
| const SwizzleFragmentProcessor& sfp = args.fFp.cast<SwizzleFragmentProcessor>(); |
| const skgpu::Swizzle& swizzle = sfp.fSwizzle; |
| GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; |
| |
| fragBuilder->codeAppendf("return %s.%s;", |
| childColor.c_str(), swizzle.asString().c_str()); |
| } |
| }; |
| return std::make_unique<Impl>(); |
| } |
| |
| void onAddToKey(const GrShaderCaps&, skgpu::KeyBuilder* b) const override { |
| b->add32(fSwizzle.asKey()); |
| } |
| |
| bool onIsEqual(const GrFragmentProcessor& other) const override { |
| const SwizzleFragmentProcessor& sfp = other.cast<SwizzleFragmentProcessor>(); |
| return fSwizzle == sfp.fSwizzle; |
| } |
| |
| SkPMColor4f constantOutputForConstantInput(const SkPMColor4f& input) const override { |
| return fSwizzle.applyTo(ConstantOutputForConstantInput(this->childProcessor(0), input)); |
| } |
| |
| skgpu::Swizzle fSwizzle; |
| |
| using INHERITED = GrFragmentProcessor; |
| }; |
| |
| if (!fp) { |
| return nullptr; |
| } |
| if (skgpu::Swizzle::RGBA() == swizzle) { |
| return fp; |
| } |
| return SwizzleFragmentProcessor::Make(std::move(fp), swizzle); |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::OverrideInput( |
| std::unique_ptr<GrFragmentProcessor> fp, const SkPMColor4f& color) { |
| if (!fp) { |
| return nullptr; |
| } |
| static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForColorFilter, |
| "uniform colorFilter fp;" // Declared as colorFilter so we can pass a color |
| "uniform half4 color;" |
| "half4 main(half4 inColor) {" |
| "return fp.eval(color);" |
| "}" |
| ); |
| return GrSkSLFP::Make(effect, "OverrideInput", /*inputFP=*/nullptr, |
| color.isOpaque() ? GrSkSLFP::OptFlags::kPreservesOpaqueInput |
| : GrSkSLFP::OptFlags::kNone, |
| "fp", std::move(fp), |
| "color", color); |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::DisableCoverageAsAlpha( |
| std::unique_ptr<GrFragmentProcessor> fp) { |
| if (!fp || !fp->compatibleWithCoverageAsAlpha()) { |
| return fp; |
| } |
| static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForColorFilter, |
| "half4 main(half4 inColor) { return inColor; }" |
| ); |
| SkASSERT(SkRuntimeEffectPriv::SupportsConstantOutputForConstantInput(effect)); |
| return GrSkSLFP::Make(effect, "DisableCoverageAsAlpha", std::move(fp), |
| GrSkSLFP::OptFlags::kPreservesOpaqueInput); |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::DestColor() { |
| static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForBlender, |
| "half4 main(half4 src, half4 dst) {" |
| "return dst;" |
| "}" |
| ); |
| return GrSkSLFP::Make(effect, "DestColor", /*inputFP=*/nullptr, GrSkSLFP::OptFlags::kNone); |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::Compose( |
| std::unique_ptr<GrFragmentProcessor> f, std::unique_ptr<GrFragmentProcessor> g) { |
| class ComposeProcessor : public GrFragmentProcessor { |
| public: |
| static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> f, |
| std::unique_ptr<GrFragmentProcessor> g) { |
| return std::unique_ptr<GrFragmentProcessor>(new ComposeProcessor(std::move(f), |
| std::move(g))); |
| } |
| |
| const char* name() const override { return "Compose"; } |
| |
| std::unique_ptr<GrFragmentProcessor> clone() const override { |
| return std::unique_ptr<GrFragmentProcessor>(new ComposeProcessor(*this)); |
| } |
| |
| private: |
| std::unique_ptr<ProgramImpl> onMakeProgramImpl() const override { |
| class Impl : public ProgramImpl { |
| public: |
| void emitCode(EmitArgs& args) override { |
