| /* |
| * Copyright 2015 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/gpu/ganesh/GrDrawOpAtlas.h" |
| |
| #include <memory> |
| |
| #include "include/private/base/SkTPin.h" |
| #include "src/gpu/ganesh/GrBackendUtils.h" |
| #include "src/gpu/ganesh/GrCaps.h" |
| #include "src/gpu/ganesh/GrOnFlushResourceProvider.h" |
| #include "src/gpu/ganesh/GrOpFlushState.h" |
| #include "src/gpu/ganesh/GrProxyProvider.h" |
| #include "src/gpu/ganesh/GrResourceProvider.h" |
| #include "src/gpu/ganesh/GrResourceProviderPriv.h" |
| #include "src/gpu/ganesh/GrSurfaceProxyPriv.h" |
| #include "src/gpu/ganesh/GrTexture.h" |
| #include "src/gpu/ganesh/GrTracing.h" |
| |
| using namespace skia_private; |
| |
| using AtlasLocator = skgpu::AtlasLocator; |
| using AtlasToken = skgpu::AtlasToken; |
| using EvictionCallback = skgpu::PlotEvictionCallback; |
| using GenerationCounter = skgpu::AtlasGenerationCounter; |
| using MaskFormat = skgpu::MaskFormat; |
| using Plot = skgpu::Plot; |
| using PlotList = skgpu::PlotList; |
| using PlotLocator = skgpu::PlotLocator; |
| |
| #if defined(DUMP_ATLAS_DATA) |
| static const constexpr bool kDumpAtlasData = true; |
| #else |
| static const constexpr bool kDumpAtlasData = false; |
| #endif |
| |
| #ifdef SK_DEBUG |
| void GrDrawOpAtlas::validate(const AtlasLocator& atlasLocator) const { |
| // Verify that the plotIndex stored in the PlotLocator is consistent with the glyph rectangle |
| int numPlotsX = fTextureWidth / fPlotWidth; |
| int numPlotsY = fTextureHeight / fPlotHeight; |
| |
| int plotIndex = atlasLocator.plotIndex(); |
| auto topLeft = atlasLocator.topLeft(); |
| int plotX = topLeft.x() / fPlotWidth; |
| int plotY = topLeft.y() / fPlotHeight; |
| SkASSERT(plotIndex == (numPlotsY - plotY - 1) * numPlotsX + (numPlotsX - plotX - 1)); |
| } |
| #endif |
| |
| // When proxy allocation is deferred until flush time the proxies acting as atlases require |
| // special handling. This is because the usage that can be determined from the ops themselves |
| // isn't sufficient. Independent of the ops there will be ASAP and inline uploads to the |
| // atlases. Extending the usage interval of any op that uses an atlas to the start of the |
| // flush (as is done for proxies that are used for sw-generated masks) also won't work because |
| // the atlas persists even beyond the last use in an op - for a given flush. Given this, atlases |
| // must explicitly manage the lifetime of their backing proxies via the onFlushCallback system |
| // (which calls this method). |
| void GrDrawOpAtlas::instantiate(GrOnFlushResourceProvider* onFlushResourceProvider) { |
| for (uint32_t i = 0; i < fNumActivePages; ++i) { |
| // All the atlas pages are now instantiated at flush time in the activeNewPage method. |
| SkASSERT(fViews[i].proxy() && fViews[i].proxy()->isInstantiated()); |
| } |
| } |
| |
| std::unique_ptr<GrDrawOpAtlas> GrDrawOpAtlas::Make(GrProxyProvider* proxyProvider, |
| const GrBackendFormat& format, |
| SkColorType colorType, size_t bpp, int width, |
| int height, int plotWidth, int plotHeight, |
| GenerationCounter* generationCounter, |
| AllowMultitexturing allowMultitexturing, |
| EvictionCallback* evictor, |
| std::string_view label) { |
| if (!format.isValid()) { |
| return nullptr; |
| } |
| |
