blob: 23457c8b09f4c47dea275ebc750782aa0532efa5 [file] [log] [blame]
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkArenaAlloc_DEFINED
#define SkArenaAlloc_DEFINED
#include "include/private/base/SkASAN.h"
#include "include/private/base/SkAssert.h"
#include "include/private/base/SkTFitsIn.h"
#include "include/private/base/SkTo.h"
#include <algorithm>
#include <array>
#include <cstdint>
#include <cstdlib>
#include <cstring>
#include <limits>
#include <new>
#include <type_traits>
#include <utility>
// We found allocating strictly doubling amounts of memory from the heap left too
// much unused slop, particularly on Android. Instead we'll follow a Fibonacci-like
// progression.
// SkFibonacci47 is the first 47 Fibonacci numbers. Fib(47) is the largest value less than 2 ^ 32.
extern std::array<const uint32_t, 47> SkFibonacci47;
template<uint32_t kMaxSize>
class SkFibBlockSizes {
public:
// staticBlockSize, and firstAllocationSize are parameters describing the initial memory
// layout. staticBlockSize describes the size of the inlined memory, and firstAllocationSize
// describes the size of the first block to be allocated if the static block is exhausted. By
// convention, firstAllocationSize is the first choice for the block unit size followed by
// staticBlockSize followed by the default of 1024 bytes.
SkFibBlockSizes(uint32_t staticBlockSize, uint32_t firstAllocationSize) : fIndex{0} {
fBlockUnitSize = firstAllocationSize > 0 ? firstAllocationSize :
staticBlockSize > 0 ? staticBlockSize : 1024;
SkASSERT_RELEASE(0 < fBlockUnitSize);
SkASSERT_RELEASE(fBlockUnitSize < std::min(kMaxSize, (1u << 26) - 1));
}
uint32_t nextBlockSize() {
uint32_t result = SkFibonacci47[fIndex] * fBlockUnitSize;
if (SkTo<size_t>(fIndex + 1) < SkFibonacci47.size() &&
SkFibonacci47[fIndex + 1] < kMaxSize / fBlockUnitSize)
{
fIndex += 1;
}
return result;
}
private:
uint32_t fIndex : 6;
uint32_t fBlockUnitSize : 26;
};
// SkArenaAlloc allocates object and destroys the allocated objects when destroyed. It's designed
// to minimize the number of underlying block allocations. SkArenaAlloc allocates first out of an
// (optional) user-provided block of memory, and when that's exhausted it allocates on the heap,
// starting with an allocation of firstHeapAllocation bytes. If your data (plus a small overhead)
// fits in the user-provided block, SkArenaAlloc never uses the heap, and if it fits in
// firstHeapAllocation bytes, it'll use the heap only once. If 0 is specified for
// firstHeapAllocation, then blockSize is used unless that too is 0, then 1024 is used.
//
// Examples:
//
// char block[mostCasesSize];
// SkArenaAlloc arena(block, mostCasesSize);
//
// If mostCasesSize is too large for the stack, you can use the following pattern.
//
// std::unique_ptr<char[]> block{new char[mostCasesSize]};
// SkArenaAlloc arena(block.get(), mostCasesSize, almostAllCasesSize);
//
// If the program only sometimes allocates memory, use the following pattern.
//
// SkArenaAlloc arena(nullptr, 0, almostAllCasesSize);
//
// The storage does not necessarily need to be on the stack. Embedding the storage in a class also
// works.
//
// class Foo {
// char storage[mostCasesSize];
// SkArenaAlloc arena (storage, mostCasesSize);
// };
//
// In addition, the system is optimized to handle POD data including arrays of PODs (where
// POD is really data with no destructors). For POD data it has zero overhead per item, and a
// typical per block overhead of 8 bytes. For non-POD objects there is a per item overhead of 4
// bytes. For arrays of non-POD objects there is a per array overhead of typically 8 bytes. There
// is an addition overhead when switching from POD data to non-POD data of typically 8 bytes.