| SkString result = this->invokeChild(1, args); // g(x) |
| result = this->invokeChild(0, result.c_str(), args); // f(g(x)) |
| args.fFragBuilder->codeAppendf("return %s;", result.c_str()); |
| } |
| }; |
| return std::make_unique<Impl>(); |
| } |
| |
| ComposeProcessor(std::unique_ptr<GrFragmentProcessor> f, |
| std::unique_ptr<GrFragmentProcessor> g) |
| : INHERITED(kSeriesFragmentProcessor_ClassID, |
| f->optimizationFlags() & g->optimizationFlags()) { |
| this->registerChild(std::move(f)); |
| this->registerChild(std::move(g)); |
| } |
| |
| ComposeProcessor(const ComposeProcessor& that) : INHERITED(that) {} |
| |
| void onAddToKey(const GrShaderCaps&, skgpu::KeyBuilder*) const override {} |
| |
| bool onIsEqual(const GrFragmentProcessor&) const override { return true; } |
| |
| SkPMColor4f constantOutputForConstantInput(const SkPMColor4f& inColor) const override { |
| SkPMColor4f color = inColor; |
| color = ConstantOutputForConstantInput(this->childProcessor(1), color); |
| color = ConstantOutputForConstantInput(this->childProcessor(0), color); |
| return color; |
| } |
| |
| using INHERITED = GrFragmentProcessor; |
| }; |
| |
| // Allow either of the composed functions to be null. |
| if (f == nullptr) { |
| return g; |
| } |
| if (g == nullptr) { |
| return f; |
| } |
| |
| // Run an optimization pass on this composition. |
| GrProcessorAnalysisColor inputColor; |
| inputColor.setToUnknown(); |
| |
| std::unique_ptr<GrFragmentProcessor> series[2] = {std::move(g), std::move(f)}; |
| GrColorFragmentProcessorAnalysis info(inputColor, series, std::size(series)); |
| |
| SkPMColor4f knownColor; |
| int leadingFPsToEliminate = info.initialProcessorsToEliminate(&knownColor); |
| switch (leadingFPsToEliminate) { |
| default: |
| // We shouldn't eliminate more than we started with. |
| SkASSERT(leadingFPsToEliminate <= 2); |
| [[fallthrough]]; |
| case 0: |
| // Compose the two processors as requested. |
| return ComposeProcessor::Make(/*f=*/std::move(series[1]), /*g=*/std::move(series[0])); |
| case 1: |
| // Replace the first processor with a constant color. |
| return ComposeProcessor::Make(/*f=*/std::move(series[1]), |
| /*g=*/MakeColor(knownColor)); |
| case 2: |
| // Replace the entire composition with a constant color. |
| return MakeColor(knownColor); |
| } |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::ColorMatrix( |
| std::unique_ptr<GrFragmentProcessor> child, |
| const float matrix[20], |
| bool unpremulInput, |
| bool clampRGBOutput, |
| bool premulOutput) { |
| static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForColorFilter, |
| "uniform half4x4 m;" |
| "uniform half4 v;" |
| "uniform int unpremulInput;" // always specialized |
| "uniform int clampRGBOutput;" // always specialized |
| "uniform int premulOutput;" // always specialized |
| "half4 main(half4 color) {" |
| "if (bool(unpremulInput)) {" |
| "color = unpremul(color);" |
| "}" |
| "color = m * color + v;" |
| "if (bool(clampRGBOutput)) {" |
| "color = saturate(color);" |
| "} else {" |
| "color.a = saturate(color.a);" |
| "}" |
| "if (bool(premulOutput)) {" |
| "color.rgb *= color.a;" |
| "}" |
| "return color;" |
| "}" |
| ); |
| SkASSERT(SkRuntimeEffectPriv::SupportsConstantOutputForConstantInput(effect)); |
| |
| SkM44 m44(matrix[ 0], matrix[ 1], matrix[ 2], matrix[ 3], |
| matrix[ 5], matrix[ 6], matrix[ 7], matrix[ 8], |
| matrix[10], matrix[11], matrix[12], matrix[13], |
| matrix[15], matrix[16], matrix[17], matrix[18]); |
| SkV4 v4 = {matrix[4], matrix[9], matrix[14], matrix[19]}; |
