| /* |
| * Copyright 2019 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef SKVX_DEFINED |
| #define SKVX_DEFINED |
| |
| // skvx::Vec<N,T> are SIMD vectors of N T's, a v1.5 successor to SkNx<N,T>. |
| // |
| // This time we're leaning a bit less on platform-specific intrinsics and a bit |
| // more on Clang/GCC vector extensions, but still keeping the option open to |
| // drop in platform-specific intrinsics, actually more easily than before. |
| // |
| // We've also fixed a few of the caveats that used to make SkNx awkward to work |
| // with across translation units. skvx::Vec<N,T> always has N*sizeof(T) size |
| // and alignment and is safe to use across translation units freely. |
| // (Ideally we'd only align to T, but that tanks ARMv7 NEON codegen.) |
| |
| #include "include/private/base/SkFeatures.h" |
| #include "src/base/SkUtils.h" |
| #include <algorithm> // std::min, std::max |
| #include <cassert> // assert() |
| #include <cmath> // ceilf, floorf, truncf, roundf, sqrtf, etc. |
| #include <cstdint> // intXX_t |
| #include <cstring> // memcpy() |
| #include <initializer_list> // std::initializer_list |
| #include <type_traits> |
| #include <utility> // std::index_sequence |
| |
| // Users may disable SIMD with SKNX_NO_SIMD, which may be set via compiler flags. |
| // The gn build has no option which sets SKNX_NO_SIMD. |
| // Use SKVX_USE_SIMD internally to avoid confusing double negation. |
| // Do not use 'defined' in a macro expansion. |
| #if !defined(SKNX_NO_SIMD) |
| #define SKVX_USE_SIMD 1 |
| #else |
| #define SKVX_USE_SIMD 0 |
| #endif |
| |
| #if SKVX_USE_SIMD |
| #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE1 |
| #include <immintrin.h> |
| #elif defined(SK_ARM_HAS_NEON) |
| #include <arm_neon.h> |
| #elif defined(__wasm_simd128__) |
| #include <wasm_simd128.h> |
| #elif SK_CPU_LSX_LEVEL >= SK_CPU_LSX_LEVEL_LASX |
| #include <lasxintrin.h> |
| #include <lsxintrin.h> |
| #elif SK_CPU_LSX_LEVEL >= SK_CPU_LSX_LEVEL_LSX |
| #include <lsxintrin.h> |
| #endif |
| #endif |
| |
| // To avoid ODR violations, all methods must be force-inlined... |
| #if defined(_MSC_VER) |
| #define SKVX_ALWAYS_INLINE __forceinline |
| #else |
| #define SKVX_ALWAYS_INLINE __attribute__((always_inline)) |
| #endif |
| |
| // ... and all standalone functions must be static. Please use these helpers: |
| #define SI static inline |
| #define SIT template < typename T> SI |
| #define SIN template <int N > SI |
| #define SINT template <int N, typename T> SI |
| #define SINTU template <int N, typename T, typename U, \ |
| typename=std::enable_if_t<std::is_convertible<U,T>::value>> SI |
| |
| namespace skvx { |
| |
| template <int N, typename T> |
| struct alignas(N*sizeof(T)) Vec; |
| |
| template <int... Ix, int N, typename T> |
| SI Vec<sizeof...(Ix),T> shuffle(const Vec<N,T>&); |
| |
| // All Vec have the same simple memory layout, the same as `T vec[N]`. |
| template <int N, typename T> |
| struct alignas(N*sizeof(T)) Vec { |
| static_assert((N & (N-1)) == 0, "N must be a power of 2."); |
| static_assert(sizeof(T) >= alignof(T), "What kind of unusual T is this?"); |
| |
| // Methods belong here in the class declaration of Vec only if: |
| // - they must be here, like constructors or operator[]; |
| // - they'll definitely never want a specialized implementation. |
| // Other operations on Vec should be defined outside the type. |
| |
| SKVX_ALWAYS_INLINE Vec() = default; |
| SKVX_ALWAYS_INLINE Vec(T s) : lo(s), hi(s) {} |
| |
| // NOTE: Vec{x} produces x000..., whereas Vec(x) produces xxxx.... since this constructor fills |
| // unspecified lanes with 0s, whereas the single T constructor fills all lanes with the value. |
| SKVX_ALWAYS_INLINE Vec(std::initializer_list<T> xs) { |
| T vals[N] = {0}; |
| assert(xs.size() <= (size_t)N); |
| memcpy(vals, xs.begin(), std::min(xs.size(), (size_t)N)*sizeof(T)); |
| |
| this->lo = Vec<N/2,T>::Load(vals + 0); |
| this->hi = Vec<N/2,T>::Load(vals + N/2); |
| } |
| |
| SKVX_ALWAYS_INLINE T operator[](int i) const { return i<N/2 ? this->lo[i] : this->hi[i-N/2]; } |
| SKVX_ALWAYS_INLINE T& operator[](int i) { return i<N/2 ? this->lo[i] : this->hi[i-N/2]; } |
| |
| SKVX_ALWAYS_INLINE static Vec Load(const void* ptr) { |
| return sk_unaligned_load<Vec>(ptr); |
| } |
| SKVX_ALWAYS_INLINE void store(void* ptr) const { |
| // Note: Calling sk_unaligned_store produces slightly worse code here, for some reason |
| memcpy(ptr, this, sizeof(Vec)); |
| } |
| |
| Vec<N/2,T> lo, hi; |
| }; |
| |
| // We have specializations for N == 1 (the base-case), as well as 2 and 4, where we add helpful |
| // constructors and swizzle accessors. |
| template <typename T> |
| struct alignas(4*sizeof(T)) Vec<4,T> { |
| static_assert(sizeof(T) >= alignof(T), "What kind of unusual T is this?"); |
| |
| SKVX_ALWAYS_INLINE Vec() = default; |
| SKVX_ALWAYS_INLINE Vec(T s) : lo(s), hi(s) {} |
| SKVX_ALWAYS_INLINE Vec(T x, T y, T z, T w) : lo(x,y), hi(z,w) {} |
| SKVX_ALWAYS_INLINE Vec(Vec<2,T> xy, T z, T w) : lo(xy), hi(z,w) {} |
| SKVX_ALWAYS_INLINE Vec(T x, T y, Vec<2,T> zw) : lo(x,y), hi(zw) {} |
| SKVX_ALWAYS_INLINE Vec(Vec<2,T> xy, Vec<2,T> zw) : lo(xy), hi(zw) {} |
| |
| SKVX_ALWAYS_INLINE Vec(std::initializer_list<T> xs) { |
| T vals[4] = {0}; |
| assert(xs.size() <= (size_t)4); |
| memcpy(vals, xs.begin(), std::min(xs.size(), (size_t)4)*sizeof(T)); |
| |
| this->lo = Vec<2,T>::Load(vals + 0); |
| this->hi = Vec<2,T>::Load(vals + 2); |
| } |
| |
| SKVX_ALWAYS_INLINE T operator[](int i) const { return i<2 ? this->lo[i] : this->hi[i-2]; } |
| SKVX_ALWAYS_INLINE T& operator[](int i) { return i<2 ? this->lo[i] : this->hi[i-2]; } |
| |
| SKVX_ALWAYS_INLINE static Vec Load(const void* ptr) { |
| return sk_unaligned_load<Vec>(ptr); |
| } |
| SKVX_ALWAYS_INLINE void store(void* ptr) const { |
| memcpy(ptr, this, sizeof(Vec)); |
| } |
| |
| SKVX_ALWAYS_INLINE Vec<2,T>& xy() { return lo; } |
| SKVX_ALWAYS_INLINE Vec<2,T>& zw() { return hi; } |
| SKVX_ALWAYS_INLINE T& x() { return lo.lo.val; } |
| SKVX_ALWAYS_INLINE T& y() { return lo.hi.val; } |
| SKVX_ALWAYS_INLINE T& z() { return hi.lo.val; } |
| SKVX_ALWAYS_INLINE T& w() { return hi.hi.val; } |
| |
| SKVX_ALWAYS_INLINE Vec<2,T> xy() const { return lo; } |
