| /* |
| * Copyright 2013 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "include/effects/SkPerlinNoiseShader.h" |
| |
| #include "include/core/SkBitmap.h" |
| #include "include/core/SkColorFilter.h" |
| #include "include/core/SkShader.h" |
| #include "include/core/SkString.h" |
| #include "include/core/SkUnPreMultiply.h" |
| #include "include/private/SkTPin.h" |
| #include "src/core/SkArenaAlloc.h" |
| #include "src/core/SkMatrixProvider.h" |
| #include "src/core/SkReadBuffer.h" |
| #include "src/core/SkVM.h" |
| #include "src/core/SkWriteBuffer.h" |
| |
| #if SK_SUPPORT_GPU |
| #include "include/gpu/GrRecordingContext.h" |
| #include "src/gpu/KeyBuilder.h" |
| #include "src/gpu/ganesh/GrFPArgs.h" |
| #include "src/gpu/ganesh/GrFragmentProcessor.h" |
| #include "src/gpu/ganesh/GrRecordingContextPriv.h" |
| #include "src/gpu/ganesh/SkGr.h" |
| #include "src/gpu/ganesh/effects/GrMatrixEffect.h" |
| #include "src/gpu/ganesh/effects/GrTextureEffect.h" |
| #include "src/gpu/ganesh/glsl/GrGLSLFragmentShaderBuilder.h" |
| #include "src/gpu/ganesh/glsl/GrGLSLProgramDataManager.h" |
| #include "src/gpu/ganesh/glsl/GrGLSLUniformHandler.h" |
| #endif |
| |
| static const int kBlockSize = 256; |
| static const int kBlockMask = kBlockSize - 1; |
| static const int kPerlinNoise = 4096; |
| static const int kRandMaximum = SK_MaxS32; // 2**31 - 1 |
| |
| class SkPerlinNoiseShaderImpl : public SkShaderBase { |
| public: |
| struct StitchData { |
| StitchData() |
| : fWidth(0) |
| , fWrapX(0) |
| , fHeight(0) |
| , fWrapY(0) |
| {} |
| |
| StitchData(SkScalar w, SkScalar h) |
| : fWidth(std::min(SkScalarRoundToInt(w), SK_MaxS32 - kPerlinNoise)) |
| , fWrapX(kPerlinNoise + fWidth) |
| , fHeight(std::min(SkScalarRoundToInt(h), SK_MaxS32 - kPerlinNoise)) |
| , fWrapY(kPerlinNoise + fHeight) {} |
| |
| bool operator==(const StitchData& other) const { |
| return fWidth == other.fWidth && |
| fWrapX == other.fWrapX && |
| fHeight == other.fHeight && |
| fWrapY == other.fWrapY; |
| } |
| |
| int fWidth; // How much to subtract to wrap for stitching. |
| int fWrapX; // Minimum value to wrap. |
| int fHeight; |
| int fWrapY; |
| }; |
| |
| struct PaintingData { |
| PaintingData(const SkISize& tileSize, SkScalar seed, |
| SkScalar baseFrequencyX, SkScalar baseFrequencyY, |
| const SkMatrix& matrix) |
| { |
| SkVector tileVec; |
| matrix.mapVector(SkIntToScalar(tileSize.fWidth), SkIntToScalar(tileSize.fHeight), |
| &tileVec); |
| |
| SkSize scale; |
| if (!matrix.decomposeScale(&scale, nullptr)) { |
| scale.set(SK_ScalarNearlyZero, SK_ScalarNearlyZero); |
| } |
| fBaseFrequency.set(baseFrequencyX * SkScalarInvert(scale.width()), |
| baseFrequencyY * SkScalarInvert(scale.height())); |
| fTileSize.set(SkScalarRoundToInt(tileVec.fX), SkScalarRoundToInt(tileVec.fY)); |
| this->init(seed); |
| if (!fTileSize.isEmpty()) { |
| this->stitch(); |
| } |
| |
| #if SK_SUPPORT_GPU |
| SkImageInfo info = SkImageInfo::MakeA8(kBlockSize, 1); |
| fPermutationsBitmap.installPixels(info, fLatticeSelector, info.minRowBytes()); |
| fPermutationsBitmap.setImmutable(); |
| |
| info = SkImageInfo::Make(kBlockSize, 4, kRGBA_8888_SkColorType, kPremul_SkAlphaType); |
| fNoiseBitmap.installPixels(info, fNoise[0][0], info.minRowBytes()); |
| fNoiseBitmap.setImmutable(); |
| #endif |
| } |
| |
| #if SK_SUPPORT_GPU |
| PaintingData(const PaintingData& that) |
| : fSeed(that.fSeed) |
| , fTileSize(that.fTileSize) |
| , fBaseFrequency(that.fBaseFrequency) |
| , fStitchDataInit(that.fStitchDataInit) |
| , fPermutationsBitmap(that.fPermutationsBitmap) |
| , fNoiseBitmap(that.fNoiseBitmap) { |
| memcpy(fLatticeSelector, that.fLatticeSelector, sizeof(fLatticeSelector)); |
| memcpy(fNoise, that.fNoise, sizeof(fNoise)); |
| memcpy(fGradient, that.fGradient, sizeof(fGradient)); |
| } |
| #endif |
| |
| int fSeed; |
| uint8_t fLatticeSelector[kBlockSize]; |
| uint16_t fNoise[4][kBlockSize][2]; |
| SkPoint fGradient[4][kBlockSize]; |
| SkISize fTileSize; |
| SkVector fBaseFrequency; |
| StitchData fStitchDataInit; |
| |
| private: |
| |
| #if SK_SUPPORT_GPU |
| SkBitmap fPermutationsBitmap; |
| SkBitmap fNoiseBitmap; |
| #endif |
| |
| inline int random() { |
| // See https://www.w3.org/TR/SVG11/filters.html#feTurbulenceElement |
| // m = kRandMaximum, 2**31 - 1 (2147483647) |
| static constexpr int kRandAmplitude = 16807; // 7**5; primitive root of m |
| static constexpr int kRandQ = 127773; // m / a |
| static constexpr int kRandR = 2836; // m % a |
| |
| int result = kRandAmplitude * (fSeed % kRandQ) - kRandR * (fSeed / kRandQ); |
| if (result <= 0) { |
| result += kRandMaximum; |
| } |
| fSeed = result; |
| return result; |
| } |
| |
| // Only called once. Could be part of the constructor. |
| void init(SkScalar seed) |
| { |
| // According to the SVG spec, we must truncate (not round) the seed value. |
| fSeed = SkScalarTruncToInt(seed); |
| // The seed value clamp to the range [1, kRandMaximum - 1]. |