| return GrSkSLFP::Make(effect, "ColorMatrix", std::move(child), GrSkSLFP::OptFlags::kNone, |
| "m", m44, |
| "v", v4, |
| "unpremulInput", GrSkSLFP::Specialize(unpremulInput ? 1 : 0), |
| "clampRGBOutput", GrSkSLFP::Specialize(clampRGBOutput ? 1 : 0), |
| "premulOutput", GrSkSLFP::Specialize(premulOutput ? 1 : 0)); |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::SurfaceColor() { |
| class SurfaceColorProcessor : public GrFragmentProcessor { |
| public: |
| static std::unique_ptr<GrFragmentProcessor> Make() { |
| return std::unique_ptr<GrFragmentProcessor>(new SurfaceColorProcessor()); |
| } |
| |
| std::unique_ptr<GrFragmentProcessor> clone() const override { return Make(); } |
| |
| const char* name() const override { return "SurfaceColor"; } |
| |
| private: |
| std::unique_ptr<ProgramImpl> onMakeProgramImpl() const override { |
| class Impl : public ProgramImpl { |
| public: |
| void emitCode(EmitArgs& args) override { |
| const char* dstColor = args.fFragBuilder->dstColor(); |
| args.fFragBuilder->codeAppendf("return %s;", dstColor); |
| } |
| }; |
| return std::make_unique<Impl>(); |
| } |
| |
| SurfaceColorProcessor() |
| : INHERITED(kSurfaceColorProcessor_ClassID, kNone_OptimizationFlags) { |
| this->setWillReadDstColor(); |
| } |
| |
| void onAddToKey(const GrShaderCaps&, skgpu::KeyBuilder*) const override {} |
| |
| bool onIsEqual(const GrFragmentProcessor&) const override { return true; } |
| |
| using INHERITED = GrFragmentProcessor; |
| }; |
| |
| return SurfaceColorProcessor::Make(); |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::DeviceSpace( |
| std::unique_ptr<GrFragmentProcessor> fp) { |
| if (!fp) { |
| return nullptr; |
| } |
| |
| class DeviceSpace : GrFragmentProcessor { |
| public: |
| static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> fp) { |
| return std::unique_ptr<GrFragmentProcessor>(new DeviceSpace(std::move(fp))); |
| } |
| |
| private: |
| DeviceSpace(std::unique_ptr<GrFragmentProcessor> fp) |
| : GrFragmentProcessor(kDeviceSpace_ClassID, fp->optimizationFlags()) { |
| // Passing FragCoord here is the reason this is a subclass and not a runtime-FP. |
| this->registerChild(std::move(fp), SkSL::SampleUsage::FragCoord()); |
| } |
| |
| std::unique_ptr<GrFragmentProcessor> clone() const override { |
| auto child = this->childProcessor(0)->clone(); |
| return std::unique_ptr<GrFragmentProcessor>(new DeviceSpace(std::move(child))); |
| } |
| |
| SkPMColor4f constantOutputForConstantInput(const SkPMColor4f& f) const override { |
| return this->childProcessor(0)->constantOutputForConstantInput(f); |
| } |
| |
| std::unique_ptr<ProgramImpl> onMakeProgramImpl() const override { |
| class Impl : public ProgramImpl { |
| public: |
| Impl() = default; |
| void emitCode(ProgramImpl::EmitArgs& args) override { |
| auto child = this->invokeChild(0, args.fInputColor, args, "sk_FragCoord.xy"); |
| args.fFragBuilder->codeAppendf("return %s;", child.c_str()); |
| } |
| }; |
| return std::make_unique<Impl>(); |
| } |
| |
| void onAddToKey(const GrShaderCaps&, skgpu::KeyBuilder*) const override {} |
| |
| bool onIsEqual(const GrFragmentProcessor& processor) const override { return true; } |
| |
| const char* name() const override { return "DeviceSpace"; } |
| }; |
| |
| return DeviceSpace::Make(std::move(fp)); |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| #define CLIP_EDGE_SKSL \ |
| "const int kFillBW = 0;" \ |
| "const int kFillAA = 1;" \ |
| "const int kInverseFillBW = 2;" \ |