| std::unique_ptr<GrDrawOpAtlas> atlas(new GrDrawOpAtlas(proxyProvider, format, colorType, bpp, |
| width, height, plotWidth, plotHeight, |
| generationCounter, |
| allowMultitexturing, label)); |
| if (!atlas->createPages(proxyProvider, generationCounter) || !atlas->getViews()[0].proxy()) { |
| return nullptr; |
| } |
| |
| if (evictor != nullptr) { |
| atlas->fEvictionCallbacks.emplace_back(evictor); |
| } |
| return atlas; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| GrDrawOpAtlas::GrDrawOpAtlas(GrProxyProvider* proxyProvider, const GrBackendFormat& format, |
| SkColorType colorType, size_t bpp, int width, int height, |
| int plotWidth, int plotHeight, GenerationCounter* generationCounter, |
| AllowMultitexturing allowMultitexturing, std::string_view label) |
| : fFormat(format) |
| , fColorType(colorType) |
| , fBytesPerPixel(bpp) |
| , fTextureWidth(width) |
| , fTextureHeight(height) |
| , fPlotWidth(plotWidth) |
| , fPlotHeight(plotHeight) |
| , fLabel(label) |
| , fGenerationCounter(generationCounter) |
| , fAtlasGeneration(fGenerationCounter->next()) |
| , fPrevFlushToken(AtlasToken::InvalidToken()) |
| , fFlushesSinceLastUse(0) |
| , fMaxPages(AllowMultitexturing::kYes == allowMultitexturing ? |
| PlotLocator::kMaxMultitexturePages : 1) |
| , fNumActivePages(0) { |
| int numPlotsX = width/plotWidth; |
| int numPlotsY = height/plotHeight; |
| SkASSERT(numPlotsX * numPlotsY <= PlotLocator::kMaxPlots); |
| SkASSERT(fPlotWidth * numPlotsX == fTextureWidth); |
| SkASSERT(fPlotHeight * numPlotsY == fTextureHeight); |
| |
| fNumPlots = numPlotsX * numPlotsY; |
| } |
| |
| inline void GrDrawOpAtlas::processEviction(PlotLocator plotLocator) { |
| for (EvictionCallback* evictor : fEvictionCallbacks) { |
| evictor->evict(plotLocator); |
| } |
| |
| fAtlasGeneration = fGenerationCounter->next(); |
| } |
| |
| void GrDrawOpAtlas::uploadPlotToTexture(GrDeferredTextureUploadWritePixelsFn& writePixels, |
| GrTextureProxy* proxy, |
| Plot* plot) { |
| SkASSERT(proxy && proxy->peekTexture()); |
| TRACE_EVENT0("skia.gpu", TRACE_FUNC); |
| |
| const void* dataPtr; |
| SkIRect rect; |
| std::tie(dataPtr, rect) = plot->prepareForUpload(); |
| |
| writePixels(proxy, |
| rect, |
| SkColorTypeToGrColorType(fColorType), |
| dataPtr, |
| fBytesPerPixel*fPlotWidth); |
| } |
| |
| inline bool GrDrawOpAtlas::updatePlot(GrDeferredUploadTarget* target, |
| AtlasLocator* atlasLocator, Plot* plot) { |
| uint32_t pageIdx = plot->pageIndex(); |
| if (pageIdx >= fNumActivePages) { |
| return false; |
| } |
| this->makeMRU(plot, pageIdx); |
| |
| // If our most recent upload has already occurred then we have to insert a new |
| // upload. Otherwise, we already have a scheduled upload that hasn't yet ocurred. |
| // This new update will piggy back on that previously scheduled update. |
| if (plot->lastUploadToken() < target->tokenTracker()->nextFlushToken()) { |
| // With c+14 we could move sk_sp into lamba to only ref once. |
| sk_sp<Plot> plotsp(SkRef(plot)); |
| |
| GrTextureProxy* proxy = fViews[pageIdx].asTextureProxy(); |
| SkASSERT(proxy && proxy->isInstantiated()); // This is occurring at flush time |
| |
| AtlasToken lastUploadToken = target->addASAPUpload( |
| [this, plotsp, proxy](GrDeferredTextureUploadWritePixelsFn& writePixels) { |
| this->uploadPlotToTexture(writePixels, proxy, plotsp.get()); |