| SKVX_ALWAYS_INLINE Vec<2,T> zw() const { return hi; } |
| SKVX_ALWAYS_INLINE T x() const { return lo.lo.val; } |
| SKVX_ALWAYS_INLINE T y() const { return lo.hi.val; } |
| SKVX_ALWAYS_INLINE T z() const { return hi.lo.val; } |
| SKVX_ALWAYS_INLINE T w() const { return hi.hi.val; } |
| |
| // Exchange-based swizzles. These should take 1 cycle on NEON and 3 (pipelined) cycles on SSE. |
| SKVX_ALWAYS_INLINE Vec<4,T> yxwz() const { return shuffle<1,0,3,2>(*this); } |
| SKVX_ALWAYS_INLINE Vec<4,T> zwxy() const { return shuffle<2,3,0,1>(*this); } |
| |
| Vec<2,T> lo, hi; |
| }; |
| |
| template <typename T> |
| struct alignas(2*sizeof(T)) Vec<2,T> { |
| static_assert(sizeof(T) >= alignof(T), "What kind of unusual T is this?"); |
| |
| SKVX_ALWAYS_INLINE Vec() = default; |
| SKVX_ALWAYS_INLINE Vec(T s) : lo(s), hi(s) {} |
| SKVX_ALWAYS_INLINE Vec(T x, T y) : lo(x), hi(y) {} |
| |
| SKVX_ALWAYS_INLINE Vec(std::initializer_list<T> xs) { |
| T vals[2] = {0}; |
| assert(xs.size() <= (size_t)2); |
| memcpy(vals, xs.begin(), std::min(xs.size(), (size_t)2)*sizeof(T)); |
| |
| this->lo = Vec<1,T>::Load(vals + 0); |
| this->hi = Vec<1,T>::Load(vals + 1); |
| } |
| |
| SKVX_ALWAYS_INLINE T operator[](int i) const { return i<1 ? this->lo[i] : this->hi[i-1]; } |
| SKVX_ALWAYS_INLINE T& operator[](int i) { return i<1 ? this->lo[i] : this->hi[i-1]; } |
| |
| SKVX_ALWAYS_INLINE static Vec Load(const void* ptr) { |
| return sk_unaligned_load<Vec>(ptr); |
| } |
| SKVX_ALWAYS_INLINE void store(void* ptr) const { |
| memcpy(ptr, this, sizeof(Vec)); |
| } |
| |
| SKVX_ALWAYS_INLINE T& x() { return lo.val; } |
| SKVX_ALWAYS_INLINE T& y() { return hi.val; } |
| |
| SKVX_ALWAYS_INLINE T x() const { return lo.val; } |
| SKVX_ALWAYS_INLINE T y() const { return hi.val; } |
| |
| // This exchange-based swizzle should take 1 cycle on NEON and 3 (pipelined) cycles on SSE. |
| SKVX_ALWAYS_INLINE Vec<2,T> yx() const { return shuffle<1,0>(*this); } |
| SKVX_ALWAYS_INLINE Vec<4,T> xyxy() const { return Vec<4,T>(*this, *this); } |
| |
| Vec<1,T> lo, hi; |
| }; |
| |
| template <typename T> |
| struct Vec<1,T> { |
| T val = {}; |
| |
| SKVX_ALWAYS_INLINE Vec() = default; |
| SKVX_ALWAYS_INLINE Vec(T s) : val(s) {} |
| |
| SKVX_ALWAYS_INLINE Vec(std::initializer_list<T> xs) : val(xs.size() ? *xs.begin() : 0) { |
| assert(xs.size() <= (size_t)1); |
| } |
| |
| SKVX_ALWAYS_INLINE T operator[](int i) const { assert(i == 0); return val; } |
| SKVX_ALWAYS_INLINE T& operator[](int i) { assert(i == 0); return val; } |
| |
| SKVX_ALWAYS_INLINE static Vec Load(const void* ptr) { |
| return sk_unaligned_load<Vec>(ptr); |
| } |
| SKVX_ALWAYS_INLINE void store(void* ptr) const { |
| memcpy(ptr, this, sizeof(Vec)); |
| } |
| }; |
| |
| // Translate from a value type T to its corresponding Mask, the result of a comparison. |
| template <typename T> struct Mask { using type = T; }; |
| template <> struct Mask<float > { using type = int32_t; }; |
| template <> struct Mask<double> { using type = int64_t; }; |
| template <typename T> using M = typename Mask<T>::type; |
| |
| // Join two Vec<N,T> into one Vec<2N,T>. |
| SINT Vec<2*N,T> join(const Vec<N,T>& lo, const Vec<N,T>& hi) { |
| Vec<2*N,T> v; |
| v.lo = lo; |
| v.hi = hi; |
| return v; |
| } |
| |
| // We have three strategies for implementing Vec operations: |
| // 1) lean on Clang/GCC vector extensions when available; |
| // 2) use map() to apply a scalar function lane-wise; |
| // 3) recurse on lo/hi to scalar portable implementations. |
| // We can slot in platform-specific implementations as overloads for particular Vec<N,T>, |
| // or often integrate them directly into the recursion of style 3), allowing fine control. |
| |
| #if SKVX_USE_SIMD && (defined(__clang__) || defined(__GNUC__)) |
| |
| // VExt<N,T> types have the same size as Vec<N,T> and support most operations directly. |
| #if defined(__clang__) |
| template <int N, typename T> |
| using VExt = T __attribute__((ext_vector_type(N))); |
| |
| #elif defined(__GNUC__) |
| template <int N, typename T> |
| struct VExtHelper { |
| typedef T __attribute__((vector_size(N*sizeof(T)))) type; |
| }; |
| |
| template <int N, typename T> |
| using VExt = typename VExtHelper<N,T>::type; |
| |
| // For some reason some (new!) versions of GCC cannot seem to deduce N in the generic |
| // to_vec<N,T>() below for N=4 and T=float. This workaround seems to help... |
| SI Vec<4,float> to_vec(VExt<4,float> v) { return sk_bit_cast<Vec<4,float>>(v); } |
| #endif |
| |
| SINT VExt<N,T> to_vext(const Vec<N,T>& v) { return sk_bit_cast<VExt<N,T>>(v); } |
| SINT Vec <N,T> to_vec(const VExt<N,T>& v) { return sk_bit_cast<Vec <N,T>>(v); } |
| |
| SINT Vec<N,T> operator+(const Vec<N,T>& x, const Vec<N,T>& y) { |
| return to_vec<N,T>(to_vext(x) + to_vext(y)); |
| } |
| SINT Vec<N,T> operator-(const Vec<N,T>& x, const Vec<N,T>& y) { |
| return to_vec<N,T>(to_vext(x) - to_vext(y)); |
| } |
| SINT Vec<N,T> operator*(const Vec<N,T>& x, const Vec<N,T>& y) { |
| return to_vec<N,T>(to_vext(x) * to_vext(y)); |
| } |
| SINT Vec<N,T> operator/(const Vec<N,T>& x, const Vec<N,T>& y) { |
| return to_vec<N,T>(to_vext(x) / to_vext(y)); |
| } |
| |
| SINT Vec<N,T> operator^(const Vec<N,T>& x, const Vec<N,T>& y) { |
| return to_vec<N,T>(to_vext(x) ^ to_vext(y)); |
| } |
| SINT Vec<N,T> operator&(const Vec<N,T>& x, const Vec<N,T>& y) { |
| return to_vec<N,T>(to_vext(x) & to_vext(y)); |
| } |
| SINT Vec<N,T> operator|(const Vec<N,T>& x, const Vec<N,T>& y) { |
| return to_vec<N,T>(to_vext(x) | to_vext(y)); |
| } |
| |
| SINT Vec<N,T> operator!(const Vec<N,T>& x) { return to_vec<N,T>(!to_vext(x)); } |
| SINT Vec<N,T> operator-(const Vec<N,T>& x) { return to_vec<N,T>(-to_vext(x)); } |
| SINT Vec<N,T> operator~(const Vec<N,T>& x) { return to_vec<N,T>(~to_vext(x)); } |
| |
| SINT Vec<N,T> operator<<(const Vec<N,T>& x, int k) { return to_vec<N,T>(to_vext(x) << k); } |
| SINT Vec<N,T> operator>>(const Vec<N,T>& x, int k) { return to_vec<N,T>(to_vext(x) >> k); } |
| |
| SINT Vec<N,M<T>> operator==(const Vec<N,T>& x, const Vec<N,T>& y) { |
| return sk_bit_cast<Vec<N,M<T>>>(to_vext(x) == to_vext(y)); |
| } |
| SINT Vec<N,M<T>> operator!=(const Vec<N,T>& x, const Vec<N,T>& y) { |
| return sk_bit_cast<Vec<N,M<T>>>(to_vext(x) != to_vext(y)); |