| "const int kInverseFillAA = 3;" |
| |
| static_assert(static_cast<int>(GrClipEdgeType::kFillBW) == 0); |
| static_assert(static_cast<int>(GrClipEdgeType::kFillAA) == 1); |
| static_assert(static_cast<int>(GrClipEdgeType::kInverseFillBW) == 2); |
| static_assert(static_cast<int>(GrClipEdgeType::kInverseFillAA) == 3); |
| |
| std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::Rect( |
| std::unique_ptr<GrFragmentProcessor> inputFP, GrClipEdgeType edgeType, SkRect rect) { |
| static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForShader, |
| CLIP_EDGE_SKSL |
| "uniform int edgeType;" // GrClipEdgeType, specialized |
| "uniform float4 rectUniform;" |
| |
| "half4 main(float2 xy) {" |
| "half coverage;" |
| "if (edgeType == kFillBW || edgeType == kInverseFillBW) {" |
| // non-AA |
| "coverage = half(all(greaterThan(float4(sk_FragCoord.xy, rectUniform.zw)," |
| "float4(rectUniform.xy, sk_FragCoord.xy))));" |
| "} else {" |
| // compute coverage relative to left and right edges, add, then subtract 1 to |
| // account for double counting. And similar for top/bottom. |
| "half4 dists4 = saturate(half4(1, 1, -1, -1) *" |
| "half4(sk_FragCoord.xyxy - rectUniform));" |
| "half2 dists2 = dists4.xy + dists4.zw - 1;" |
| "coverage = dists2.x * dists2.y;" |
| "}" |
| |
| "if (edgeType == kInverseFillBW || edgeType == kInverseFillAA) {" |
| "coverage = 1.0 - coverage;" |
| "}" |
| |
| "return half4(coverage);" |
| "}" |
| ); |
| |
| SkASSERT(rect.isSorted()); |
| // The AA math in the shader evaluates to 0 at the uploaded coordinates, so outset by 0.5 |
| // to interpolate from 0 at a half pixel inset and 1 at a half pixel outset of rect. |
| SkRect rectUniform = GrClipEdgeTypeIsAA(edgeType) ? rect.makeOutset(.5f, .5f) : rect; |
| |
| auto rectFP = GrSkSLFP::Make(effect, "Rect", /*inputFP=*/nullptr, |
| GrSkSLFP::OptFlags::kCompatibleWithCoverageAsAlpha, |
| "edgeType", GrSkSLFP::Specialize(static_cast<int>(edgeType)), |
| "rectUniform", rectUniform); |
| return GrBlendFragmentProcessor::Make<SkBlendMode::kModulate>(std::move(rectFP), |
| std::move(inputFP)); |
| } |
| |
| GrFPResult GrFragmentProcessor::Circle(std::unique_ptr<GrFragmentProcessor> inputFP, |
| GrClipEdgeType edgeType, |
| SkPoint center, |
| float radius) { |
| // A radius below half causes the implicit insetting done by this processor to become |
| // inverted. We could handle this case by making the processor code more complicated. |
| if (radius < .5f && GrClipEdgeTypeIsInverseFill(edgeType)) { |
| return GrFPFailure(std::move(inputFP)); |
| } |
| |
| static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForShader, |
| CLIP_EDGE_SKSL |
| "uniform int edgeType;" // GrClipEdgeType, specialized |
| // The circle uniform is (center.x, center.y, radius + 0.5, 1 / (radius + 0.5)) for regular |
| // fills and (..., radius - 0.5, 1 / (radius - 0.5)) for inverse fills. |
| "uniform float4 circle;" |
| |
| "half4 main(float2 xy) {" |
| // TODO: Right now the distance to circle calculation is performed in a space normalized |
| // to the radius and then denormalized. This is to mitigate overflow on devices that |
| // don't have full float. |
| "half d;" |
| "if (edgeType == kInverseFillBW || edgeType == kInverseFillAA) {" |
| "d = half((length((circle.xy - sk_FragCoord.xy) * circle.w) - 1.0) * circle.z);" |
| "} else {" |
| "d = half((1.0 - length((circle.xy - sk_FragCoord.xy) * circle.w)) * circle.z);" |
| "}" |
| "return half4((edgeType == kFillAA || edgeType == kInverseFillAA)" |
| "? saturate(d)" |