| }); |
| plot->setLastUploadToken(lastUploadToken); |
| } |
| atlasLocator->updatePlotLocator(plot->plotLocator()); |
| SkDEBUGCODE(this->validate(*atlasLocator);) |
| return true; |
| } |
| |
| bool GrDrawOpAtlas::uploadToPage(unsigned int pageIdx, GrDeferredUploadTarget* target, int width, |
| int height, const void* image, AtlasLocator* atlasLocator) { |
| SkASSERT(fViews[pageIdx].proxy() && fViews[pageIdx].proxy()->isInstantiated()); |
| |
| // look through all allocated plots for one we can share, in Most Recently Refed order |
| PlotList::Iter plotIter; |
| plotIter.init(fPages[pageIdx].fPlotList, PlotList::Iter::kHead_IterStart); |
| |
| for (Plot* plot = plotIter.get(); plot; plot = plotIter.next()) { |
| SkASSERT(GrBackendFormatBytesPerPixel(fViews[pageIdx].proxy()->backendFormat()) == |
| plot->bpp()); |
| |
| if (plot->addSubImage(width, height, image, atlasLocator)) { |
| return this->updatePlot(target, atlasLocator, plot); |
| } |
| } |
| |
| return false; |
| } |
| |
| // Number of atlas-related flushes beyond which we consider a plot to no longer be in use. |
| // |
| // This value is somewhat arbitrary -- the idea is to keep it low enough that |
| // a page with unused plots will get removed reasonably quickly, but allow it |
| // to hang around for a bit in case it's needed. The assumption is that flushes |
| // are rare; i.e., we are not continually refreshing the frame. |
| static constexpr auto kPlotRecentlyUsedCount = 32; |
| static constexpr auto kAtlasRecentlyUsedCount = 128; |
| |
| GrDrawOpAtlas::ErrorCode GrDrawOpAtlas::addToAtlas(GrResourceProvider* resourceProvider, |
| GrDeferredUploadTarget* target, |
| int width, int height, const void* image, |
| AtlasLocator* atlasLocator) { |
| if (width > fPlotWidth || height > fPlotHeight) { |
| return ErrorCode::kError; |
| } |
| |
| // Look through each page to see if we can upload without having to flush |
| // We prioritize this upload to the first pages, not the most recently used, to make it easier |
| // to remove unused pages in reverse page order. |
| for (unsigned int pageIdx = 0; pageIdx < fNumActivePages; ++pageIdx) { |
| if (this->uploadToPage(pageIdx, target, width, height, image, atlasLocator)) { |
| return ErrorCode::kSucceeded; |
| } |
| } |
| |
| // If the above fails, then see if the least recently used plot per page has already been |
| // flushed to the gpu if we're at max page allocation, or if the plot has aged out otherwise. |
| // We wait until we've grown to the full number of pages to begin evicting already flushed |
| // plots so that we can maximize the opportunity for reuse. |
| // As before we prioritize this upload to the first pages, not the most recently used. |
| if (fNumActivePages == this->maxPages()) { |
| for (unsigned int pageIdx = 0; pageIdx < fNumActivePages; ++pageIdx) { |
| Plot* plot = fPages[pageIdx].fPlotList.tail(); |
| SkASSERT(plot); |
| if (plot->lastUseToken() < target->tokenTracker()->nextFlushToken()) { |
| this->processEvictionAndResetRects(plot); |
| SkASSERT(GrBackendFormatBytesPerPixel(fViews[pageIdx].proxy()->backendFormat()) == |
| plot->bpp()); |
| SkDEBUGCODE(bool verify = )plot->addSubImage(width, height, image, atlasLocator); |
| SkASSERT(verify); |
| if (!this->updatePlot(target, atlasLocator, plot)) { |
| return ErrorCode::kError; |