| if (fSeed <= 0) { |
| fSeed = -(fSeed % (kRandMaximum - 1)) + 1; |
| } |
| if (fSeed > kRandMaximum - 1) { |
| fSeed = kRandMaximum - 1; |
| } |
| for (int channel = 0; channel < 4; ++channel) { |
| for (int i = 0; i < kBlockSize; ++i) { |
| fLatticeSelector[i] = i; |
| fNoise[channel][i][0] = (random() % (2 * kBlockSize)); |
| fNoise[channel][i][1] = (random() % (2 * kBlockSize)); |
| } |
| } |
| for (int i = kBlockSize - 1; i > 0; --i) { |
| int k = fLatticeSelector[i]; |
| int j = random() % kBlockSize; |
| SkASSERT(j >= 0); |
| SkASSERT(j < kBlockSize); |
| fLatticeSelector[i] = fLatticeSelector[j]; |
| fLatticeSelector[j] = k; |
| } |
| |
| // Perform the permutations now |
| { |
| // Copy noise data |
| uint16_t noise[4][kBlockSize][2]; |
| for (int i = 0; i < kBlockSize; ++i) { |
| for (int channel = 0; channel < 4; ++channel) { |
| for (int j = 0; j < 2; ++j) { |
| noise[channel][i][j] = fNoise[channel][i][j]; |
| } |
| } |
| } |
| // Do permutations on noise data |
| for (int i = 0; i < kBlockSize; ++i) { |
| for (int channel = 0; channel < 4; ++channel) { |
| for (int j = 0; j < 2; ++j) { |
| fNoise[channel][i][j] = noise[channel][fLatticeSelector[i]][j]; |
| } |
| } |
| } |
| } |
| |
| // Half of the largest possible value for 16 bit unsigned int |
| static constexpr SkScalar kHalfMax16bits = 32767.5f; |
| |
| // Compute gradients from permutated noise data |
| static constexpr SkScalar kInvBlockSizef = 1.0 / SkIntToScalar(kBlockSize); |
| for (int channel = 0; channel < 4; ++channel) { |
| for (int i = 0; i < kBlockSize; ++i) { |
| fGradient[channel][i] = SkPoint::Make( |
| (fNoise[channel][i][0] - kBlockSize) * kInvBlockSizef, |
| (fNoise[channel][i][1] - kBlockSize) * kInvBlockSizef); |
| fGradient[channel][i].normalize(); |
| // Put the normalized gradient back into the noise data |
| fNoise[channel][i][0] = |
| SkScalarRoundToInt((fGradient[channel][i].fX + 1) * kHalfMax16bits); |
| fNoise[channel][i][1] = |
| SkScalarRoundToInt((fGradient[channel][i].fY + 1) * kHalfMax16bits); |
| } |
| } |
| } |
| |
| // Only called once. Could be part of the constructor. |
| void stitch() { |
| SkScalar tileWidth = SkIntToScalar(fTileSize.width()); |
| SkScalar tileHeight = SkIntToScalar(fTileSize.height()); |
| SkASSERT(tileWidth > 0 && tileHeight > 0); |
| // When stitching tiled turbulence, the frequencies must be adjusted |
| // so that the tile borders will be continuous. |
| if (fBaseFrequency.fX) { |
| SkScalar lowFrequencx = |
| SkScalarFloorToScalar(tileWidth * fBaseFrequency.fX) / tileWidth; |
| SkScalar highFrequencx = |
| SkScalarCeilToScalar(tileWidth * fBaseFrequency.fX) / tileWidth; |
| // BaseFrequency should be non-negative according to the standard. |
| // lowFrequencx can be 0 if fBaseFrequency.fX is very small. |
| if (sk_ieee_float_divide(fBaseFrequency.fX, lowFrequencx) < highFrequencx / fBaseFrequency.fX) { |
| fBaseFrequency.fX = lowFrequencx; |
| } else { |
| fBaseFrequency.fX = highFrequencx; |
| } |
| } |
| if (fBaseFrequency.fY) { |
| SkScalar lowFrequency = |
| SkScalarFloorToScalar(tileHeight * fBaseFrequency.fY) / tileHeight; |
| SkScalar highFrequency = |
| SkScalarCeilToScalar(tileHeight * fBaseFrequency.fY) / tileHeight; |
| // lowFrequency can be 0 if fBaseFrequency.fY is very small. |
| if (sk_ieee_float_divide(fBaseFrequency.fY, lowFrequency) < highFrequency / fBaseFrequency.fY) { |
| fBaseFrequency.fY = lowFrequency; |
| } else { |
| fBaseFrequency.fY = highFrequency; |
| } |
| } |
| // Set up TurbulenceInitial stitch values. |
| fStitchDataInit = StitchData(tileWidth * fBaseFrequency.fX, |
| tileHeight * fBaseFrequency.fY); |
| } |
| |
| public: |
| |
| #if SK_SUPPORT_GPU |
| const SkBitmap& getPermutationsBitmap() const { return fPermutationsBitmap; } |
| |
| const SkBitmap& getNoiseBitmap() const { return fNoiseBitmap; } |
| #endif |
| }; |
| |
| /** |
| * About the noise types : the difference between the first 2 is just minor tweaks to the |
| * algorithm, they're not 2 entirely different noises. The output looks different, but once the |
| * noise is generated in the [1, -1] range, the output is brought back in the [0, 1] range by |
| * doing : |
| * kFractalNoise_Type : noise * 0.5 + 0.5 |
| * kTurbulence_Type : abs(noise) |
| * Very little differences between the 2 types, although you can tell the difference visually. |
| */ |
| enum Type { |
| kFractalNoise_Type, |
| kTurbulence_Type, |
| kLast_Type = kTurbulence_Type |
| }; |
| |
| static const int kMaxOctaves = 255; // numOctaves must be <= 0 and <= kMaxOctaves |
| |
| SkPerlinNoiseShaderImpl(SkPerlinNoiseShaderImpl::Type type, SkScalar baseFrequencyX, |
| SkScalar baseFrequencyY, int numOctaves, SkScalar seed, |
| const SkISize* tileSize); |
| |
| class PerlinNoiseShaderContext : public Context { |
| public: |
| PerlinNoiseShaderContext(const SkPerlinNoiseShaderImpl& shader, const ContextRec&); |
| |
| void shadeSpan(int x, int y, SkPMColor[], int count) override; |