| ": (d > 0.5 ? 1 : 0));" |
| "}" |
| ); |
| |
| SkScalar effectiveRadius = radius; |
| if (GrClipEdgeTypeIsInverseFill(edgeType)) { |
| effectiveRadius -= 0.5f; |
| // When the radius is 0.5 effectiveRadius is 0 which causes an inf * 0 in the shader. |
| effectiveRadius = std::max(0.001f, effectiveRadius); |
| } else { |
| effectiveRadius += 0.5f; |
| } |
| SkV4 circle = {center.fX, center.fY, effectiveRadius, SkScalarInvert(effectiveRadius)}; |
| |
| auto circleFP = GrSkSLFP::Make(effect, "Circle", /*inputFP=*/nullptr, |
| GrSkSLFP::OptFlags::kCompatibleWithCoverageAsAlpha, |
| "edgeType", GrSkSLFP::Specialize(static_cast<int>(edgeType)), |
| "circle", circle); |
| return GrFPSuccess(GrBlendFragmentProcessor::Make<SkBlendMode::kModulate>(std::move(inputFP), |
| std::move(circleFP))); |
| } |
| |
| GrFPResult GrFragmentProcessor::Ellipse(std::unique_ptr<GrFragmentProcessor> inputFP, |
| GrClipEdgeType edgeType, |
| SkPoint center, |
| SkPoint radii, |
| const GrShaderCaps& caps) { |
| const bool medPrecision = !caps.fFloatIs32Bits; |
| |
| // Small radii produce bad results on devices without full float. |
| if (medPrecision && (radii.fX < 0.5f || radii.fY < 0.5f)) { |
| return GrFPFailure(std::move(inputFP)); |
| } |
| // Very narrow ellipses produce bad results on devices without full float |
| if (medPrecision && (radii.fX > 255*radii.fY || radii.fY > 255*radii.fX)) { |
| return GrFPFailure(std::move(inputFP)); |
| } |
| // Very large ellipses produce bad results on devices without full float |
| if (medPrecision && (radii.fX > 16384 || radii.fY > 16384)) { |
| return GrFPFailure(std::move(inputFP)); |
| } |
| |
| static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForShader, |
| CLIP_EDGE_SKSL |
| "uniform int edgeType;" // GrClipEdgeType, specialized |
| "uniform int medPrecision;" // !sk_Caps.floatIs32Bits, specialized |
| |
| "uniform float4 ellipse;" |
| "uniform float2 scale;" // only for medPrecision |
| |
| "half4 main(float2 xy) {" |
| // d is the offset to the ellipse center |
| "float2 d = sk_FragCoord.xy - ellipse.xy;" |
| // If we're on a device with a "real" mediump then we'll do the distance computation in |
| // a space that is normalized by the larger radius or 128, whichever is smaller. The |
| // scale uniform will be scale, 1/scale. The inverse squared radii uniform values are |
| // already in this normalized space. The center is not. |
| "if (bool(medPrecision)) {" |
| "d *= scale.y;" |
| "}" |
| "float2 Z = d * ellipse.zw;" |
| // implicit is the evaluation of (x/rx)^2 + (y/ry)^2 - 1. |
| "float implicit = dot(Z, d) - 1;" |
| // grad_dot is the squared length of the gradient of the implicit. |
| "float grad_dot = 4 * dot(Z, Z);" |
| // Avoid calling inversesqrt on zero. |
| "if (bool(medPrecision)) {" |
| "grad_dot = max(grad_dot, 6.1036e-5);" |
| "} else {" |
| "grad_dot = max(grad_dot, 1.1755e-38);" |
| "}" |
| "float approx_dist = implicit * inversesqrt(grad_dot);" |
| "if (bool(medPrecision)) {" |
| "approx_dist *= scale.x;" |
| "}" |
| |
| "half alpha;" |
| "if (edgeType == kFillBW) {" |
| "alpha = approx_dist > 0.0 ? 0.0 : 1.0;" |
| "} else if (edgeType == kFillAA) {" |
| "alpha = saturate(0.5 - half(approx_dist));" |
| "} else if (edgeType == kInverseFillBW) {" |
| "alpha = approx_dist > 0.0 ? 1.0 : 0.0;" |
| "} else {" // edgeType == kInverseFillAA |
| "alpha = saturate(0.5 + half(approx_dist));" |
| "}" |
| "return half4(alpha);" |
| "}" |
| ); |
| |
| float invRXSqd; |
| float invRYSqd; |
| SkV2 scale = {1, 1}; |