| } |
| SINT Vec<N,M<T>> operator<=(const Vec<N,T>& x, const Vec<N,T>& y) { |
| return sk_bit_cast<Vec<N,M<T>>>(to_vext(x) <= to_vext(y)); |
| } |
| SINT Vec<N,M<T>> operator>=(const Vec<N,T>& x, const Vec<N,T>& y) { |
| return sk_bit_cast<Vec<N,M<T>>>(to_vext(x) >= to_vext(y)); |
| } |
| SINT Vec<N,M<T>> operator< (const Vec<N,T>& x, const Vec<N,T>& y) { |
| return sk_bit_cast<Vec<N,M<T>>>(to_vext(x) < to_vext(y)); |
| } |
| SINT Vec<N,M<T>> operator> (const Vec<N,T>& x, const Vec<N,T>& y) { |
| return sk_bit_cast<Vec<N,M<T>>>(to_vext(x) > to_vext(y)); |
| } |
| |
| #else |
| |
| // Either SKNX_NO_SIMD is defined, or Clang/GCC vector extensions are not available. |
| // We'll implement things portably with N==1 scalar implementations and recursion onto them. |
| |
| // N == 1 scalar implementations. |
| SIT Vec<1,T> operator+(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val + y.val; } |
| SIT Vec<1,T> operator-(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val - y.val; } |
| SIT Vec<1,T> operator*(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val * y.val; } |
| SIT Vec<1,T> operator/(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val / y.val; } |
| |
| SIT Vec<1,T> operator^(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val ^ y.val; } |
| SIT Vec<1,T> operator&(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val & y.val; } |
| SIT Vec<1,T> operator|(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val | y.val; } |
| |
| SIT Vec<1,T> operator!(const Vec<1,T>& x) { return !x.val; } |
| SIT Vec<1,T> operator-(const Vec<1,T>& x) { return -x.val; } |
| SIT Vec<1,T> operator~(const Vec<1,T>& x) { return ~x.val; } |
| |
| SIT Vec<1,T> operator<<(const Vec<1,T>& x, int k) { return x.val << k; } |
| SIT Vec<1,T> operator>>(const Vec<1,T>& x, int k) { return x.val >> k; } |
| |
| SIT Vec<1,M<T>> operator==(const Vec<1,T>& x, const Vec<1,T>& y) { |
| return x.val == y.val ? ~0 : 0; |
| } |
| SIT Vec<1,M<T>> operator!=(const Vec<1,T>& x, const Vec<1,T>& y) { |
| return x.val != y.val ? ~0 : 0; |
| } |
| SIT Vec<1,M<T>> operator<=(const Vec<1,T>& x, const Vec<1,T>& y) { |
| return x.val <= y.val ? ~0 : 0; |
| } |
| SIT Vec<1,M<T>> operator>=(const Vec<1,T>& x, const Vec<1,T>& y) { |
| return x.val >= y.val ? ~0 : 0; |
| } |
| SIT Vec<1,M<T>> operator< (const Vec<1,T>& x, const Vec<1,T>& y) { |
| return x.val < y.val ? ~0 : 0; |
| } |
| SIT Vec<1,M<T>> operator> (const Vec<1,T>& x, const Vec<1,T>& y) { |
| return x.val > y.val ? ~0 : 0; |
| } |
| |
| // Recurse on lo/hi down to N==1 scalar implementations. |
| SINT Vec<N,T> operator+(const Vec<N,T>& x, const Vec<N,T>& y) { |
| return join(x.lo + y.lo, x.hi + y.hi); |
| } |
| SINT Vec<N,T> operator-(const Vec<N,T>& x, const Vec<N,T>& y) { |
| return join(x.lo - y.lo, x.hi - y.hi); |
| } |
| SINT Vec<N,T> operator*(const Vec<N,T>& x, const Vec<N,T>& y) { |
| return join(x.lo * y.lo, x.hi * y.hi); |
| } |
| SINT Vec<N,T> operator/(const Vec<N,T>& x, const Vec<N,T>& y) { |
| return join(x.lo / y.lo, x.hi / y.hi); |
| } |
| |
| SINT Vec<N,T> operator^(const Vec<N,T>& x, const Vec<N,T>& y) { |
| return join(x.lo ^ y.lo, x.hi ^ y.hi); |
| } |
| SINT Vec<N,T> operator&(const Vec<N,T>& x, const Vec<N,T>& y) { |
| return join(x.lo & y.lo, x.hi & y.hi); |
| } |
| SINT Vec<N,T> operator|(const Vec<N,T>& x, const Vec<N,T>& y) { |
| return join(x.lo | y.lo, x.hi | y.hi); |
| } |
| |
| SINT Vec<N,T> operator!(const Vec<N,T>& x) { return join(!x.lo, !x.hi); } |
| SINT Vec<N,T> operator-(const Vec<N,T>& x) { return join(-x.lo, -x.hi); } |
| SINT Vec<N,T> operator~(const Vec<N,T>& x) { return join(~x.lo, ~x.hi); } |
| |
| SINT Vec<N,T> operator<<(const Vec<N,T>& x, int k) { return join(x.lo << k, x.hi << k); } |
| SINT Vec<N,T> operator>>(const Vec<N,T>& x, int k) { return join(x.lo >> k, x.hi >> k); } |
| |
| SINT Vec<N,M<T>> operator==(const Vec<N,T>& x, const Vec<N,T>& y) { |
| return join(x.lo == y.lo, x.hi == y.hi); |
| } |
| SINT Vec<N,M<T>> operator!=(const Vec<N,T>& x, const Vec<N,T>& y) { |
| return join(x.lo != y.lo, x.hi != y.hi); |
| } |
| SINT Vec<N,M<T>> operator<=(const Vec<N,T>& x, const Vec<N,T>& y) { |
| return join(x.lo <= y.lo, x.hi <= y.hi); |
| } |
| SINT Vec<N,M<T>> operator>=(const Vec<N,T>& x, const Vec<N,T>& y) { |
| return join(x.lo >= y.lo, x.hi >= y.hi); |
| } |
| SINT Vec<N,M<T>> operator< (const Vec<N,T>& x, const Vec<N,T>& y) { |
| return join(x.lo < y.lo, x.hi < y.hi); |
| } |
| SINT Vec<N,M<T>> operator> (const Vec<N,T>& x, const Vec<N,T>& y) { |
| return join(x.lo > y.lo, x.hi > y.hi); |
| } |
| #endif |
| |
| // Scalar/vector operations splat the scalar to a vector. |
| SINTU Vec<N,T> operator+ (U x, const Vec<N,T>& y) { return Vec<N,T>(x) + y; } |
| SINTU Vec<N,T> operator- (U x, const Vec<N,T>& y) { return Vec<N,T>(x) - y; } |
| SINTU Vec<N,T> operator* (U x, const Vec<N,T>& y) { return Vec<N,T>(x) * y; } |
| SINTU Vec<N,T> operator/ (U x, const Vec<N,T>& y) { return Vec<N,T>(x) / y; } |
| SINTU Vec<N,T> operator^ (U x, const Vec<N,T>& y) { return Vec<N,T>(x) ^ y; } |
| SINTU Vec<N,T> operator& (U x, const Vec<N,T>& y) { return Vec<N,T>(x) & y; } |
| SINTU Vec<N,T> operator| (U x, const Vec<N,T>& y) { return Vec<N,T>(x) | y; } |
| SINTU Vec<N,M<T>> operator==(U x, const Vec<N,T>& y) { return Vec<N,T>(x) == y; } |
| SINTU Vec<N,M<T>> operator!=(U x, const Vec<N,T>& y) { return Vec<N,T>(x) != y; } |
| SINTU Vec<N,M<T>> operator<=(U x, const Vec<N,T>& y) { return Vec<N,T>(x) <= y; } |
| SINTU Vec<N,M<T>> operator>=(U x, const Vec<N,T>& y) { return Vec<N,T>(x) >= y; } |
| SINTU Vec<N,M<T>> operator< (U x, const Vec<N,T>& y) { return Vec<N,T>(x) < y; } |
| SINTU Vec<N,M<T>> operator> (U x, const Vec<N,T>& y) { return Vec<N,T>(x) > y; } |
| |
| SINTU Vec<N,T> operator+ (const Vec<N,T>& x, U y) { return x + Vec<N,T>(y); } |
| SINTU Vec<N,T> operator- (const Vec<N,T>& x, U y) { return x - Vec<N,T>(y); } |
| SINTU Vec<N,T> operator* (const Vec<N,T>& x, U y) { return x * Vec<N,T>(y); } |
| SINTU Vec<N,T> operator/ (const Vec<N,T>& x, U y) { return x / Vec<N,T>(y); } |
| SINTU Vec<N,T> operator^ (const Vec<N,T>& x, U y) { return x ^ Vec<N,T>(y); } |
| SINTU Vec<N,T> operator& (const Vec<N,T>& x, U y) { return x & Vec<N,T>(y); } |