| } |
| return ErrorCode::kSucceeded; |
| } |
| } |
| } else { |
| // If we haven't activated all the available pages, try to create a new one and add to it |
| if (!this->activateNewPage(resourceProvider)) { |
| return ErrorCode::kError; |
| } |
| |
| if (this->uploadToPage(fNumActivePages-1, target, width, height, image, atlasLocator)) { |
| return ErrorCode::kSucceeded; |
| } else { |
| // If we fail to upload to a newly activated page then something has gone terribly |
| // wrong - return an error |
| return ErrorCode::kError; |
| } |
| } |
| |
| if (!fNumActivePages) { |
| return ErrorCode::kError; |
| } |
| |
| // Try to find a plot that we can perform an inline upload to. |
| // We prioritize this upload in reverse order of pages to counterbalance the order above. |
| Plot* plot = nullptr; |
| for (int pageIdx = ((int)fNumActivePages)-1; pageIdx >= 0; --pageIdx) { |
| Plot* currentPlot = fPages[pageIdx].fPlotList.tail(); |
| if (currentPlot->lastUseToken() != target->tokenTracker()->nextDrawToken()) { |
| plot = currentPlot; |
| break; |
| } |
| } |
| |
| // If we can't find a plot that is not used in a draw currently being prepared by an op, then |
| // we have to fail. This gives the op a chance to enqueue the draw, and call back into this |
| // function. When that draw is enqueued, the draw token advances, and the subsequent call will |
| // continue past this branch and prepare an inline upload that will occur after the enqueued |
| // draw which references the plot's pre-upload content. |
| if (!plot) { |
| return ErrorCode::kTryAgain; |
| } |
| |
| this->processEviction(plot->plotLocator()); |
| int pageIdx = plot->pageIndex(); |
| fPages[pageIdx].fPlotList.remove(plot); |
| sk_sp<Plot>& newPlot = fPages[pageIdx].fPlotArray[plot->plotIndex()]; |
| newPlot = plot->clone(); |
| |
| fPages[pageIdx].fPlotList.addToHead(newPlot.get()); |
| SkASSERT(GrBackendFormatBytesPerPixel(fViews[pageIdx].proxy()->backendFormat()) == |
| newPlot->bpp()); |
| SkDEBUGCODE(bool verify = )newPlot->addSubImage(width, height, image, atlasLocator); |
| SkASSERT(verify); |
| |
| // Note that this plot will be uploaded inline with the draws whereas the |
| // one it displaced most likely was uploaded ASAP. |
| // With c++14 we could move sk_sp into lambda to only ref once. |
| sk_sp<Plot> plotsp(SkRef(newPlot.get())); |
| |
| GrTextureProxy* proxy = fViews[pageIdx].asTextureProxy(); |
| SkASSERT(proxy && proxy->isInstantiated()); |
| |
| AtlasToken lastUploadToken = target->addInlineUpload( |
| [this, plotsp, proxy](GrDeferredTextureUploadWritePixelsFn& writePixels) { |
| this->uploadPlotToTexture(writePixels, proxy, plotsp.get()); |
| }); |
| newPlot->setLastUploadToken(lastUploadToken); |
| |
| atlasLocator->updatePlotLocator(newPlot->plotLocator()); |
| SkDEBUGCODE(this->validate(*atlasLocator);) |
| |
| return ErrorCode::kSucceeded; |
| } |
| |
| void GrDrawOpAtlas::compact(AtlasToken startTokenForNextFlush) { |
| if (fNumActivePages < 1) { |
| fPrevFlushToken = startTokenForNextFlush; |
| return; |
| } |
| |
| // For all plots, reset number of flushes since used if used this frame. |
| PlotList::Iter plotIter; |
| bool atlasUsedThisFlush = false; |
| for (uint32_t pageIndex = 0; pageIndex < fNumActivePages; ++pageIndex) { |