| // If we're using a scale factor to work around precision issues, choose the larger radius as |
| // the scale factor. The inv radii need to be pre-adjusted by the scale factor. |
| if (medPrecision) { |
| if (radii.fX > radii.fY) { |
| invRXSqd = 1.f; |
| invRYSqd = (radii.fX * radii.fX) / (radii.fY * radii.fY); |
| scale = {radii.fX, 1.f / radii.fX}; |
| } else { |
| invRXSqd = (radii.fY * radii.fY) / (radii.fX * radii.fX); |
| invRYSqd = 1.f; |
| scale = {radii.fY, 1.f / radii.fY}; |
| } |
| } else { |
| invRXSqd = 1.f / (radii.fX * radii.fX); |
| invRYSqd = 1.f / (radii.fY * radii.fY); |
| } |
| SkV4 ellipse = {center.fX, center.fY, invRXSqd, invRYSqd}; |
| |
| auto ellipseFP = GrSkSLFP::Make(effect, "Ellipse", /*inputFP=*/nullptr, |
| GrSkSLFP::OptFlags::kCompatibleWithCoverageAsAlpha, |
| "edgeType", GrSkSLFP::Specialize(static_cast<int>(edgeType)), |
| "medPrecision", GrSkSLFP::Specialize<int>(medPrecision), |
| "ellipse", ellipse, |
| "scale", scale); |
| return GrFPSuccess(GrBlendFragmentProcessor::Make<SkBlendMode::kModulate>(std::move(ellipseFP), |
| std::move(inputFP))); |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::HighPrecision( |
| std::unique_ptr<GrFragmentProcessor> fp) { |
| class HighPrecisionFragmentProcessor : public GrFragmentProcessor { |
| public: |
| static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> fp) { |
| return std::unique_ptr<GrFragmentProcessor>( |
| new HighPrecisionFragmentProcessor(std::move(fp))); |
| } |
| |
| const char* name() const override { return "HighPrecision"; } |
| |
| std::unique_ptr<GrFragmentProcessor> clone() const override { |
| return Make(this->childProcessor(0)->clone()); |
| } |
| |
| private: |
| HighPrecisionFragmentProcessor(std::unique_ptr<GrFragmentProcessor> fp) |
| : INHERITED(kHighPrecisionFragmentProcessor_ClassID, |
| ProcessorOptimizationFlags(fp.get())) { |
| this->registerChild(std::move(fp)); |
| } |
| |
| std::unique_ptr<ProgramImpl> onMakeProgramImpl() const override { |
| class Impl : public ProgramImpl { |
| public: |
| void emitCode(EmitArgs& args) override { |
| SkString childColor = this->invokeChild(0, args); |
| |
| args.fFragBuilder->forceHighPrecision(); |
| args.fFragBuilder->codeAppendf("return %s;", childColor.c_str()); |
| } |
| }; |
| return std::make_unique<Impl>(); |
| } |
| |
| void onAddToKey(const GrShaderCaps&, skgpu::KeyBuilder*) const override {} |
| bool onIsEqual(const GrFragmentProcessor& other) const override { return true; } |
| |
| SkPMColor4f constantOutputForConstantInput(const SkPMColor4f& input) const override { |
| return ConstantOutputForConstantInput(this->childProcessor(0), input); |
| } |
| |
| using INHERITED = GrFragmentProcessor; |
| }; |
| |
| return HighPrecisionFragmentProcessor::Make(std::move(fp)); |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| using ProgramImpl = GrFragmentProcessor::ProgramImpl; |
| |
| void ProgramImpl::setData(const GrGLSLProgramDataManager& pdman, |
| const GrFragmentProcessor& processor) { |
| this->onSetData(pdman, processor); |
| } |
| |
| SkString ProgramImpl::invokeChild(int childIndex, |
| const char* inputColor, |
| const char* destColor, |
| EmitArgs& args, |
| std::string_view skslCoords) { |
| SkASSERT(childIndex >= 0); |
| |
| if (!inputColor) { |
| inputColor = args.fInputColor; |
| } |
| |
| const GrFragmentProcessor* childProc = args.fFp.childProcessor(childIndex); |
| if (!childProc) { |
| // If no child processor is provided, return the input color as-is. |
| return SkString(inputColor); |