| SINTU Vec<N,T> operator| (const Vec<N,T>& x, U y) { return x | Vec<N,T>(y); } |
| SINTU Vec<N,M<T>> operator==(const Vec<N,T>& x, U y) { return x == Vec<N,T>(y); } |
| SINTU Vec<N,M<T>> operator!=(const Vec<N,T>& x, U y) { return x != Vec<N,T>(y); } |
| SINTU Vec<N,M<T>> operator<=(const Vec<N,T>& x, U y) { return x <= Vec<N,T>(y); } |
| SINTU Vec<N,M<T>> operator>=(const Vec<N,T>& x, U y) { return x >= Vec<N,T>(y); } |
| SINTU Vec<N,M<T>> operator< (const Vec<N,T>& x, U y) { return x < Vec<N,T>(y); } |
| SINTU Vec<N,M<T>> operator> (const Vec<N,T>& x, U y) { return x > Vec<N,T>(y); } |
| |
| SINT Vec<N,T>& operator+=(Vec<N,T>& x, const Vec<N,T>& y) { return (x = x + y); } |
| SINT Vec<N,T>& operator-=(Vec<N,T>& x, const Vec<N,T>& y) { return (x = x - y); } |
| SINT Vec<N,T>& operator*=(Vec<N,T>& x, const Vec<N,T>& y) { return (x = x * y); } |
| SINT Vec<N,T>& operator/=(Vec<N,T>& x, const Vec<N,T>& y) { return (x = x / y); } |
| SINT Vec<N,T>& operator^=(Vec<N,T>& x, const Vec<N,T>& y) { return (x = x ^ y); } |
| SINT Vec<N,T>& operator&=(Vec<N,T>& x, const Vec<N,T>& y) { return (x = x & y); } |
| SINT Vec<N,T>& operator|=(Vec<N,T>& x, const Vec<N,T>& y) { return (x = x | y); } |
| |
| SINTU Vec<N,T>& operator+=(Vec<N,T>& x, U y) { return (x = x + Vec<N,T>(y)); } |
| SINTU Vec<N,T>& operator-=(Vec<N,T>& x, U y) { return (x = x - Vec<N,T>(y)); } |
| SINTU Vec<N,T>& operator*=(Vec<N,T>& x, U y) { return (x = x * Vec<N,T>(y)); } |
| SINTU Vec<N,T>& operator/=(Vec<N,T>& x, U y) { return (x = x / Vec<N,T>(y)); } |
| SINTU Vec<N,T>& operator^=(Vec<N,T>& x, U y) { return (x = x ^ Vec<N,T>(y)); } |
| SINTU Vec<N,T>& operator&=(Vec<N,T>& x, U y) { return (x = x & Vec<N,T>(y)); } |
| SINTU Vec<N,T>& operator|=(Vec<N,T>& x, U y) { return (x = x | Vec<N,T>(y)); } |
| |
| SINT Vec<N,T>& operator<<=(Vec<N,T>& x, int bits) { return (x = x << bits); } |
| SINT Vec<N,T>& operator>>=(Vec<N,T>& x, int bits) { return (x = x >> bits); } |
| |
| // Some operations we want are not expressible with Clang/GCC vector extensions. |
| |
| // Clang can reason about naive_if_then_else() and optimize through it better |
| // than if_then_else(), so it's sometimes useful to call it directly when we |
| // think an entire expression should optimize away, e.g. min()/max(). |
| SINT Vec<N,T> naive_if_then_else(const Vec<N,M<T>>& cond, const Vec<N,T>& t, const Vec<N,T>& e) { |
| return sk_bit_cast<Vec<N,T>>(( cond & sk_bit_cast<Vec<N, M<T>>>(t)) | |
| (~cond & sk_bit_cast<Vec<N, M<T>>>(e)) ); |
| } |
| |
| SIT Vec<1,T> if_then_else(const Vec<1,M<T>>& cond, const Vec<1,T>& t, const Vec<1,T>& e) { |
| // In practice this scalar implementation is unlikely to be used. See next if_then_else(). |
| return sk_bit_cast<Vec<1,T>>(( cond & sk_bit_cast<Vec<1, M<T>>>(t)) | |
| (~cond & sk_bit_cast<Vec<1, M<T>>>(e)) ); |
| } |
| SINT Vec<N,T> if_then_else(const Vec<N,M<T>>& cond, const Vec<N,T>& t, const Vec<N,T>& e) { |
| // Specializations inline here so they can generalize what types the apply to. |
| #if SKVX_USE_SIMD && SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX2 |
| if constexpr (N*sizeof(T) == 32) { |
| return sk_bit_cast<Vec<N,T>>(_mm256_blendv_epi8(sk_bit_cast<__m256i>(e), |
| sk_bit_cast<__m256i>(t), |
| sk_bit_cast<__m256i>(cond))); |
| } |
| #endif |
| #if SKVX_USE_SIMD && SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41 |
| if constexpr (N*sizeof(T) == 16) { |
| return sk_bit_cast<Vec<N,T>>(_mm_blendv_epi8(sk_bit_cast<__m128i>(e), |
| sk_bit_cast<__m128i>(t), |
| sk_bit_cast<__m128i>(cond))); |
| } |
| #endif |
| #if SKVX_USE_SIMD && defined(SK_ARM_HAS_NEON) |
| if constexpr (N*sizeof(T) == 16) { |
| return sk_bit_cast<Vec<N,T>>(vbslq_u8(sk_bit_cast<uint8x16_t>(cond), |
| sk_bit_cast<uint8x16_t>(t), |
| sk_bit_cast<uint8x16_t>(e))); |
| } |
| #endif |
| #if SKVX_USE_SIMD && SK_CPU_LSX_LEVEL >= SK_CPU_LSX_LEVEL_LASX |
| if constexpr (N*sizeof(T) == 32) { |
| return sk_bit_cast<Vec<N,T>>(__lasx_xvbitsel_v(sk_bit_cast<__m256i>(e), |
| sk_bit_cast<__m256i>(t), |
| sk_bit_cast<__m256i>(cond))); |
| } |
| #endif |
| #if SKVX_USE_SIMD && SK_CPU_LSX_LEVEL >= SK_CPU_LSX_LEVEL_LSX |
| if constexpr (N*sizeof(T) == 16) { |
| return sk_bit_cast<Vec<N,T>>(__lsx_vbitsel_v(sk_bit_cast<__m128i>(e), |
| sk_bit_cast<__m128i>(t), |
| sk_bit_cast<__m128i>(cond))); |
| } |
| #endif |
| // Recurse for large vectors to try to hit the specializations above. |
| if constexpr (N*sizeof(T) > 16) { |
| return join(if_then_else(cond.lo, t.lo, e.lo), |
| if_then_else(cond.hi, t.hi, e.hi)); |
| } |
| // This default can lead to better code than the recursing onto scalars. |
| return naive_if_then_else(cond, t, e); |
| } |
| |
| SIT bool any(const Vec<1,T>& x) { return x.val != 0; } |
| SINT bool any(const Vec<N,T>& x) { |
| // For any(), the _mm_testz intrinsics are correct and don't require comparing 'x' to 0, so it's |
| // lower latency compared to _mm_movemask + _mm_compneq on plain SSE. |
| #if SKVX_USE_SIMD && SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX2 |
| if constexpr (N*sizeof(T) == 32) { |
| return !_mm256_testz_si256(sk_bit_cast<__m256i>(x), _mm256_set1_epi32(-1)); |
| } |
| #endif |
| #if SKVX_USE_SIMD && SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41 |
| if constexpr (N*sizeof(T) == 16) { |
| return !_mm_testz_si128(sk_bit_cast<__m128i>(x), _mm_set1_epi32(-1)); |
| } |
| #endif |
| #if SKVX_USE_SIMD && SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE1 |
| if constexpr (N*sizeof(T) == 16) { |
| // On SSE, movemask checks only the MSB in each lane, which is fine if the lanes were set |
| // directly from a comparison op (which sets all bits to 1 when true), but skvx::Vec<> |
| // treats any non-zero value as true, so we have to compare 'x' to 0 before calling movemask |
| return _mm_movemask_ps(_mm_cmpneq_ps(sk_bit_cast<__m128>(x), _mm_set1_ps(0))) != 0b0000; |
| } |
| #endif |
| #if SKVX_USE_SIMD && defined(__aarch64__) |
| // On 64-bit NEON, take the max across lanes, which will be non-zero if any lane was true. |
| // The specific lane-size doesn't really matter in this case since it's really any set bit |
| // that we're looking for. |
| if constexpr (N*sizeof(T) == 8 ) { return vmaxv_u8 (sk_bit_cast<uint8x8_t> (x)) > 0; } |