| |
| private: |
| SkPMColor shade(const SkPoint& point, StitchData& stitchData) const; |
| SkScalar calculateTurbulenceValueForPoint( |
| int channel, |
| StitchData& stitchData, const SkPoint& point) const; |
| SkScalar noise2D(int channel, |
| const StitchData& stitchData, const SkPoint& noiseVector) const; |
| |
| SkMatrix fMatrix; |
| PaintingData fPaintingData; |
| |
| using INHERITED = Context; |
| }; |
| |
| #if SK_SUPPORT_GPU |
| std::unique_ptr<GrFragmentProcessor> asFragmentProcessor(const GrFPArgs&) const override; |
| #endif |
| |
| skvm::Color onProgram(skvm::Builder*, |
| skvm::Coord, skvm::Coord, skvm::Color, |
| const SkMatrixProvider&, const SkMatrix*, const SkColorInfo&, |
| skvm::Uniforms*, SkArenaAlloc*) const override { |
| // TODO? |
| return {}; |
| } |
| |
| protected: |
| void flatten(SkWriteBuffer&) const override; |
| #ifdef SK_ENABLE_LEGACY_SHADERCONTEXT |
| Context* onMakeContext(const ContextRec&, SkArenaAlloc*) const override; |
| #endif |
| |
| private: |
| SK_FLATTENABLE_HOOKS(SkPerlinNoiseShaderImpl) |
| |
| const SkPerlinNoiseShaderImpl::Type fType; |
| const SkScalar fBaseFrequencyX; |
| const SkScalar fBaseFrequencyY; |
| const int fNumOctaves; |
| const SkScalar fSeed; |
| const SkISize fTileSize; |
| const bool fStitchTiles; |
| |
| friend class ::SkPerlinNoiseShader; |
| |
| using INHERITED = SkShaderBase; |
| }; |
| |
| namespace { |
| |
| // noiseValue is the color component's value (or color) |
| // limitValue is the maximum perlin noise array index value allowed |
| // newValue is the current noise dimension (either width or height) |
| inline int checkNoise(int noiseValue, int limitValue, int newValue) { |
| // If the noise value would bring us out of bounds of the current noise array while we are |
| // stiching noise tiles together, wrap the noise around the current dimension of the noise to |
| // stay within the array bounds in a continuous fashion (so that tiling lines are not visible) |
| if (noiseValue >= limitValue) { |
| noiseValue -= newValue; |
| } |
| return noiseValue; |
| } |
| |
| inline SkScalar smoothCurve(SkScalar t) { |
| return t * t * (3 - 2 * t); |
| } |
| |
| } // end namespace |
| |
| SkPerlinNoiseShaderImpl::SkPerlinNoiseShaderImpl(SkPerlinNoiseShaderImpl::Type type, |
| SkScalar baseFrequencyX, |
| SkScalar baseFrequencyY, |
| int numOctaves, |
| SkScalar seed, |
| const SkISize* tileSize) |
| : fType(type) |
| , fBaseFrequencyX(baseFrequencyX) |
| , fBaseFrequencyY(baseFrequencyY) |
| , fNumOctaves(numOctaves > kMaxOctaves ? kMaxOctaves : numOctaves/*[0,255] octaves allowed*/) |
| , fSeed(seed) |
| , fTileSize(nullptr == tileSize ? SkISize::Make(0, 0) : *tileSize) |
| , fStitchTiles(!fTileSize.isEmpty()) |
| { |
| SkASSERT(numOctaves >= 0 && numOctaves <= kMaxOctaves); |
| SkASSERT(fBaseFrequencyX >= 0); |
| SkASSERT(fBaseFrequencyY >= 0); |
| } |
| |
| sk_sp<SkFlattenable> SkPerlinNoiseShaderImpl::CreateProc(SkReadBuffer& buffer) { |
| Type type = buffer.read32LE(kLast_Type); |
| |
| SkScalar freqX = buffer.readScalar(); |
| SkScalar freqY = buffer.readScalar(); |
| int octaves = buffer.read32LE<int>(kMaxOctaves); |
| |
| SkScalar seed = buffer.readScalar(); |
| SkISize tileSize; |
| tileSize.fWidth = buffer.readInt(); |
| tileSize.fHeight = buffer.readInt(); |
| |
| switch (type) { |
| case kFractalNoise_Type: |
| return SkPerlinNoiseShader::MakeFractalNoise(freqX, freqY, octaves, seed, &tileSize); |
| case kTurbulence_Type: |
| return SkPerlinNoiseShader::MakeTurbulence(freqX, freqY, octaves, seed, &tileSize); |
| default: |
| // Really shouldn't get here b.c. of earlier check on type |
| buffer.validate(false); |
| return nullptr; |
| } |
| } |
| |
| void SkPerlinNoiseShaderImpl::flatten(SkWriteBuffer& buffer) const { |
| buffer.writeInt((int) fType); |
| buffer.writeScalar(fBaseFrequencyX); |
| buffer.writeScalar(fBaseFrequencyY); |
| buffer.writeInt(fNumOctaves); |
| buffer.writeScalar(fSeed); |
| buffer.writeInt(fTileSize.fWidth); |
| buffer.writeInt(fTileSize.fHeight); |
| } |
| |
| SkScalar SkPerlinNoiseShaderImpl::PerlinNoiseShaderContext::noise2D( |
| int channel, const StitchData& stitchData, const SkPoint& noiseVector) const { |
| struct Noise { |
| int noisePositionIntegerValue; |
| int nextNoisePositionIntegerValue; |
| SkScalar noisePositionFractionValue; |
| Noise(SkScalar component) |
| { |
| SkScalar position = component + kPerlinNoise; |
| noisePositionIntegerValue = SkScalarFloorToInt(position); |
| noisePositionFractionValue = position - SkIntToScalar(noisePositionIntegerValue); |
| nextNoisePositionIntegerValue = noisePositionIntegerValue + 1; |
| } |
| }; |
| Noise noiseX(noiseVector.x()); |
| Noise noiseY(noiseVector.y()); |
| SkScalar u, v; |
| const SkPerlinNoiseShaderImpl& perlinNoiseShader = static_cast<const SkPerlinNoiseShaderImpl&>(fShader); |
| // If stitching, adjust lattice points accordingly. |