//
// If additional blocks are needed they are increased exponentially. This strategy bounds the
// recursion of the RunDtorsOnBlock to be limited to O(log size-of-memory). Block size grow using
// the Fibonacci sequence which means that for 2^32 memory there are 48 allocations, and for 2^48
// there are 71 allocations.
class SkArenaAlloc {
public:
SkArenaAlloc(char* block, size_t blockSize, size_t firstHeapAllocation);
explicit SkArenaAlloc(size_t firstHeapAllocation)
: SkArenaAlloc(nullptr, 0, firstHeapAllocation) {}
SkArenaAlloc(const SkArenaAlloc&) = delete;
SkArenaAlloc& operator=(const SkArenaAlloc&) = delete;
SkArenaAlloc(SkArenaAlloc&&) = delete;
SkArenaAlloc& operator=(SkArenaAlloc&&) = delete;
~SkArenaAlloc();
template <typename Ctor>
auto make(Ctor&& ctor) -> decltype(ctor(nullptr)) {
using T = std::remove_pointer_t<decltype(ctor(nullptr))>;
uint32_t size = SkToU32(sizeof(T));
uint32_t alignment = SkToU32(alignof(T));
char* objStart;
if (std::is_trivially_destructible<T>::value) {
objStart = this->allocObject(size, alignment);
fCursor = objStart + size;
sk_asan_unpoison_memory_region(objStart, size);
} else {
objStart = this->allocObjectWithFooter(size + sizeof(Footer), alignment);
// Can never be UB because max value is alignof(T).
uint32_t padding = SkToU32(objStart - fCursor);
// Advance to end of object to install footer.
fCursor = objStart + size;
sk_asan_unpoison_memory_region(objStart, size);
FooterAction* releaser = [](char* objEnd) {
char* objStart = objEnd - (sizeof(T) + sizeof(Footer));
((T*)objStart)->~T();
return objStart;
};
this->installFooter(releaser, padding);
}
// This must be last to make objects with nested use of this allocator work.
return ctor(objStart);
}
template <typename T, typename... Args>
T* make(Args&&... args) {
return this->make([&](void* objStart) {
return new(objStart) T(std::forward<Args>(args)...);
});
}
template <typename T>
T* make() {
if constexpr (std::is_standard_layout<T>::value && std::is_trivial<T>::value) {
// Just allocate some aligned bytes. This generates smaller code.
return (T*)this->makeBytesAlignedTo(sizeof(T), alignof(T));
} else {
// This isn't a POD type, so construct the object properly.
return this->make([&](void* objStart) {
return new(objStart) T();
});
}
}
template <typename T>
T* makeArrayDefault(size_t count) {
T* array = this->allocUninitializedArray<T>(count);
for (size_t i = 0; i < count; i++) {
// Default initialization: if T is primitive then the value is left uninitialized.
new (&array[i]) T;
}
return array;
}
template <typename T>
T* makeArray(size_t count) {
T* array = this->allocUninitializedArray<T>(count);
for (size_t i = 0; i < count; i++) {
// Value initialization: if T is primitive then the value is zero-initialized.
new (&array[i]) T();
}
return array;
}
template <typename T, typename Initializer>
T* makeInitializedArray(size_t count, Initializer initializer) {
T* array = this->allocUninitializedArray<T>(count);
for (size_t i = 0; i < count; i++) {
new (&array[i]) T(initializer(i));
}
return array;
}
// Only use makeBytesAlignedTo if none of the typed variants are practical to use.
void* makeBytesAlignedTo(size_t size, size_t align) {
AssertRelease(SkTFitsIn<uint32_t>(size));
auto objStart = this->allocObject(SkToU32(size), SkToU32(align));
fCursor = objStart + size;
sk_asan_unpoison_memory_region(objStart, size);
return objStart;
}
protected:
using FooterAction = char* (char*);
struct Footer {
uint8_t unaligned_action[sizeof(FooterAction*)];
uint8_t padding;
};
char* cursor() { return fCursor; }
char* end() { return fEnd; }
private:
static void AssertRelease(bool cond) { if (!cond) { ::abort(); } }
static char* SkipPod(char* footerEnd);
static void RunDtorsOnBlock(char* footerEnd);
static char* NextBlock(char* footerEnd);
template <typename T>
void installRaw(const T& val) {
sk_asan_unpoison_memory_region(fCursor, sizeof(val));
memcpy(fCursor, &val, sizeof(val));
fCursor += sizeof(val);
}
void installFooter(FooterAction* releaser, uint32_t padding);