| } |
| |
| auto invocation = SkStringPrintf("%s(%s", this->childProcessor(childIndex)->functionName(), |
| inputColor); |
| |
| if (childProc->isBlendFunction()) { |
| if (!destColor) { |
| destColor = args.fFp.isBlendFunction() ? args.fDestColor : "half4(1)"; |
| } |
| invocation.appendf(", %s", destColor); |
| } |
| |
| // Assert that the child has no sample matrix. A uniform matrix sample call would go through |
| // invokeChildWithMatrix, not here. |
| SkASSERT(!childProc->sampleUsage().isUniformMatrix()); |
| |
| if (args.fFragBuilder->getProgramBuilder()->fragmentProcessorHasCoordsParam(childProc)) { |
| SkASSERT(!childProc->sampleUsage().isFragCoord() || skslCoords == "sk_FragCoord.xy"); |
| // The child's function takes a half4 color and a float2 coordinate |
| if (!skslCoords.empty()) { |
| invocation.appendf(", %.*s", (int)skslCoords.size(), skslCoords.data()); |
| } else { |
| invocation.appendf(", %s", args.fSampleCoord); |
| } |
| } |
| |
| invocation.append(")"); |
| return invocation; |
| } |
| |
| SkString ProgramImpl::invokeChildWithMatrix(int childIndex, |
| const char* inputColor, |
| const char* destColor, |
| EmitArgs& args) { |
| SkASSERT(childIndex >= 0); |
| |
| if (!inputColor) { |
| inputColor = args.fInputColor; |
| } |
| |
| const GrFragmentProcessor* childProc = args.fFp.childProcessor(childIndex); |
| if (!childProc) { |
| // If no child processor is provided, return the input color as-is. |
| return SkString(inputColor); |
| } |
| |
| SkASSERT(childProc->sampleUsage().isUniformMatrix()); |
| |
| // Every uniform matrix has the same (initial) name. Resolve that into the mangled name: |
| GrShaderVar uniform = args.fUniformHandler->getUniformMapping( |
| args.fFp, SkString(SkSL::SampleUsage::MatrixUniformName())); |
| SkASSERT(uniform.getType() == SkSLType::kFloat3x3); |
| const SkString& matrixName(uniform.getName()); |
| |
| auto invocation = SkStringPrintf("%s(%s", this->childProcessor(childIndex)->functionName(), |
| inputColor); |
| |
| if (childProc->isBlendFunction()) { |
| if (!destColor) { |
| destColor = args.fFp.isBlendFunction() ? args.fDestColor : "half4(1)"; |
| } |
| invocation.appendf(", %s", destColor); |
| } |
| |
| // Produce a string containing the call to the helper function. We have a uniform variable |
| // containing our transform (matrixName). If the parent coords were produced by uniform |
| // transforms, then the entire expression (matrixName * coords) is lifted to a vertex shader |
| // and is stored in a varying. In that case, childProc will not be sampled explicitly, so its |
| // function signature will not take in coords. |
| // |
| // In all other cases, we need to insert sksl to compute matrix * parent coords and then invoke |
| // the function. |
| if (args.fFragBuilder->getProgramBuilder()->fragmentProcessorHasCoordsParam(childProc)) { |
| // Only check perspective for this specific matrix transform, not the aggregate FP property. |
| // Any parent perspective will have already been applied when evaluated in the FS. |
| if (childProc->sampleUsage().hasPerspective()) { |
| invocation.appendf(", proj((%s) * %s.xy1)", matrixName.c_str(), args.fSampleCoord); |
| } else if (args.fShaderCaps->fNonsquareMatrixSupport) { |
| invocation.appendf(", float3x2(%s) * %s.xy1", matrixName.c_str(), args.fSampleCoord); |
| } else { |
| invocation.appendf(", ((%s) * %s.xy1).xy", matrixName.c_str(), args.fSampleCoord); |
| } |
| } |
| |
| invocation.append(")"); |
| return invocation; |
| } |