| if (perlinNoiseShader.fStitchTiles) { |
| noiseX.noisePositionIntegerValue = |
| checkNoise(noiseX.noisePositionIntegerValue, stitchData.fWrapX, stitchData.fWidth); |
| noiseY.noisePositionIntegerValue = |
| checkNoise(noiseY.noisePositionIntegerValue, stitchData.fWrapY, stitchData.fHeight); |
| noiseX.nextNoisePositionIntegerValue = |
| checkNoise(noiseX.nextNoisePositionIntegerValue, stitchData.fWrapX, stitchData.fWidth); |
| noiseY.nextNoisePositionIntegerValue = |
| checkNoise(noiseY.nextNoisePositionIntegerValue, stitchData.fWrapY, stitchData.fHeight); |
| } |
| noiseX.noisePositionIntegerValue &= kBlockMask; |
| noiseY.noisePositionIntegerValue &= kBlockMask; |
| noiseX.nextNoisePositionIntegerValue &= kBlockMask; |
| noiseY.nextNoisePositionIntegerValue &= kBlockMask; |
| int i = fPaintingData.fLatticeSelector[noiseX.noisePositionIntegerValue]; |
| int j = fPaintingData.fLatticeSelector[noiseX.nextNoisePositionIntegerValue]; |
| int b00 = (i + noiseY.noisePositionIntegerValue) & kBlockMask; |
| int b10 = (j + noiseY.noisePositionIntegerValue) & kBlockMask; |
| int b01 = (i + noiseY.nextNoisePositionIntegerValue) & kBlockMask; |
| int b11 = (j + noiseY.nextNoisePositionIntegerValue) & kBlockMask; |
| SkScalar sx = smoothCurve(noiseX.noisePositionFractionValue); |
| SkScalar sy = smoothCurve(noiseY.noisePositionFractionValue); |
| |
| if (sx < 0 || sy < 0 || sx > 1 || sy > 1) { |
| return 0; // Check for pathological inputs. |
| } |
| |
| // This is taken 1:1 from SVG spec: http://www.w3.org/TR/SVG11/filters.html#feTurbulenceElement |
| SkPoint fractionValue = SkPoint::Make(noiseX.noisePositionFractionValue, |
| noiseY.noisePositionFractionValue); // Offset (0,0) |
| u = fPaintingData.fGradient[channel][b00].dot(fractionValue); |
| fractionValue.fX -= SK_Scalar1; // Offset (-1,0) |
| v = fPaintingData.fGradient[channel][b10].dot(fractionValue); |
| SkScalar a = SkScalarInterp(u, v, sx); |
| fractionValue.fY -= SK_Scalar1; // Offset (-1,-1) |
| v = fPaintingData.fGradient[channel][b11].dot(fractionValue); |
| fractionValue.fX = noiseX.noisePositionFractionValue; // Offset (0,-1) |
| u = fPaintingData.fGradient[channel][b01].dot(fractionValue); |
| SkScalar b = SkScalarInterp(u, v, sx); |
| return SkScalarInterp(a, b, sy); |
| } |
| |
| SkScalar SkPerlinNoiseShaderImpl::PerlinNoiseShaderContext::calculateTurbulenceValueForPoint( |
| int channel, StitchData& stitchData, const SkPoint& point) const { |
| const SkPerlinNoiseShaderImpl& perlinNoiseShader = static_cast<const SkPerlinNoiseShaderImpl&>(fShader); |
| if (perlinNoiseShader.fStitchTiles) { |
| // Set up TurbulenceInitial stitch values. |
| stitchData = fPaintingData.fStitchDataInit; |
| } |
| SkScalar turbulenceFunctionResult = 0; |
| SkPoint noiseVector(SkPoint::Make(point.x() * fPaintingData.fBaseFrequency.fX, |
| point.y() * fPaintingData.fBaseFrequency.fY)); |
| SkScalar ratio = SK_Scalar1; |
| for (int octave = 0; octave < perlinNoiseShader.fNumOctaves; ++octave) { |
| SkScalar noise = noise2D(channel, stitchData, noiseVector); |
| SkScalar numer = (perlinNoiseShader.fType == kFractalNoise_Type) ? |
| noise : SkScalarAbs(noise); |
| turbulenceFunctionResult += numer / ratio; |
| noiseVector.fX *= 2; |
| noiseVector.fY *= 2; |
| ratio *= 2; |
| if (perlinNoiseShader.fStitchTiles) { |
| // Update stitch values |
| stitchData = StitchData(SkIntToScalar(stitchData.fWidth) * 2, |
| SkIntToScalar(stitchData.fHeight) * 2); |
| } |
| } |
| |
| // The value of turbulenceFunctionResult comes from ((turbulenceFunctionResult) + 1) / 2 |
| // by fractalNoise and (turbulenceFunctionResult) by turbulence. |
| if (perlinNoiseShader.fType == kFractalNoise_Type) { |
| turbulenceFunctionResult = SkScalarHalf(turbulenceFunctionResult + 1); |
| } |
| |
| if (channel == 3) { // Scale alpha by paint value |
| turbulenceFunctionResult *= SkIntToScalar(getPaintAlpha()) / 255; |
| } |
| |
| // Clamp result |
| return SkTPin(turbulenceFunctionResult, 0.0f, SK_Scalar1); |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| SkPMColor SkPerlinNoiseShaderImpl::PerlinNoiseShaderContext::shade( |
| const SkPoint& point, StitchData& stitchData) const { |
| SkPoint newPoint; |
| fMatrix.mapPoints(&newPoint, &point, 1); |
| newPoint.fX = SkScalarRoundToScalar(newPoint.fX); |
| newPoint.fY = SkScalarRoundToScalar(newPoint.fY); |
| |
| U8CPU rgba[4]; |
| for (int channel = 3; channel >= 0; --channel) { |
| SkScalar value; |
| value = calculateTurbulenceValueForPoint(channel, stitchData, newPoint); |
| rgba[channel] = SkScalarFloorToInt(255 * value); |
| } |
| return SkPreMultiplyARGB(rgba[3], rgba[0], rgba[1], rgba[2]); |
| } |
| |
| #ifdef SK_ENABLE_LEGACY_SHADERCONTEXT |
| SkShaderBase::Context* SkPerlinNoiseShaderImpl::onMakeContext(const ContextRec& rec, |
| SkArenaAlloc* alloc) const { |
| // should we pay attention to rec's device-colorspace? |
| return alloc->make<PerlinNoiseShaderContext>(*this, rec); |
| } |