| plotIter.init(fPages[pageIndex].fPlotList, PlotList::Iter::kHead_IterStart); |
| while (Plot* plot = plotIter.get()) { |
| // Reset number of flushes since used |
| if (plot->lastUseToken().inInterval(fPrevFlushToken, startTokenForNextFlush)) { |
| plot->resetFlushesSinceLastUsed(); |
| atlasUsedThisFlush = true; |
| } |
| |
| plotIter.next(); |
| } |
| } |
| |
| if (atlasUsedThisFlush) { |
| fFlushesSinceLastUse = 0; |
| } else { |
| ++fFlushesSinceLastUse; |
| } |
| |
| // We only try to compact if the atlas was used in the recently completed flush or |
| // hasn't been used in a long time. |
| // This is to handle the case where a lot of text or path rendering has occurred but then just |
| // a blinking cursor is drawn. |
| if (atlasUsedThisFlush || fFlushesSinceLastUse > kAtlasRecentlyUsedCount) { |
| TArray<Plot*> availablePlots; |
| uint32_t lastPageIndex = fNumActivePages - 1; |
| |
| // For all plots but the last one, update number of flushes since used, and check to see |
| // if there are any in the first pages that the last page can safely upload to. |
| for (uint32_t pageIndex = 0; pageIndex < lastPageIndex; ++pageIndex) { |
| if constexpr (kDumpAtlasData) { |
| SkDebugf("page %u: ", pageIndex); |
| } |
| |
| plotIter.init(fPages[pageIndex].fPlotList, PlotList::Iter::kHead_IterStart); |
| while (Plot* plot = plotIter.get()) { |
| // Update number of flushes since plot was last used |
| // We only increment the 'sinceLastUsed' count for flushes where the atlas was used |
| // to avoid deleting everything when we return to text drawing in the blinking |
| // cursor case |
| if (!plot->lastUseToken().inInterval(fPrevFlushToken, startTokenForNextFlush)) { |
| plot->incFlushesSinceLastUsed(); |
| } |
| |
| if constexpr (kDumpAtlasData) { |
| SkDebugf("%d ", plot->flushesSinceLastUsed()); |
| } |
| |
| // Count plots we can potentially upload to in all pages except the last one |
| // (the potential compactee). |
| if (plot->flushesSinceLastUsed() > kPlotRecentlyUsedCount) { |
| availablePlots.push_back() = plot; |
| } |
| |
| plotIter.next(); |
| } |
| |
| if constexpr (kDumpAtlasData) { |
| SkDebugf("\n"); |
| } |
| } |
| |
| // Count recently used plots in the last page and evict any that are no longer in use. |
| // Since we prioritize uploading to the first pages, this will eventually |
| // clear out usage of this page unless we have a large need. |
| plotIter.init(fPages[lastPageIndex].fPlotList, PlotList::Iter::kHead_IterStart); |
| unsigned int usedPlots = 0; |
| if constexpr (kDumpAtlasData) { |
| SkDebugf("page %u: ", lastPageIndex); |
| } |
| |
| while (Plot* plot = plotIter.get()) { |
| // Update number of flushes since plot was last used |
| if (!plot->lastUseToken().inInterval(fPrevFlushToken, startTokenForNextFlush)) { |
| plot->incFlushesSinceLastUsed(); |
| } |
| |
| if constexpr (kDumpAtlasData) { |
| SkDebugf("%d ", plot->flushesSinceLastUsed()); |
| } |
| |
| // If this plot was used recently |
| if (plot->flushesSinceLastUsed() <= kPlotRecentlyUsedCount) { |
| usedPlots++; |
| } else if (plot->lastUseToken() != AtlasToken::InvalidToken()) { |
| // otherwise if aged out just evict it. |
| this->processEvictionAndResetRects(plot); |
| } |
| plotIter.next(); |
| } |
| |
| if constexpr (kDumpAtlasData) { |
| SkDebugf("\n"); |
| } |
| |