void ensureSpace(uint32_t size, uint32_t alignment);
char* allocObject(uint32_t size, uint32_t alignment) {
uintptr_t mask = alignment - 1;
uintptr_t alignedOffset = (~reinterpret_cast<uintptr_t>(fCursor) + 1) & mask;
uintptr_t totalSize = size + alignedOffset;
AssertRelease(totalSize >= size);
if (totalSize > static_cast<uintptr_t>(fEnd - fCursor)) {
this->ensureSpace(size, alignment);
alignedOffset = (~reinterpret_cast<uintptr_t>(fCursor) + 1) & mask;
}
char* object = fCursor + alignedOffset;
SkASSERT((reinterpret_cast<uintptr_t>(object) & (alignment - 1)) == 0);
SkASSERT(object + size <= fEnd);
return object;
}
char* allocObjectWithFooter(uint32_t sizeIncludingFooter, uint32_t alignment);
template <typename T>
T* allocUninitializedArray(size_t countZ) {
AssertRelease(SkTFitsIn<uint32_t>(countZ));
uint32_t count = SkToU32(countZ);
char* objStart;
AssertRelease(count <= std::numeric_limits<uint32_t>::max() / sizeof(T));
uint32_t arraySize = SkToU32(count * sizeof(T));
uint32_t alignment = SkToU32(alignof(T));
if (std::is_trivially_destructible<T>::value) {
objStart = this->allocObject(arraySize, alignment);
fCursor = objStart + arraySize;
sk_asan_unpoison_memory_region(objStart, arraySize);
} else {
constexpr uint32_t overhead = sizeof(Footer) + sizeof(uint32_t);
AssertRelease(arraySize <= std::numeric_limits<uint32_t>::max() - overhead);
uint32_t totalSize = arraySize + overhead;
objStart = this->allocObjectWithFooter(totalSize, alignment);
// Can never be UB because max value is alignof(T).
uint32_t padding = SkToU32(objStart - fCursor);
// Advance to end of array to install footer.
fCursor = objStart + arraySize;
sk_asan_unpoison_memory_region(objStart, arraySize);
this->installRaw(SkToU32(count));
this->installFooter(
[](char* footerEnd) {
char* objEnd = footerEnd - (sizeof(Footer) + sizeof(uint32_t));
uint32_t count;
memmove(&count, objEnd, sizeof(uint32_t));
char* objStart = objEnd - count * sizeof(T);
T* array = (T*) objStart;
for (uint32_t i = 0; i < count; i++) {
array[i].~T();
}
return objStart;
},
padding);
}
return (T*)objStart;
}
char* fDtorCursor;
char* fCursor;
char* fEnd;
SkFibBlockSizes<std::numeric_limits<uint32_t>::max()> fFibonacciProgression;
};
class SkArenaAllocWithReset : public SkArenaAlloc {
public:
SkArenaAllocWithReset(char* block, size_t blockSize, size_t firstHeapAllocation);
explicit SkArenaAllocWithReset(size_t firstHeapAllocation)
: SkArenaAllocWithReset(nullptr, 0, firstHeapAllocation) {}
// Destroy all allocated objects, free any heap allocations.
void reset();
// Returns true if the alloc has never made any objects.
bool isEmpty();
private:
char* const fFirstBlock;
const uint32_t fFirstSize;
const uint32_t fFirstHeapAllocationSize;
};
// Helper for defining allocators with inline/reserved storage.
// For argument declarations, stick to the base type (SkArenaAlloc).
// Note: Inheriting from the storage first means the storage will outlive the
// SkArenaAlloc, letting ~SkArenaAlloc read it as it calls destructors.
// (This is mostly only relevant for strict tools like MSAN.)
template <size_t InlineStorageSize>
class SkSTArenaAlloc : private std::array<char, InlineStorageSize>, public SkArenaAlloc {
public:
explicit SkSTArenaAlloc(size_t firstHeapAllocation = InlineStorageSize)
: SkArenaAlloc{this->data(), this->size(), firstHeapAllocation} {}
~SkSTArenaAlloc() {
// Be sure to unpoison the memory that is probably on the stack.
sk_asan_unpoison_memory_region(this->data(), this->size());
}
};
template <size_t InlineStorageSize>
class SkSTArenaAllocWithReset
: private std::array<char, InlineStorageSize>, public SkArenaAllocWithReset {
public:
explicit SkSTArenaAllocWithReset(size_t firstHeapAllocation = InlineStorageSize)
: SkArenaAllocWithReset{this->data(), this->size(), firstHeapAllocation} {}
~SkSTArenaAllocWithReset() {
// Be sure to unpoison the memory that is probably on the stack.
sk_asan_unpoison_memory_region(this->data(), this->size());
}
};
#endif // SkArenaAlloc_DEFINED