| if constexpr (N*sizeof(T) == 16) { return vmaxvq_u8(sk_bit_cast<uint8x16_t>(x)) > 0; } |
| #endif |
| #if SKVX_USE_SIMD && defined(__wasm_simd128__) |
| if constexpr (N == 4 && sizeof(T) == 4) { |
| return wasm_i32x4_any_true(sk_bit_cast<VExt<4,int>>(x)); |
| } |
| #endif |
| #if SKVX_USE_SIMD && SK_CPU_LSX_LEVEL >= SK_CPU_LSX_LEVEL_LASX |
| if constexpr (N*sizeof(T) == 32) { |
| v8i32 retv = (v8i32)__lasx_xvmskltz_w(__lasx_xvslt_wu(__lasx_xvldi(0), |
| sk_bit_cast<__m256i>(x))); |
| return (retv[0] | retv[4]) != 0b0000; |
| } |
| #endif |
| #if SKVX_USE_SIMD && SK_CPU_LSX_LEVEL >= SK_CPU_LSX_LEVEL_LSX |
| if constexpr (N*sizeof(T) == 16) { |
| v4i32 retv = (v4i32)__lsx_vmskltz_w(__lsx_vslt_wu(__lsx_vldi(0), |
| sk_bit_cast<__m128i>(x))); |
| return retv[0] != 0b0000; |
| } |
| #endif |
| return any(x.lo) |
| || any(x.hi); |
| } |
| |
| SIT bool all(const Vec<1,T>& x) { return x.val != 0; } |
| SINT bool all(const Vec<N,T>& x) { |
| // Unlike any(), we have to respect the lane layout, or we'll miss cases where a |
| // true lane has a mix of 0 and 1 bits. |
| #if SKVX_USE_SIMD && SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE1 |
| // Unfortunately, the _mm_testc intrinsics don't let us avoid the comparison to 0 for all()'s |
| // correctness, so always just use the plain SSE version. |
| if constexpr (N == 4 && sizeof(T) == 4) { |
| return _mm_movemask_ps(_mm_cmpneq_ps(sk_bit_cast<__m128>(x), _mm_set1_ps(0))) == 0b1111; |
| } |
| #endif |
| #if SKVX_USE_SIMD && defined(__aarch64__) |
| // On 64-bit NEON, take the min across the lanes, which will be non-zero if all lanes are != 0. |
| if constexpr (sizeof(T)==1 && N==8) {return vminv_u8 (sk_bit_cast<uint8x8_t> (x)) > 0;} |
| if constexpr (sizeof(T)==1 && N==16) {return vminvq_u8 (sk_bit_cast<uint8x16_t>(x)) > 0;} |
| if constexpr (sizeof(T)==2 && N==4) {return vminv_u16 (sk_bit_cast<uint16x4_t>(x)) > 0;} |
| if constexpr (sizeof(T)==2 && N==8) {return vminvq_u16(sk_bit_cast<uint16x8_t>(x)) > 0;} |
| if constexpr (sizeof(T)==4 && N==2) {return vminv_u32 (sk_bit_cast<uint32x2_t>(x)) > 0;} |
| if constexpr (sizeof(T)==4 && N==4) {return vminvq_u32(sk_bit_cast<uint32x4_t>(x)) > 0;} |
| #endif |
| #if SKVX_USE_SIMD && defined(__wasm_simd128__) |
| if constexpr (N == 4 && sizeof(T) == 4) { |
| return wasm_i32x4_all_true(sk_bit_cast<VExt<4,int>>(x)); |
| } |
| #endif |
| #if SKVX_USE_SIMD && SK_CPU_LSX_LEVEL >= SK_CPU_LSX_LEVEL_LASX |
| if constexpr (N == 8 && sizeof(T) == 4) { |
| v8i32 retv = (v8i32)__lasx_xvmskltz_w(__lasx_xvslt_wu(__lasx_xvldi(0), |
| sk_bit_cast<__m256i>(x))); |
| return (retv[0] & retv[4]) == 0b1111; |
| } |
| #endif |
| #if SKVX_USE_SIMD && SK_CPU_LSX_LEVEL >= SK_CPU_LSX_LEVEL_LSX |
| if constexpr (N == 4 && sizeof(T) == 4) { |
| v4i32 retv = (v4i32)__lsx_vmskltz_w(__lsx_vslt_wu(__lsx_vldi(0), |
| sk_bit_cast<__m128i>(x))); |
| return retv[0] == 0b1111; |
| } |
| #endif |
| return all(x.lo) |
| && all(x.hi); |
| } |
| |
| // cast() Vec<N,S> to Vec<N,D>, as if applying a C-cast to each lane. |
| // TODO: implement with map()? |
| template <typename D, typename S> |
| SI Vec<1,D> cast(const Vec<1,S>& src) { return (D)src.val; } |
| |
| template <typename D, int N, typename S> |
| SI Vec<N,D> cast(const Vec<N,S>& src) { |
| #if SKVX_USE_SIMD && defined(__clang__) |
| return to_vec(__builtin_convertvector(to_vext(src), VExt<N,D>)); |
| #else |
| return join(cast<D>(src.lo), cast<D>(src.hi)); |
| #endif |
| } |
| |
| // min/max match logic of std::min/std::max, which is important when NaN is involved. |
| SIT T min(const Vec<1,T>& x) { return x.val; } |
| SIT T max(const Vec<1,T>& x) { return x.val; } |
| SINT T min(const Vec<N,T>& x) { return std::min(min(x.lo), min(x.hi)); } |
| SINT T max(const Vec<N,T>& x) { return std::max(max(x.lo), max(x.hi)); } |
| |
| SINT Vec<N,T> min(const Vec<N,T>& x, const Vec<N,T>& y) { return naive_if_then_else(y < x, y, x); } |
| SINT Vec<N,T> max(const Vec<N,T>& x, const Vec<N,T>& y) { return naive_if_then_else(x < y, y, x); } |
| |
| SINTU Vec<N,T> min(const Vec<N,T>& x, U y) { return min(x, Vec<N,T>(y)); } |
| SINTU Vec<N,T> max(const Vec<N,T>& x, U y) { return max(x, Vec<N,T>(y)); } |
| SINTU Vec<N,T> min(U x, const Vec<N,T>& y) { return min(Vec<N,T>(x), y); } |
| SINTU Vec<N,T> max(U x, const Vec<N,T>& y) { return max(Vec<N,T>(x), y); } |
| |
| // pin matches the logic of SkTPin, which is important when NaN is involved. It always returns |
| // values in the range lo..hi, and if x is NaN, it returns lo. |
| SINT Vec<N,T> pin(const Vec<N,T>& x, const Vec<N,T>& lo, const Vec<N,T>& hi) { |
| return max(lo, min(x, hi)); |
| } |
| |
| // Shuffle values from a vector pretty arbitrarily: |
| // skvx::Vec<4,float> rgba = {R,G,B,A}; |
| // shuffle<2,1,0,3> (rgba) ~> {B,G,R,A} |
| // shuffle<2,1> (rgba) ~> {B,G} |
| // shuffle<2,1,2,1,2,1,2,1>(rgba) ~> {B,G,B,G,B,G,B,G} |
| // shuffle<3,3,3,3> (rgba) ~> {A,A,A,A} |
| // The only real restriction is that the output also be a legal N=power-of-two sknx::Vec. |
| template <int... Ix, int N, typename T> |
| SI Vec<sizeof...(Ix),T> shuffle(const Vec<N,T>& x) { |
| #if SKVX_USE_SIMD && defined(__clang__) |
| // TODO: can we just always use { x[Ix]... }? |
| return to_vec<sizeof...(Ix),T>(__builtin_shufflevector(to_vext(x), to_vext(x), Ix...)); |
| #else |
| return { x[Ix]... }; |
| #endif |
| } |
| |
| // Call map(fn, x) for a vector with fn() applied to each lane of x, { fn(x[0]), fn(x[1]), ... }, |
| // or map(fn, x,y) for a vector of fn(x[i], y[i]), etc. |
| |
| template <typename Fn, typename... Args, size_t... I> |
| SI auto map(std::index_sequence<I...>, |
| Fn&& fn, const Args&... args) -> skvx::Vec<sizeof...(I), decltype(fn(args[0]...))> { |
| auto lane = [&](size_t i) |
| #if defined(__clang__) |
| // CFI, specifically -fsanitize=cfi-icall, seems to give a false positive here, |
| // with errors like "control flow integrity check for type 'float (float) |
| // noexcept' failed during indirect function call... note: sqrtf.cfi_jt defined |
| // here". But we can be quite sure fn is the right type: it's all inferred! |
| // So, stifle CFI in this function. |
| __attribute__((no_sanitize("cfi"))) |
| #endif |
| { return fn(args[static_cast<int>(i)]...); }; |