| // If recently used plots in the last page are using less than a quarter of the page, try |
| // to evict them if there's available space in earlier pages. Since we prioritize uploading |
| // to the first pages, this will eventually clear out usage of this page unless we have a |
| // large need. |
| if (!availablePlots.empty() && usedPlots && usedPlots <= fNumPlots / 4) { |
| plotIter.init(fPages[lastPageIndex].fPlotList, PlotList::Iter::kHead_IterStart); |
| while (Plot* plot = plotIter.get()) { |
| // If this plot was used recently |
| if (plot->flushesSinceLastUsed() <= kPlotRecentlyUsedCount) { |
| // See if there's room in an earlier page and if so evict. |
| // We need to be somewhat harsh here so that a handful of plots that are |
| // consistently in use don't end up locking the page in memory. |
| if (!availablePlots.empty()) { |
| this->processEvictionAndResetRects(plot); |
| this->processEvictionAndResetRects(availablePlots.back()); |
| availablePlots.pop_back(); |
| --usedPlots; |
| } |
| if (!usedPlots || availablePlots.empty()) { |
| break; |
| } |
| } |
| plotIter.next(); |
| } |
| } |
| |
| // If none of the plots in the last page have been used recently, delete it. |
| if (!usedPlots) { |
| if constexpr (kDumpAtlasData) { |
| SkDebugf("delete %u\n", fNumActivePages - 1); |
| } |
| |
| this->deactivateLastPage(); |
| fFlushesSinceLastUse = 0; |
| } |
| } |
| |
| fPrevFlushToken = startTokenForNextFlush; |
| } |
| |
| bool GrDrawOpAtlas::createPages( |
| GrProxyProvider* proxyProvider, GenerationCounter* generationCounter) { |
| SkASSERT(SkIsPow2(fTextureWidth) && SkIsPow2(fTextureHeight)); |
| |
| SkISize dims = {fTextureWidth, fTextureHeight}; |
| |
| int numPlotsX = fTextureWidth/fPlotWidth; |
| int numPlotsY = fTextureHeight/fPlotHeight; |
| |
| GrColorType grColorType = SkColorTypeToGrColorType(fColorType); |
| |
| for (uint32_t i = 0; i < this->maxPages(); ++i) { |
| skgpu::Swizzle swizzle = proxyProvider->caps()->getReadSwizzle(fFormat, grColorType); |
| if (GrColorTypeIsAlphaOnly(grColorType)) { |
| swizzle = skgpu::Swizzle::Concat(swizzle, skgpu::Swizzle("aaaa")); |
| } |
| sk_sp<GrSurfaceProxy> proxy = proxyProvider->createProxy(fFormat, |
| dims, |
| GrRenderable::kNo, |
| 1, |
| skgpu::Mipmapped::kNo, |
| SkBackingFit::kExact, |
| skgpu::Budgeted::kYes, |
| GrProtected::kNo, |
| fLabel, |
| GrInternalSurfaceFlags::kNone, |
| GrSurfaceProxy::UseAllocator::kNo); |
| if (!proxy) { |
| return false; |
| } |
| fViews[i] = GrSurfaceProxyView(std::move(proxy), kTopLeft_GrSurfaceOrigin, swizzle); |
| |
| // set up allocated plots |
| fPages[i].fPlotArray = std::make_unique<sk_sp<Plot>[]>(numPlotsX * numPlotsY); |
| |
| sk_sp<Plot>* currPlot = fPages[i].fPlotArray.get(); |
| for (int y = numPlotsY - 1, r = 0; y >= 0; --y, ++r) { |
| for (int x = numPlotsX - 1, c = 0; x >= 0; --x, ++c) { |
| uint32_t plotIndex = r * numPlotsX + c; |
| currPlot->reset(new Plot( |
| i, plotIndex, generationCounter, x, y, fPlotWidth, fPlotHeight, fColorType, |
| fBytesPerPixel)); |
| |
| // build LRU list |
| fPages[i].fPlotList.addToHead(currPlot->get()); |
| ++currPlot; |
| } |
| } |
| |
| } |
| |
| return true; |
| } |
| |
| bool GrDrawOpAtlas::activateNewPage(GrResourceProvider* resourceProvider) { |
| SkASSERT(fNumActivePages < this->maxPages()); |
| |