| #endif |
| |
| static inline SkMatrix total_matrix(const SkShaderBase::ContextRec& rec, |
| const SkShaderBase& shader) { |
| SkMatrix matrix; |
| if (rec.fLocalMatrix) { |
| matrix = SkShaderBase::ConcatLocalMatrices(*rec.fLocalMatrix, shader.getLocalMatrix()); |
| } else { |
| matrix = shader.getLocalMatrix(); |
| } |
| matrix.postConcat(*rec.fMatrix); |
| |
| return matrix; |
| } |
| |
| SkPerlinNoiseShaderImpl::PerlinNoiseShaderContext::PerlinNoiseShaderContext( |
| const SkPerlinNoiseShaderImpl& shader, const ContextRec& rec) |
| : INHERITED(shader, rec) |
| , fMatrix(total_matrix(rec, shader)) // used for temp storage, adjusted below |
| , fPaintingData(shader.fTileSize, shader.fSeed, shader.fBaseFrequencyX, |
| shader.fBaseFrequencyY, fMatrix) |
| { |
| // This (1,1) translation is due to WebKit's 1 based coordinates for the noise |
| // (as opposed to 0 based, usually). The same adjustment is in the setData() function. |
| fMatrix.setTranslate(-fMatrix.getTranslateX() + SK_Scalar1, |
| -fMatrix.getTranslateY() + SK_Scalar1); |
| } |
| |
| void SkPerlinNoiseShaderImpl::PerlinNoiseShaderContext::shadeSpan( |
| int x, int y, SkPMColor result[], int count) { |
| SkPoint point = SkPoint::Make(SkIntToScalar(x), SkIntToScalar(y)); |
| StitchData stitchData; |
| for (int i = 0; i < count; ++i) { |
| result[i] = shade(point, stitchData); |
| point.fX += SK_Scalar1; |
| } |
| } |
| |
| ///////////////////////////////////////////////////////////////////// |
| |
| #if SK_SUPPORT_GPU |
| |
| class GrPerlinNoise2Effect : public GrFragmentProcessor { |
| public: |
| static std::unique_ptr<GrFragmentProcessor> Make( |
| SkPerlinNoiseShaderImpl::Type type, |
| int numOctaves, |
| bool stitchTiles, |
| std::unique_ptr<SkPerlinNoiseShaderImpl::PaintingData> paintingData, |
| GrSurfaceProxyView permutationsView, |
| GrSurfaceProxyView noiseView, |
| const SkMatrix& matrix, |
| const GrCaps& caps) { |
| static constexpr GrSamplerState kRepeatXSampler = {GrSamplerState::WrapMode::kRepeat, |
| GrSamplerState::WrapMode::kClamp, |
| GrSamplerState::Filter::kNearest}; |
| auto permutationsFP = |
| GrTextureEffect::Make(std::move(permutationsView), kPremul_SkAlphaType, |
| SkMatrix::I(), kRepeatXSampler, caps); |
| auto noiseFP = GrTextureEffect::Make(std::move(noiseView), kPremul_SkAlphaType, |
| SkMatrix::I(), kRepeatXSampler, caps); |
| |
| return GrMatrixEffect::Make(matrix, std::unique_ptr<GrFragmentProcessor>( |
| new GrPerlinNoise2Effect(type, numOctaves, stitchTiles, std::move(paintingData), |
| std::move(permutationsFP), std::move(noiseFP)))); |
| } |
| |
| const char* name() const override { return "PerlinNoise"; } |
| |
| std::unique_ptr<GrFragmentProcessor> clone() const override { |
| return std::unique_ptr<GrFragmentProcessor>(new GrPerlinNoise2Effect(*this)); |
| } |
| |
| const SkPerlinNoiseShaderImpl::StitchData& stitchData() const { return fPaintingData->fStitchDataInit; } |
| |
| SkPerlinNoiseShaderImpl::Type type() const { return fType; } |
| bool stitchTiles() const { return fStitchTiles; } |
| const SkVector& baseFrequency() const { return fPaintingData->fBaseFrequency; } |
| int numOctaves() const { return fNumOctaves; } |
| |
| private: |
| class Impl : public ProgramImpl { |
| public: |
| void emitCode(EmitArgs&) override; |
| |
| private: |
| void onSetData(const GrGLSLProgramDataManager&, const GrFragmentProcessor&) override; |
| |
| GrGLSLProgramDataManager::UniformHandle fStitchDataUni; |
| GrGLSLProgramDataManager::UniformHandle fBaseFrequencyUni; |
| }; |
| |
| std::unique_ptr<ProgramImpl> onMakeProgramImpl() const override { |
| return std::make_unique<Impl>(); |
| } |
| |
| void onAddToKey(const GrShaderCaps& caps, skgpu::KeyBuilder* b) const override; |
| |
| bool onIsEqual(const GrFragmentProcessor& sBase) const override { |
| const GrPerlinNoise2Effect& s = sBase.cast<GrPerlinNoise2Effect>(); |
| return fType == s.fType && |
| fPaintingData->fBaseFrequency == s.fPaintingData->fBaseFrequency && |
| fNumOctaves == s.fNumOctaves && |
| fStitchTiles == s.fStitchTiles && |
| fPaintingData->fStitchDataInit == s.fPaintingData->fStitchDataInit; |
| } |
| |
| GrPerlinNoise2Effect(SkPerlinNoiseShaderImpl::Type type, |
| int numOctaves, |
| bool stitchTiles, |
| std::unique_ptr<SkPerlinNoiseShaderImpl::PaintingData> paintingData, |
| std::unique_ptr<GrFragmentProcessor> permutationsFP, |
| std::unique_ptr<GrFragmentProcessor> noiseFP) |
| : INHERITED(kGrPerlinNoise2Effect_ClassID, kNone_OptimizationFlags) |
| , fType(type) |
| , fNumOctaves(numOctaves) |
| , fStitchTiles(stitchTiles) |
| , fPaintingData(std::move(paintingData)) { |
| this->registerChild(std::move(permutationsFP), SkSL::SampleUsage::Explicit()); |
| this->registerChild(std::move(noiseFP), SkSL::SampleUsage::Explicit()); |
| this->setUsesSampleCoordsDirectly(); |
| } |
| |
| GrPerlinNoise2Effect(const GrPerlinNoise2Effect& that) |
| : INHERITED(that) |
| , fType(that.fType) |