| |
| return { lane(I)... }; |
| } |
| |
| template <typename Fn, int N, typename T, typename... Rest> |
| auto map(Fn&& fn, const Vec<N,T>& first, const Rest&... rest) { |
| // Derive an {0...N-1} index_sequence from the size of the first arg: N lanes in, N lanes out. |
| return map(std::make_index_sequence<N>{}, fn, first,rest...); |
| } |
| |
| SIN Vec<N,float> ceil(const Vec<N,float>& x) { return map( ceilf, x); } |
| SIN Vec<N,float> floor(const Vec<N,float>& x) { return map(floorf, x); } |
| SIN Vec<N,float> trunc(const Vec<N,float>& x) { return map(truncf, x); } |
| SIN Vec<N,float> round(const Vec<N,float>& x) { return map(roundf, x); } |
| SIN Vec<N,float> sqrt(const Vec<N,float>& x) { return map( sqrtf, x); } |
| SIN Vec<N,float> abs(const Vec<N,float>& x) { return map( fabsf, x); } |
| SIN Vec<N,float> fma(const Vec<N,float>& x, |
| const Vec<N,float>& y, |
| const Vec<N,float>& z) { |
| // I don't understand why Clang's codegen is terrible if we write map(fmaf, x,y,z) directly. |
| auto fn = [](float x, float y, float z) { return fmaf(x,y,z); }; |
| return map(fn, x,y,z); |
| } |
| |
| SI Vec<1,int> lrint(const Vec<1,float>& x) { |
| return (int)lrintf(x.val); |
| } |
| SIN Vec<N,int> lrint(const Vec<N,float>& x) { |
| #if SKVX_USE_SIMD && SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX |
| if constexpr (N == 8) { |
| return sk_bit_cast<Vec<N,int>>(_mm256_cvtps_epi32(sk_bit_cast<__m256>(x))); |
| } |
| #endif |
| #if SKVX_USE_SIMD && SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE1 |
| if constexpr (N == 4) { |
| return sk_bit_cast<Vec<N,int>>(_mm_cvtps_epi32(sk_bit_cast<__m128>(x))); |
| } |
| #endif |
| #if SKVX_USE_SIMD && SK_CPU_LSX_LEVEL >= SK_CPU_LSX_LEVEL_LASX |
| if constexpr (N == 8) { |
| return sk_bit_cast<Vec<N,int>>(__lasx_xvftint_w_s(sk_bit_cast<__m256>(x))); |
| } |
| #endif |
| #if SKVX_USE_SIMD && SK_CPU_LSX_LEVEL >= SK_CPU_LSX_LEVEL_LSX |
| if constexpr (N == 4) { |
| return sk_bit_cast<Vec<N,int>>(__lsx_vftint_w_s(sk_bit_cast<__m128>(x))); |
| } |
| #endif |
| return join(lrint(x.lo), |
| lrint(x.hi)); |
| } |
| |
| SIN Vec<N,float> fract(const Vec<N,float>& x) { return x - floor(x); } |
| |
| // Converts float to half, rounding to nearest even, and supporting de-normal f16 conversion, |
| // and overflow to f16 infinity. Should not be called with NaNs, since it can convert NaN->inf. |
| // KEEP IN SYNC with skcms' Half_from_F to ensure that f16 colors are computed consistently in both |
| // skcms and skvx. |
| SIN Vec<N,uint16_t> to_half(const Vec<N,float>& x) { |
| assert(all(x == x)); // No NaNs should reach this function |
| |
| // Intrinsics for float->half tend to operate on 4 lanes, and the default implementation has |
| // enough instructions that it's better to split and join on 128 bits groups vs. |
| // recursing for each min/max/shift/etc. |
| if constexpr (N > 4) { |
| return join(to_half(x.lo), |
| to_half(x.hi)); |
| } |
| |
| #if SKVX_USE_SIMD && defined(__aarch64__) |
| if constexpr (N == 4) { |
| return sk_bit_cast<Vec<N,uint16_t>>(vcvt_f16_f32(sk_bit_cast<float32x4_t>(x))); |
| |
| } |
| #endif |
| |
| #define I(x) sk_bit_cast<Vec<N,int32_t>>(x) |
| #define F(x) sk_bit_cast<Vec<N,float>>(x) |
| Vec<N,int32_t> sem = I(x), |
| s = sem & 0x8000'0000, |
| em = min(sem ^ s, 0x4780'0000), // |x| clamped to f16 infinity |
| // F(em)*8192 increases the exponent by 13, which when added back to em will shift |
| // the mantissa bits 13 to the right. We clamp to 1/2 for subnormal values, which |
| // automatically shifts the mantissa to match 2^-14 expected for a subnorm f16. |
| magic = I(max(F(em) * 8192.f, 0.5f)) & (255 << 23), |
| rounded = I((F(em) + F(magic))), // shift mantissa with automatic round-to-even |
| // Subtract 127 for f32 bias, subtract 13 to undo the *8192, subtract 1 to remove |
| // the implicit leading 1., and add 15 to get the f16 biased exponent. |
| exp = ((magic >> 13) - ((127-15+13+1)<<10)), // shift and re-bias exponent |
| f16 = rounded + exp; // use + if 'rounded' rolled over into first exponent bit |
| return cast<uint16_t>((s>>16) | f16); |
| #undef I |
| #undef F |
| } |
| |
| // Converts from half to float, preserving NaN and +/- infinity. |
| // KEEP IN SYNC with skcms' F_from_Half to ensure that f16 colors are computed consistently in both |
| // skcms and skvx. |
| SIN Vec<N,float> from_half(const Vec<N,uint16_t>& x) { |
| if constexpr (N > 4) { |
| return join(from_half(x.lo), |
| from_half(x.hi)); |
| } |
| |
| #if SKVX_USE_SIMD && defined(__aarch64__) |
| if constexpr (N == 4) { |
| return sk_bit_cast<Vec<N,float>>(vcvt_f32_f16(sk_bit_cast<float16x4_t>(x))); |
| } |
| #endif |
| |
| Vec<N,int32_t> wide = cast<int32_t>(x), |
| s = wide & 0x8000, |
| em = wide ^ s, |
| inf_or_nan = (em >= (31 << 10)) & (255 << 23), // Expands exponent to fill 8 bits |
| is_norm = em > 0x3ff, |
| // subnormal f16's are 2^-14*0.[m0:9] == 2^-24*[m0:9].0 |
| sub = sk_bit_cast<Vec<N,int32_t>>((cast<float>(em) * (1.f/(1<<24)))), |
| norm = ((em<<13) + ((127-15)<<23)), // Shifts mantissa, shifts + re-biases exp |
| finite = (is_norm & norm) | (~is_norm & sub); |
| // If 'x' is f16 +/- infinity, inf_or_nan will be the filled 8-bit exponent but 'norm' will be |
| // all 0s since 'x's mantissa is 0. Thus norm | inf_or_nan becomes f32 infinity. However, if |
| // 'x' is an f16 NaN, some bits of 'norm' will be non-zero, so it stays an f32 NaN after the OR. |
| return sk_bit_cast<Vec<N,float>>((s<<16) | finite | inf_or_nan); |
| } |
| |
| // div255(x) = (x + 127) / 255 is a bit-exact rounding divide-by-255, packing down to 8-bit. |
| SIN Vec<N,uint8_t> div255(const Vec<N,uint16_t>& x) { |
| return cast<uint8_t>( (x+127)/255 ); |
| } |
| |
| // approx_scale(x,y) approximates div255(cast<uint16_t>(x)*cast<uint16_t>(y)) within a bit, |
| // and is always perfect when x or y is 0 or 255. |
| SIN Vec<N,uint8_t> approx_scale(const Vec<N,uint8_t>& x, const Vec<N,uint8_t>& y) { |
| // All of (x*y+x)/256, (x*y+y)/256, and (x*y+255)/256 meet the criteria above. |
| // We happen to have historically picked (x*y+x)/256. |
| auto X = cast<uint16_t>(x), |
| Y = cast<uint16_t>(y); |
| return cast<uint8_t>( (X*Y+X)/256 ); |
| } |
| |
