blob: b0c86bda1c9312085e4e64d91ec94cbfa6db559b [file] [log] [blame]
/*
* Copyright 2018 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/**************************************************************************************************
*** This file was autogenerated from GrRectBlurEffect.fp; do not modify.
**************************************************************************************************/
#ifndef GrRectBlurEffect_DEFINED
#define GrRectBlurEffect_DEFINED
#include "include/core/SkTypes.h"
#include <cmath>
#include "include/core/SkRect.h"
#include "include/core/SkScalar.h"
#include "src/core/SkBlurMask.h"
#include "src/core/SkMathPriv.h"
#include "src/gpu/GrProxyProvider.h"
#include "src/gpu/GrShaderCaps.h"
#include "src/gpu/GrCoordTransform.h"
#include "src/gpu/GrFragmentProcessor.h"
class GrRectBlurEffect : public GrFragmentProcessor {
public:
static sk_sp<GrTextureProxy> CreateIntegralTexture(GrProxyProvider* proxyProvider,
float sixSigma) {
// The texture we're producing represents the integral of a normal distribution over a
// six-sigma range centered at zero. We want enough resolution so that the linear
// interpolation done in texture lookup doesn't introduce noticeable artifacts. We
// conservatively choose to have 2 texels for each dst pixel.
int minWidth = 2 * sk_float_ceil2int(sixSigma);
// Bin by powers of 2 with a minimum so we get good profile reuse.
int width = SkTMax(SkNextPow2(minWidth), 32);
static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain();
GrUniqueKey key;
GrUniqueKey::Builder builder(&key, kDomain, 1, "Rect Blur Mask");
builder[0] = width;
builder.finish();
sk_sp<GrTextureProxy> proxy(proxyProvider->findOrCreateProxyByUniqueKey(
key, GrColorType::kAlpha_8, kTopLeft_GrSurfaceOrigin));
if (!proxy) {
SkBitmap bitmap;
if (!bitmap.tryAllocPixels(SkImageInfo::MakeA8(width, 1))) {
return nullptr;
}
*bitmap.getAddr8(0, 0) = 255;
const float invWidth = 1.f / width;
for (int i = 1; i < width - 1; ++i) {
float x = (i + 0.5f) * invWidth;
x = (-6 * x + 3) * SK_ScalarRoot2Over2;
float integral = 0.5f * (std::erf(x) + 1.f);
*bitmap.getAddr8(i, 0) = SkToU8(sk_float_round2int(255.f * integral));
}
*bitmap.getAddr8(width - 1, 0) = 0;
bitmap.setImmutable();
proxy = proxyProvider->createProxyFromBitmap(bitmap, GrMipMapped::kNo);
if (!proxy) {
return nullptr;
}
SkASSERT(proxy->origin() == kTopLeft_GrSurfaceOrigin);
proxyProvider->assignUniqueKeyToProxy(key, proxy.get());
}
return proxy;
}
static std::unique_ptr<GrFragmentProcessor> Make(GrProxyProvider* proxyProvider,
const GrShaderCaps& caps, const SkRect& rect,
float sigma) {
SkASSERT(rect.isSorted());
if (!caps.floatIs32Bits()) {
// We promote the math that gets us into the Gaussian space to full float when the rect
// coords are large. If we don't have full float then fail. We could probably clip the
// rect to an outset device bounds instead.
if (SkScalarAbs(rect.fLeft) > 16000.f || SkScalarAbs(rect.fTop) > 16000.f ||
SkScalarAbs(rect.fRight) > 16000.f || SkScalarAbs(rect.fBottom) > 16000.f) {
return nullptr;
}
}
const float sixSigma = 6 * sigma;
auto integral = CreateIntegralTexture(proxyProvider, sixSigma);
if (!integral) {
return nullptr;
}
// In the fast variant we think of the midpoint of the integral texture as aligning
// with the closest rect edge both in x and y. To simplify texture coord calculation we
// inset the rect so that the edge of the inset rect corresponds to t = 0 in the texture.
// It actually simplifies things a bit in the !isFast case, too.
float threeSigma = sixSigma / 2;
SkRect insetRect = {rect.fLeft + threeSigma, rect.fTop + threeSigma,
rect.fRight - threeSigma, rect.fBottom - threeSigma};
// In our fast variant we find the nearest horizontal and vertical edges and for each
// do a lookup in the integral texture for each and multiply them. When the rect is
// less than 6 sigma wide then things aren't so simple and we have to consider both the
// left and right edge of the rectangle (and similar in y).
bool isFast = insetRect.isSorted();
// 1 / (6 * sigma) is the domain of the integral texture. We use the inverse to produce
// normalized texture coords from frag coord distances.
float invSixSigma = 1.f / sixSigma;
return std::unique_ptr<GrFragmentProcessor>(
new GrRectBlurEffect(insetRect, std::move(integral), invSixSigma, isFast,
GrSamplerState::ClampBilerp()));
}
GrRectBlurEffect(const GrRectBlurEffect& src);
std::unique_ptr<GrFragmentProcessor> clone() const override;
const char* name() const override { return "RectBlurEffect"; }
SkRect rect;
TextureSampler integral;
float invSixSigma;
bool isFast;
private:
GrRectBlurEffect(SkRect rect, sk_sp<GrTextureProxy> integral, float invSixSigma, bool isFast,
GrSamplerState samplerParams)
: INHERITED(kGrRectBlurEffect_ClassID,
(OptimizationFlags)kCompatibleWithCoverageAsAlpha_OptimizationFlag)
, rect(rect)
, integral(std::move(integral), samplerParams)
, invSixSigma(invSixSigma)
, isFast(isFast) {
this->setTextureSamplerCnt(1);
}
GrGLSLFragmentProcessor* onCreateGLSLInstance() const override;
void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const override;
bool onIsEqual(const GrFragmentProcessor&) const override;
const TextureSampler& onTextureSampler(int) const override;
GR_DECLARE_FRAGMENT_PROCESSOR_TEST
typedef GrFragmentProcessor INHERITED;
};
#endif