| , fNumOctaves(that.fNumOctaves) |
| , fStitchTiles(that.fStitchTiles) |
| , fPaintingData(new SkPerlinNoiseShaderImpl::PaintingData(*that.fPaintingData)) {} |
| |
| GR_DECLARE_FRAGMENT_PROCESSOR_TEST |
| |
| SkPerlinNoiseShaderImpl::Type fType; |
| int fNumOctaves; |
| bool fStitchTiles; |
| |
| std::unique_ptr<SkPerlinNoiseShaderImpl::PaintingData> fPaintingData; |
| |
| using INHERITED = GrFragmentProcessor; |
| }; |
| |
| ///////////////////////////////////////////////////////////////////// |
| GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrPerlinNoise2Effect); |
| |
| #if GR_TEST_UTILS |
| std::unique_ptr<GrFragmentProcessor> GrPerlinNoise2Effect::TestCreate(GrProcessorTestData* d) { |
| int numOctaves = d->fRandom->nextRangeU(2, 10); |
| bool stitchTiles = d->fRandom->nextBool(); |
| SkScalar seed = SkIntToScalar(d->fRandom->nextU()); |
| SkISize tileSize; |
| tileSize.fWidth = d->fRandom->nextRangeU(4, 4096); |
| tileSize.fHeight = d->fRandom->nextRangeU(4, 4096); |
| SkScalar baseFrequencyX = d->fRandom->nextRangeScalar(0.01f, 0.99f); |
| SkScalar baseFrequencyY = d->fRandom->nextRangeScalar(0.01f, 0.99f); |
| |
| sk_sp<SkShader> shader(d->fRandom->nextBool() ? |
| SkPerlinNoiseShader::MakeFractalNoise(baseFrequencyX, baseFrequencyY, numOctaves, seed, |
| stitchTiles ? &tileSize : nullptr) : |
| SkPerlinNoiseShader::MakeTurbulence(baseFrequencyX, baseFrequencyY, numOctaves, seed, |
| stitchTiles ? &tileSize : nullptr)); |
| |
| GrTest::TestAsFPArgs asFPArgs(d); |
| return as_SB(shader)->asFragmentProcessor(asFPArgs.args()); |
| } |
| #endif |
| |
| void GrPerlinNoise2Effect::Impl::emitCode(EmitArgs& args) { |
| const GrPerlinNoise2Effect& pne = args.fFp.cast<GrPerlinNoise2Effect>(); |
| |
| GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; |
| GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; |
| |
| fBaseFrequencyUni = uniformHandler->addUniform(&pne, kFragment_GrShaderFlag, SkSLType::kHalf2, |
| "baseFrequency"); |
| const char* baseFrequencyUni = uniformHandler->getUniformCStr(fBaseFrequencyUni); |
| |
| const char* stitchDataUni = nullptr; |
| if (pne.stitchTiles()) { |
| fStitchDataUni = uniformHandler->addUniform(&pne, kFragment_GrShaderFlag, SkSLType::kHalf2, |
| "stitchData"); |
| stitchDataUni = uniformHandler->getUniformCStr(fStitchDataUni); |
| } |
| |
| // Add noise function |
| const GrShaderVar gPerlinNoiseArgs[] = {{"chanCoord", SkSLType::kHalf }, |
| {"noiseVec ", SkSLType::kHalf2}}; |
| |
| const GrShaderVar gPerlinNoiseStitchArgs[] = {{"chanCoord" , SkSLType::kHalf }, |
| {"noiseVec" , SkSLType::kHalf2}, |
| {"stitchData", SkSLType::kHalf2}}; |
| |
| SkString noiseCode; |
| |
| noiseCode.append( |
| "half4 floorVal;" |
| "floorVal.xy = floor(noiseVec);" |
| "floorVal.zw = floorVal.xy + half2(1);" |
| "half2 fractVal = fract(noiseVec);" |
| // smooth curve : t^2*(3 - 2*t) |
| "half2 noiseSmooth = fractVal*fractVal*(half2(3) - 2*fractVal);" |
| ); |
| |
| // Adjust frequencies if we're stitching tiles |
| if (pne.stitchTiles()) { |
| noiseCode.append( |
| "if (floorVal.x >= stitchData.x) { floorVal.x -= stitchData.x; };" |
| "if (floorVal.y >= stitchData.y) { floorVal.y -= stitchData.y; };" |
| "if (floorVal.z >= stitchData.x) { floorVal.z -= stitchData.x; };" |
| "if (floorVal.w >= stitchData.y) { floorVal.w -= stitchData.y; };" |
| ); |
| } |
| |
| // NOTE: We need to explicitly pass half4(1) as input color here, because the helper function |
| // can't see fInputColor (which is "_input" in the FP's outer function). skbug.com/10506 |
| SkString sampleX = this->invokeChild(0, "half4(1)", args, "half2(floorVal.x, 0.5)"); |
| SkString sampleY = this->invokeChild(0, "half4(1)", args, "half2(floorVal.z, 0.5)"); |
| noiseCode.appendf("half2 latticeIdx = half2(%s.a, %s.a);", sampleX.c_str(), sampleY.c_str()); |
| |
| #if defined(SK_BUILD_FOR_ANDROID) |
| // Android rounding for Tegra devices, like, for example: Xoom (Tegra 2), Nexus 7 (Tegra 3). |
| // The issue is that colors aren't accurate enough on Tegra devices. For example, if an 8 bit |
| // value of 124 (or 0.486275 here) is entered, we can get a texture value of 123.513725 |
| // (or 0.484368 here). The following rounding operation prevents these precision issues from |
| // affecting the result of the noise by making sure that we only have multiples of 1/255. |
| // (Note that 1/255 is about 0.003921569, which is the value used here). |
| noiseCode.append( |
| "latticeIdx = floor(latticeIdx * half2(255.0) + half2(0.5)) * half2(0.003921569);"); |
| #endif |
| |
| // Get (x,y) coordinates with the permutated x |
| noiseCode.append("half4 bcoords = 256*latticeIdx.xyxy + floorVal.yyww;"); |
| |
| noiseCode.append("half2 uv;"); |
| |
| // This is the math to convert the two 16bit integer packed into rgba 8 bit input into a |
| // [-1,1] vector and perform a dot product between that vector and the provided vector. |