| // saturated_add(x,y) sums values and clamps to the maximum value instead of overflowing. |
| SINT std::enable_if_t<std::is_unsigned_v<T>, Vec<N,T>> saturated_add(const Vec<N,T>& x, |
| const Vec<N,T>& y) { |
| #if SKVX_USE_SIMD && (SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE1 || defined(SK_ARM_HAS_NEON) || \ |
| SK_CPU_LSX_LEVEL >= SK_CPU_LSX_LEVEL_LSX) |
| // Both SSE and ARM have 16-lane saturated adds, so use intrinsics for those and recurse down |
| // or join up to take advantage. |
| if constexpr (N == 16 && sizeof(T) == 1) { |
| #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE1 |
| return sk_bit_cast<Vec<N,T>>(_mm_adds_epu8(sk_bit_cast<__m128i>(x), |
| sk_bit_cast<__m128i>(y))); |
| #elif SK_CPU_LSX_LEVEL >= SK_CPU_LSX_LEVEL_LSX |
| return sk_bit_cast<Vec<N,T>>(__lsx_vsadd_bu(sk_bit_cast<__m128i>(x), |
| sk_bit_cast<__m128i>(y))); |
| #else // SK_ARM_HAS_NEON |
| return sk_bit_cast<Vec<N,T>>(vqaddq_u8(sk_bit_cast<uint8x16_t>(x), |
| sk_bit_cast<uint8x16_t>(y))); |
| #endif |
| } else if constexpr (N < 16 && sizeof(T) == 1) { |
| return saturated_add(join(x,x), join(y,y)).lo; |
| } else if constexpr (sizeof(T) == 1) { |
| return join(saturated_add(x.lo, y.lo), saturated_add(x.hi, y.hi)); |
| } |
| #endif |
| // Otherwise saturate manually |
| auto sum = x + y; |
| return if_then_else(sum < x, Vec<N,T>(std::numeric_limits<T>::max()), sum); |
| } |
| |
| // The ScaledDividerU32 takes a divisor > 1, and creates a function divide(numerator) that |
| // calculates a numerator / denominator. For this to be rounded properly, numerator should have |
| // half added in: |
| // divide(numerator + half) == floor(numerator/denominator + 1/2). |
| // |
| // This gives an answer within +/- 1 from the true value. |
| // |
| // Derivation of half: |
| // numerator/denominator + 1/2 = (numerator + half) / d |
| // numerator + denominator / 2 = numerator + half |
| // half = denominator / 2. |
| // |
| // Because half is divided by 2, that division must also be rounded. |
| // half == denominator / 2 = (denominator + 1) / 2. |
| // |
| // The divisorFactor is just a scaled value: |
| // divisorFactor = (1 / divisor) * 2 ^ 32. |
| // The maximum that can be divided and rounded is UINT_MAX - half. |
| class ScaledDividerU32 { |
| public: |
| explicit ScaledDividerU32(uint32_t divisor) |
| : fDivisorFactor{(uint32_t)(std::round((1.0 / divisor) * (1ull << 32)))} |
| , fHalf{(divisor + 1) >> 1} { |
| assert(divisor > 1); |
| } |
| |
| Vec<4, uint32_t> divide(const Vec<4, uint32_t>& numerator) const { |
| #if SKVX_USE_SIMD && defined(SK_ARM_HAS_NEON) |
| uint64x2_t hi = vmull_n_u32(vget_high_u32(to_vext(numerator)), fDivisorFactor); |
| uint64x2_t lo = vmull_n_u32(vget_low_u32(to_vext(numerator)), fDivisorFactor); |
| |
| return to_vec<4, uint32_t>(vcombine_u32(vshrn_n_u64(lo,32), vshrn_n_u64(hi,32))); |
| #else |
| return cast<uint32_t>((cast<uint64_t>(numerator) * fDivisorFactor) >> 32); |
| #endif |
| } |
| |
| uint32_t half() const { return fHalf; } |
| |
| private: |
| const uint32_t fDivisorFactor; |
| const uint32_t fHalf; |
| }; |
| |
| |
| SIN Vec<N,uint16_t> mull(const Vec<N,uint8_t>& x, |
| const Vec<N,uint8_t>& y) { |
| #if SKVX_USE_SIMD && defined(SK_ARM_HAS_NEON) |
| // With NEON we can do eight u8*u8 -> u16 in one instruction, vmull_u8 (read, mul-long). |
| if constexpr (N == 8) { |
| return to_vec<8,uint16_t>(vmull_u8(to_vext(x), to_vext(y))); |
| } else if constexpr (N < 8) { |
| return mull(join(x,x), join(y,y)).lo; |
| } else { // N > 8 |
| return join(mull(x.lo, y.lo), mull(x.hi, y.hi)); |
| } |
| #else |
| return cast<uint16_t>(x) * cast<uint16_t>(y); |
| #endif |
| } |
| |
| SIN Vec<N,uint32_t> mull(const Vec<N,uint16_t>& x, |
| const Vec<N,uint16_t>& y) { |
| #if SKVX_USE_SIMD && defined(SK_ARM_HAS_NEON) |
| // NEON can do four u16*u16 -> u32 in one instruction, vmull_u16 |
| if constexpr (N == 4) { |
| return to_vec<4,uint32_t>(vmull_u16(to_vext(x), to_vext(y))); |
| } else if constexpr (N < 4) { |
| return mull(join(x,x), join(y,y)).lo; |
| } else { // N > 4 |
| return join(mull(x.lo, y.lo), mull(x.hi, y.hi)); |
| } |
| #else |
| return cast<uint32_t>(x) * cast<uint32_t>(y); |
| #endif |
| } |
| |
| SIN Vec<N,uint16_t> mulhi(const Vec<N,uint16_t>& x, |
| const Vec<N,uint16_t>& y) { |
| #if SKVX_USE_SIMD && SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE1 |
| // Use _mm_mulhi_epu16 for 8xuint16_t and join or split to get there. |
| if constexpr (N == 8) { |
| return sk_bit_cast<Vec<8,uint16_t>>(_mm_mulhi_epu16(sk_bit_cast<__m128i>(x), |
| sk_bit_cast<__m128i>(y))); |
| } else if constexpr (N < 8) { |
| return mulhi(join(x,x), join(y,y)).lo; |
| } else { // N > 8 |
| return join(mulhi(x.lo, y.lo), mulhi(x.hi, y.hi)); |
| } |
| #elif SKVX_USE_SIMD && SK_CPU_LSX_LEVEL >= SK_CPU_LSX_LEVEL_LSX |
| if constexpr (N == 8) { |
| return sk_bit_cast<Vec<8,uint16_t>>(__lsx_vmuh_hu(sk_bit_cast<__m128i>(x), |
| sk_bit_cast<__m128i>(y))); |
| } else if constexpr (N < 8) { |
| return mulhi(join(x,x), join(y,y)).lo; |
| } else { // N > 8 |
| return join(mulhi(x.lo, y.lo), mulhi(x.hi, y.hi)); |
| } |
| #else |
| return skvx::cast<uint16_t>(mull(x, y) >> 16); |
| #endif |
| } |
| |
| SINT T dot(const Vec<N, T>& a, const Vec<N, T>& b) { |
| // While dot is a "horizontal" operation like any or all, it needs to remain |
| // in floating point and there aren't really any good SIMD instructions that make it faster. |
| // The constexpr cases remove the for loop in the only cases we realistically call. |
| auto ab = a*b; |
| if constexpr (N == 2) { |
| return ab[0] + ab[1]; |
| } else if constexpr (N == 4) { |
| return ab[0] + ab[1] + ab[2] + ab[3]; |
| } else { |
| T sum = ab[0]; |
| for (int i = 1; i < N; ++i) { |
| sum += ab[i]; |
| } |
| return sum; |
| } |
| } |
| |
| SIT T cross(const Vec<2, T>& a, const Vec<2, T>& b) { |
| auto x = a * shuffle<1,0>(b); |
| return x[0] - x[1]; |
| } |
| |
| SIN float length(const Vec<N, float>& v) { |
| return std::sqrt(dot(v, v)); |
| } |
| |
| SIN double length(const Vec<N, double>& v) { |
| return std::sqrt(dot(v, v)); |
| } |
| |
| SIN Vec<N, float> normalize(const Vec<N, float>& v) { |
| return v / length(v); |
| } |
| |
| SIN Vec<N, double> normalize(const Vec<N, double>& v) { |
| return v / length(v); |