| if (!fViews[fNumActivePages].proxy()->instantiate(resourceProvider)) { |
| return false; |
| } |
| |
| if constexpr (kDumpAtlasData) { |
| SkDebugf("activated page#: %u\n", fNumActivePages); |
| } |
| |
| ++fNumActivePages; |
| return true; |
| } |
| |
| inline void GrDrawOpAtlas::deactivateLastPage() { |
| SkASSERT(fNumActivePages); |
| |
| uint32_t lastPageIndex = fNumActivePages - 1; |
| |
| int numPlotsX = fTextureWidth/fPlotWidth; |
| int numPlotsY = fTextureHeight/fPlotHeight; |
| |
| fPages[lastPageIndex].fPlotList.reset(); |
| for (int r = 0; r < numPlotsY; ++r) { |
| for (int c = 0; c < numPlotsX; ++c) { |
| uint32_t plotIndex = r * numPlotsX + c; |
| |
| Plot* currPlot = fPages[lastPageIndex].fPlotArray[plotIndex].get(); |
| currPlot->resetRects(); |
| currPlot->resetFlushesSinceLastUsed(); |
| |
| // rebuild the LRU list |
| SkDEBUGCODE(currPlot->resetListPtrs()); |
| fPages[lastPageIndex].fPlotList.addToHead(currPlot); |
| } |
| } |
| |
| // remove ref to the backing texture |
| fViews[lastPageIndex].proxy()->deinstantiate(); |
| --fNumActivePages; |
| } |
| |
| GrDrawOpAtlasConfig::GrDrawOpAtlasConfig(int maxTextureSize, size_t maxBytes) { |
| static const SkISize kARGBDimensions[] = { |
| {256, 256}, // maxBytes < 2^19 |
| {512, 256}, // 2^19 <= maxBytes < 2^20 |
| {512, 512}, // 2^20 <= maxBytes < 2^21 |
| {1024, 512}, // 2^21 <= maxBytes < 2^22 |
| {1024, 1024}, // 2^22 <= maxBytes < 2^23 |
| {2048, 1024}, // 2^23 <= maxBytes |
| }; |
| |
| // Index 0 corresponds to maxBytes of 2^18, so start by dividing it by that |
| maxBytes >>= 18; |
| // Take the floor of the log to get the index |
| int index = maxBytes > 0 |
| ? SkTPin<int>(SkPrevLog2(maxBytes), 0, std::size(kARGBDimensions) - 1) |
| : 0; |
| |
| SkASSERT(kARGBDimensions[index].width() <= kMaxAtlasDim); |
| SkASSERT(kARGBDimensions[index].height() <= kMaxAtlasDim); |
| fARGBDimensions.set(std::min<int>(kARGBDimensions[index].width(), maxTextureSize), |
| std::min<int>(kARGBDimensions[index].height(), maxTextureSize)); |
| fMaxTextureSize = std::min<int>(maxTextureSize, kMaxAtlasDim); |
| } |
| |
| SkISize GrDrawOpAtlasConfig::atlasDimensions(MaskFormat type) const { |
| if (MaskFormat::kA8 == type) { |
| // A8 is always 2x the ARGB dimensions, clamped to the max allowed texture size |
| return { std::min<int>(2 * fARGBDimensions.width(), fMaxTextureSize), |
| std::min<int>(2 * fARGBDimensions.height(), fMaxTextureSize) }; |
| } else { |
| return fARGBDimensions; |
| } |
| } |
| |
| SkISize GrDrawOpAtlasConfig::plotDimensions(MaskFormat type) const { |
| if (MaskFormat::kA8 == type) { |
| SkISize atlasDimensions = this->atlasDimensions(type); |
| // For A8 we want to grow the plots at larger texture sizes to accept more of the |
| // larger SDF glyphs. Since the largest SDF glyph can be 170x170 with padding, this |
| // allows us to pack 3 in a 512x256 plot, or 9 in a 512x512 plot. |
| |
| // This will give us 512x256 plots for 2048x1024, 512x512 plots for 2048x2048, |
| // and 256x256 plots otherwise. |
| int plotWidth = atlasDimensions.width() >= 2048 ? 512 : 256; |
| int plotHeight = atlasDimensions.height() >= 2048 ? 512 : 256; |
| |
| return { plotWidth, plotHeight }; |
| } else { |
| // ARGB and LCD always use 256x256 plots -- this has been shown to be faster |
| return { 256, 256 }; |
| } |
| } |