| // Save it as a string because we will repeat it 4x. |
| static constexpr const char* inc8bit = "0.00390625"; // 1.0 / 256.0 |
| SkString dotLattice = |
| SkStringPrintf("dot((lattice.ga + lattice.rb*%s)*2 - half2(1), fractVal)", inc8bit); |
| |
| SkString sampleA = this->invokeChild(1, "half4(1)", args, "half2(bcoords.x, chanCoord)"); |
| SkString sampleB = this->invokeChild(1, "half4(1)", args, "half2(bcoords.y, chanCoord)"); |
| SkString sampleC = this->invokeChild(1, "half4(1)", args, "half2(bcoords.w, chanCoord)"); |
| SkString sampleD = this->invokeChild(1, "half4(1)", args, "half2(bcoords.z, chanCoord)"); |
| |
| // Compute u, at offset (0,0) |
| noiseCode.appendf("half4 lattice = %s;", sampleA.c_str()); |
| noiseCode.appendf("uv.x = %s;", dotLattice.c_str()); |
| |
| // Compute v, at offset (-1,0) |
| noiseCode.append("fractVal.x -= 1.0;"); |
| noiseCode.appendf("lattice = %s;", sampleB.c_str()); |
| noiseCode.appendf("uv.y = %s;", dotLattice.c_str()); |
| |
| // Compute 'a' as a linear interpolation of 'u' and 'v' |
| noiseCode.append("half2 ab;"); |
| noiseCode.append("ab.x = mix(uv.x, uv.y, noiseSmooth.x);"); |
| |
| // Compute v, at offset (-1,-1) |
| noiseCode.append("fractVal.y -= 1.0;"); |
| noiseCode.appendf("lattice = %s;", sampleC.c_str()); |
| noiseCode.appendf("uv.y = %s;", dotLattice.c_str()); |
| |
| // Compute u, at offset (0,-1) |
| noiseCode.append("fractVal.x += 1.0;"); |
| noiseCode.appendf("lattice = %s;", sampleD.c_str()); |
| noiseCode.appendf("uv.x = %s;", dotLattice.c_str()); |
| |
| // Compute 'b' as a linear interpolation of 'u' and 'v' |
| noiseCode.append("ab.y = mix(uv.x, uv.y, noiseSmooth.x);"); |
| // Compute the noise as a linear interpolation of 'a' and 'b' |
| noiseCode.append("return mix(ab.x, ab.y, noiseSmooth.y);"); |
| |
| SkString noiseFuncName = fragBuilder->getMangledFunctionName("noiseFuncName"); |
| if (pne.stitchTiles()) { |
| fragBuilder->emitFunction(SkSLType::kHalf, noiseFuncName.c_str(), |
| {gPerlinNoiseStitchArgs, std::size(gPerlinNoiseStitchArgs)}, |
| noiseCode.c_str()); |
| } else { |
| fragBuilder->emitFunction(SkSLType::kHalf, noiseFuncName.c_str(), |
| {gPerlinNoiseArgs, std::size(gPerlinNoiseArgs)}, |
| noiseCode.c_str()); |
| } |
| |
| // There are rounding errors if the floor operation is not performed here |
| fragBuilder->codeAppendf("half2 noiseVec = half2(floor(%s.xy) * %s);", |
| args.fSampleCoord, baseFrequencyUni); |
| |
| // Clear the color accumulator |
| fragBuilder->codeAppendf("half4 color = half4(0);"); |
| |
| if (pne.stitchTiles()) { |
| // Set up TurbulenceInitial stitch values. |
| fragBuilder->codeAppendf("half2 stitchData = %s;", stitchDataUni); |
| } |
| |
| fragBuilder->codeAppendf("half ratio = 1.0;"); |
| |
| // Loop over all octaves |
| fragBuilder->codeAppendf("for (int octave = 0; octave < %d; ++octave) {", pne.numOctaves()); |
| fragBuilder->codeAppendf( "color += "); |
| if (pne.type() != SkPerlinNoiseShaderImpl::kFractalNoise_Type) { |
| fragBuilder->codeAppend("abs("); |
| } |
| |
| // There are 4 lines, put y coords at center of each. |
| static constexpr const char* chanCoordR = "0.5"; |
| static constexpr const char* chanCoordG = "1.5"; |
| static constexpr const char* chanCoordB = "2.5"; |
| static constexpr const char* chanCoordA = "3.5"; |
| if (pne.stitchTiles()) { |
| fragBuilder->codeAppendf( |
| "half4(%s(%s, noiseVec, stitchData), %s(%s, noiseVec, stitchData)," |
| "%s(%s, noiseVec, stitchData), %s(%s, noiseVec, stitchData))", |
| noiseFuncName.c_str(), chanCoordR, |
| noiseFuncName.c_str(), chanCoordG, |
| noiseFuncName.c_str(), chanCoordB, |
| noiseFuncName.c_str(), chanCoordA); |
| } else { |
| fragBuilder->codeAppendf( |
| "half4(%s(%s, noiseVec), %s(%s, noiseVec)," |
| "%s(%s, noiseVec), %s(%s, noiseVec))", |
| noiseFuncName.c_str(), chanCoordR, |
| noiseFuncName.c_str(), chanCoordG, |
| noiseFuncName.c_str(), chanCoordB, |
| noiseFuncName.c_str(), chanCoordA); |
| } |
| if (pne.type() != SkPerlinNoiseShaderImpl::kFractalNoise_Type) { |
| fragBuilder->codeAppend(")"); // end of "abs(" |
| } |
| fragBuilder->codeAppend(" * ratio;"); |
| |
| fragBuilder->codeAppend("noiseVec *= half2(2.0);" |
| "ratio *= 0.5;"); |
| |
| if (pne.stitchTiles()) { |
| fragBuilder->codeAppend("stitchData *= half2(2.0);"); |
| } |
| fragBuilder->codeAppend("}"); // end of the for loop on octaves |
| |
| if (pne.type() == SkPerlinNoiseShaderImpl::kFractalNoise_Type) { |
| // The value of turbulenceFunctionResult comes from ((turbulenceFunctionResult) + 1) / 2 |
| // by fractalNoise and (turbulenceFunctionResult) by turbulence. |
| fragBuilder->codeAppendf("color = color * half4(0.5) + half4(0.5);"); |
| } |
| |
| // Clamp values |
| fragBuilder->codeAppendf("color = saturate(color);"); |
| |
| // Pre-multiply the result |
| fragBuilder->codeAppendf("return half4(color.rgb * color.aaa, color.a);"); |
| } |
| |
| void GrPerlinNoise2Effect::Impl::onSetData(const GrGLSLProgramDataManager& pdman, |