| } |
| |
| SINT bool isfinite(const Vec<N, T>& v) { |
| // Multiply all values together with 0. If they were all finite, the output is |
| // 0 (also finite). If any were not, we'll get nan. |
| return SkIsFinite(dot(v, Vec<N, T>(0))); |
| } |
| |
| // De-interleaving load of 4 vectors. |
| // |
| // WARNING: These are really only supported well on NEON. Consider restructuring your data before |
| // resorting to these methods. |
| SIT void strided_load4(const T* v, |
| Vec<1,T>& a, |
| Vec<1,T>& b, |
| Vec<1,T>& c, |
| Vec<1,T>& d) { |
| a.val = v[0]; |
| b.val = v[1]; |
| c.val = v[2]; |
| d.val = v[3]; |
| } |
| SINT void strided_load4(const T* v, |
| Vec<N,T>& a, |
| Vec<N,T>& b, |
| Vec<N,T>& c, |
| Vec<N,T>& d) { |
| strided_load4(v, a.lo, b.lo, c.lo, d.lo); |
| strided_load4(v + 4*(N/2), a.hi, b.hi, c.hi, d.hi); |
| } |
| #if SKVX_USE_SIMD && defined(SK_ARM_HAS_NEON) |
| #define IMPL_LOAD4_TRANSPOSED(N, T, VLD) \ |
| SI void strided_load4(const T* v, \ |
| Vec<N,T>& a, \ |
| Vec<N,T>& b, \ |
| Vec<N,T>& c, \ |
| Vec<N,T>& d) { \ |
| auto mat = VLD(v); \ |
| a = sk_bit_cast<Vec<N,T>>(mat.val[0]); \ |
| b = sk_bit_cast<Vec<N,T>>(mat.val[1]); \ |
| c = sk_bit_cast<Vec<N,T>>(mat.val[2]); \ |
| d = sk_bit_cast<Vec<N,T>>(mat.val[3]); \ |
| } |
| IMPL_LOAD4_TRANSPOSED(2, uint32_t, vld4_u32) |
| IMPL_LOAD4_TRANSPOSED(4, uint16_t, vld4_u16) |
| IMPL_LOAD4_TRANSPOSED(8, uint8_t, vld4_u8) |
| IMPL_LOAD4_TRANSPOSED(2, int32_t, vld4_s32) |
| IMPL_LOAD4_TRANSPOSED(4, int16_t, vld4_s16) |
| IMPL_LOAD4_TRANSPOSED(8, int8_t, vld4_s8) |
| IMPL_LOAD4_TRANSPOSED(2, float, vld4_f32) |
| IMPL_LOAD4_TRANSPOSED(4, uint32_t, vld4q_u32) |
| IMPL_LOAD4_TRANSPOSED(8, uint16_t, vld4q_u16) |
| IMPL_LOAD4_TRANSPOSED(16, uint8_t, vld4q_u8) |
| IMPL_LOAD4_TRANSPOSED(4, int32_t, vld4q_s32) |
| IMPL_LOAD4_TRANSPOSED(8, int16_t, vld4q_s16) |
| IMPL_LOAD4_TRANSPOSED(16, int8_t, vld4q_s8) |
| IMPL_LOAD4_TRANSPOSED(4, float, vld4q_f32) |
| #undef IMPL_LOAD4_TRANSPOSED |
| |
| #elif SKVX_USE_SIMD && SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE1 |
| |
| SI void strided_load4(const float* v, |
| Vec<4,float>& a, |
| Vec<4,float>& b, |
| Vec<4,float>& c, |
| Vec<4,float>& d) { |
| __m128 a_ = _mm_loadu_ps(v); |
| __m128 b_ = _mm_loadu_ps(v+4); |
| __m128 c_ = _mm_loadu_ps(v+8); |
| __m128 d_ = _mm_loadu_ps(v+12); |
| _MM_TRANSPOSE4_PS(a_, b_, c_, d_); |
| a = sk_bit_cast<Vec<4,float>>(a_); |
| b = sk_bit_cast<Vec<4,float>>(b_); |
| c = sk_bit_cast<Vec<4,float>>(c_); |
| d = sk_bit_cast<Vec<4,float>>(d_); |
| } |
| |
| #elif SKVX_USE_SIMD && SKVX_CPU_LSX_LEVEL >= SK_CPU_LSX_LEVEL_LSX |
| #define _LSX_TRANSPOSE4(row0, row1, row2, row3) \ |
| do { \ |
| __m128i __t0 = __lsx_vilvl_w (row1, row0); \ |
| __m128i __t1 = __lsx_vilvl_w (row3, row2); \ |
| __m128i __t2 = __lsx_vilvh_w (row1, row0); \ |
| __m128i __t3 = __lsx_vilvh_w (row3, row2); \ |
| (row0) = __lsx_vilvl_d (__t1, __t0); \ |
| (row1) = __lsx_vilvh_d (__t1, __t0); \ |
| (row2) = __lsx_vilvl_d (__t3, __t2); \ |
| (row3) = __lsx_vilvh_d (__t3, __t2); \ |
| } while (0) |
| |
| SI void strided_load4(const int* v, |
| Vec<4,int>& a, |
| Vec<4,int>& b, |
| Vec<4,int>& c, |
| Vec<4,int>& d) { |
| __m128i a_ = __lsx_vld(v, 0); |
| __m128i b_ = __lsx_vld(v, 16); |
| __m128i c_ = __lsx_vld(v, 32); |
| __m128i d_ = __lsx_vld(v, 48); |
| _LSX_TRANSPOSE4(a_, b_, c_, d_); |
| a = sk_bit_cast<Vec<4,int>>(a_); |
| b = sk_bit_cast<Vec<4,int>>(b_); |
| c = sk_bit_cast<Vec<4,int>>(c_); |
| d = sk_bit_cast<Vec<4,int>>(d_); |
| } |
| #endif |
| |
| // De-interleaving load of 2 vectors. |
| // |
| // WARNING: These are really only supported well on NEON. Consider restructuring your data before |
| // resorting to these methods. |
| SIT void strided_load2(const T* v, Vec<1,T>& a, Vec<1,T>& b) { |
| a.val = v[0]; |
| b.val = v[1]; |
| } |
| SINT void strided_load2(const T* v, Vec<N,T>& a, Vec<N,T>& b) { |
| strided_load2(v, a.lo, b.lo); |
| strided_load2(v + 2*(N/2), a.hi, b.hi); |
| } |
| #if SKVX_USE_SIMD && defined(SK_ARM_HAS_NEON) |
| #define IMPL_LOAD2_TRANSPOSED(N, T, VLD) \ |
| SI void strided_load2(const T* v, Vec<N,T>& a, Vec<N,T>& b) { \ |
| auto mat = VLD(v); \ |
| a = sk_bit_cast<Vec<N,T>>(mat.val[0]); \ |
| b = sk_bit_cast<Vec<N,T>>(mat.val[1]); \ |
| } |
| IMPL_LOAD2_TRANSPOSED(2, uint32_t, vld2_u32) |
| IMPL_LOAD2_TRANSPOSED(4, uint16_t, vld2_u16) |
| IMPL_LOAD2_TRANSPOSED(8, uint8_t, vld2_u8) |
| IMPL_LOAD2_TRANSPOSED(2, int32_t, vld2_s32) |
| IMPL_LOAD2_TRANSPOSED(4, int16_t, vld2_s16) |
| IMPL_LOAD2_TRANSPOSED(8, int8_t, vld2_s8) |
| IMPL_LOAD2_TRANSPOSED(2, float, vld2_f32) |
| IMPL_LOAD2_TRANSPOSED(4, uint32_t, vld2q_u32) |
| IMPL_LOAD2_TRANSPOSED(8, uint16_t, vld2q_u16) |
| IMPL_LOAD2_TRANSPOSED(16, uint8_t, vld2q_u8) |
| IMPL_LOAD2_TRANSPOSED(4, int32_t, vld2q_s32) |
| IMPL_LOAD2_TRANSPOSED(8, int16_t, vld2q_s16) |
| IMPL_LOAD2_TRANSPOSED(16, int8_t, vld2q_s8) |
| IMPL_LOAD2_TRANSPOSED(4, float, vld2q_f32) |
| #undef IMPL_LOAD2_TRANSPOSED |
| #endif |
| |
| // Define commonly used aliases |
| using float2 = Vec< 2, float>; |
| using float4 = Vec< 4, float>; |
| using float8 = Vec< 8, float>; |
| |
| using double2 = Vec< 2, double>; |
| using double4 = Vec< 4, double>; |
| using double8 = Vec< 8, double>; |
| |
| using byte2 = Vec< 2, uint8_t>; |
| using byte4 = Vec< 4, uint8_t>; |
| using byte8 = Vec< 8, uint8_t>; |
| using byte16 = Vec<16, uint8_t>; |
| |
| using int2 = Vec< 2, int32_t>; |
| using int4 = Vec< 4, int32_t>; |
| using int8 = Vec< 8, int32_t>; |
| |
| using ushort2 = Vec< 2, uint16_t>; |
| using ushort4 = Vec< 4, uint16_t>; |
| using ushort8 = Vec< 8, uint16_t>; |
| |
| using uint2 = Vec< 2, uint32_t>; |
| using uint4 = Vec< 4, uint32_t>; |
| using uint8 = Vec< 8, uint32_t>; |
| |
| using long2 = Vec< 2, int64_t>; |
| using long4 = Vec< 4, int64_t>; |
| using long8 = Vec< 8, int64_t>; |
| |
| // Use with from_half and to_half to convert between floatX, and use these for storage. |
| using half2 = Vec< 2, uint16_t>; |
| using half4 = Vec< 4, uint16_t>; |
| using half8 = Vec< 8, uint16_t>; |
| |
| } // namespace skvx |
| |
| #undef SINTU |
| #undef SINT |
| #undef SIN |
| #undef SIT |
| #undef SI |
| #undef SKVX_ALWAYS_INLINE |
| #undef SKVX_USE_SIMD |
| |
| #endif//SKVX_DEFINED |