| const GrFragmentProcessor& processor) { |
| const GrPerlinNoise2Effect& turbulence = processor.cast<GrPerlinNoise2Effect>(); |
| |
| const SkVector& baseFrequency = turbulence.baseFrequency(); |
| pdman.set2f(fBaseFrequencyUni, baseFrequency.fX, baseFrequency.fY); |
| |
| if (turbulence.stitchTiles()) { |
| const SkPerlinNoiseShaderImpl::StitchData& stitchData = turbulence.stitchData(); |
| pdman.set2f(fStitchDataUni, |
| SkIntToScalar(stitchData.fWidth), |
| SkIntToScalar(stitchData.fHeight)); |
| } |
| } |
| |
| void GrPerlinNoise2Effect::onAddToKey(const GrShaderCaps& caps, skgpu::KeyBuilder* b) const { |
| uint32_t key = fNumOctaves; |
| key = key << 3; // Make room for next 3 bits |
| switch (fType) { |
| case SkPerlinNoiseShaderImpl::kFractalNoise_Type: |
| key |= 0x1; |
| break; |
| case SkPerlinNoiseShaderImpl::kTurbulence_Type: |
| key |= 0x2; |
| break; |
| default: |
| // leave key at 0 |
| break; |
| } |
| if (fStitchTiles) { |
| key |= 0x4; // Flip the 3rd bit if tile stitching is on |
| } |
| b->add32(key); |
| } |
| |
| ///////////////////////////////////////////////////////////////////// |
| |
| std::unique_ptr<GrFragmentProcessor> SkPerlinNoiseShaderImpl::asFragmentProcessor( |
| const GrFPArgs& args) const { |
| SkASSERT(args.fContext); |
| |
| const auto localMatrix = this->totalLocalMatrix(args.fLocalMatrix); |
| const auto paintMatrix = SkMatrix::Concat(args.fMatrixProvider.localToDevice(), *localMatrix); |
| |
| // Either we don't stitch tiles, either we have a valid tile size |
| SkASSERT(!fStitchTiles || !fTileSize.isEmpty()); |
| |
| std::unique_ptr<SkPerlinNoiseShaderImpl::PaintingData> paintingData = |
| std::make_unique<SkPerlinNoiseShaderImpl::PaintingData>(fTileSize, |
| fSeed, |
| fBaseFrequencyX, |
| fBaseFrequencyY, |
| paintMatrix); |
| |
| SkMatrix m = args.fMatrixProvider.localToDevice(); |
| m.setTranslateX(-localMatrix->getTranslateX() + SK_Scalar1); |
| m.setTranslateY(-localMatrix->getTranslateY() + SK_Scalar1); |
| |
| auto context = args.fContext; |
| |
| if (0 == fNumOctaves) { |
| if (kFractalNoise_Type == fType) { |
| // Incoming alpha is assumed to be 1. So emit rgba = (1/4, 1/4, 1/4, 1/2) |
| // TODO: Either treat the output of this shader as sRGB or allow client to specify a |
| // color space of the noise. Either way, this case (and the GLSL) need to convert to |
| // the destination. |
| return GrFragmentProcessor::MakeColor(SkPMColor4f::FromBytes_RGBA(0x80404040)); |
| } |
| // Emit zero. |
| return GrFragmentProcessor::MakeColor(SK_PMColor4fTRANSPARENT); |
| } |
| |
| const SkBitmap& permutationsBitmap = paintingData->getPermutationsBitmap(); |
| const SkBitmap& noiseBitmap = paintingData->getNoiseBitmap(); |
| |
| auto permutationsView = std::get<0>(GrMakeCachedBitmapProxyView( |
| context, |
| permutationsBitmap, |
| /*label=*/"PerlinNoiseShader_FragmentProcessor_PermutationsView")); |
| auto noiseView = std::get<0>(GrMakeCachedBitmapProxyView( |
| context, noiseBitmap, /*label=*/"PerlinNoiseShader_FragmentProcessor_NoiseView")); |
| |
| if (permutationsView && noiseView) { |
| return GrPerlinNoise2Effect::Make(fType, |
| fNumOctaves, |
| fStitchTiles, |
| std::move(paintingData), |
| std::move(permutationsView), |
| std::move(noiseView), |
| m, |
| *context->priv().caps()); |
| } |
| return nullptr; |
| } |
| |
| #endif |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| static bool valid_input(SkScalar baseX, SkScalar baseY, int numOctaves, const SkISize* tileSize, |
| SkScalar seed) { |
| if (!(baseX >= 0 && baseY >= 0)) { |
| return false; |
| } |
| if (!(numOctaves >= 0 && numOctaves <= SkPerlinNoiseShaderImpl::kMaxOctaves)) { |
| return false; |
| } |
| if (tileSize && !(tileSize->width() >= 0 && tileSize->height() >= 0)) { |
| return false; |
| } |
| if (!SkScalarIsFinite(seed)) { |
| return false; |
| } |
| return true; |
| } |
| |
| sk_sp<SkShader> SkPerlinNoiseShader::MakeFractalNoise(SkScalar baseFrequencyX, |
| SkScalar baseFrequencyY, |
| int numOctaves, SkScalar seed, |
| const SkISize* tileSize) { |
| if (!valid_input(baseFrequencyX, baseFrequencyY, numOctaves, tileSize, seed)) { |
| return nullptr; |
| } |
| return sk_sp<SkShader>(new SkPerlinNoiseShaderImpl(SkPerlinNoiseShaderImpl::kFractalNoise_Type, |
| baseFrequencyX, baseFrequencyY, numOctaves, seed, |
| tileSize)); |
| } |
| |
| sk_sp<SkShader> SkPerlinNoiseShader::MakeTurbulence(SkScalar baseFrequencyX, |
| SkScalar baseFrequencyY, |
| int numOctaves, SkScalar seed, |
| const SkISize* tileSize) { |
| if (!valid_input(baseFrequencyX, baseFrequencyY, numOctaves, tileSize, seed)) { |
| return nullptr; |
| } |
| return sk_sp<SkShader>(new SkPerlinNoiseShaderImpl(SkPerlinNoiseShaderImpl::kTurbulence_Type, |
| baseFrequencyX, baseFrequencyY, numOctaves, seed, |
| tileSize)); |
| } |
| |
| void SkPerlinNoiseShader::RegisterFlattenables() { |
| SK_REGISTER_FLATTENABLE(SkPerlinNoiseShaderImpl); |
| } |