blob: de103876c7c50cd04c240a0da1a1b916e1e23d38 [file] [log] [blame]
/*
* Copyright 2013 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/effects/SkPerlinNoiseShader.h"
#include "include/core/SkBitmap.h"
#include "include/core/SkColorFilter.h"
#include "include/core/SkShader.h"
#include "include/core/SkString.h"
#include "include/core/SkUnPreMultiply.h"
#include "include/private/SkTPin.h"
#include "src/core/SkArenaAlloc.h"
#include "src/core/SkMatrixProvider.h"
#include "src/core/SkReadBuffer.h"
#include "src/core/SkVM.h"
#include "src/core/SkWriteBuffer.h"
#if SK_SUPPORT_GPU
#include "include/gpu/GrRecordingContext.h"
#include "src/gpu/KeyBuilder.h"
#include "src/gpu/ganesh/GrFPArgs.h"
#include "src/gpu/ganesh/GrFragmentProcessor.h"
#include "src/gpu/ganesh/GrRecordingContextPriv.h"
#include "src/gpu/ganesh/SkGr.h"
#include "src/gpu/ganesh/effects/GrMatrixEffect.h"
#include "src/gpu/ganesh/effects/GrTextureEffect.h"
#include "src/gpu/ganesh/glsl/GrGLSLFragmentShaderBuilder.h"
#include "src/gpu/ganesh/glsl/GrGLSLProgramDataManager.h"
#include "src/gpu/ganesh/glsl/GrGLSLUniformHandler.h"
#endif
static const int kBlockSize = 256;
static const int kBlockMask = kBlockSize - 1;
static const int kPerlinNoise = 4096;
static const int kRandMaximum = SK_MaxS32; // 2**31 - 1
class SkPerlinNoiseShaderImpl : public SkShaderBase {
public:
struct StitchData {
StitchData()
: fWidth(0)
, fWrapX(0)
, fHeight(0)
, fWrapY(0)
{}
StitchData(SkScalar w, SkScalar h)
: fWidth(std::min(SkScalarRoundToInt(w), SK_MaxS32 - kPerlinNoise))
, fWrapX(kPerlinNoise + fWidth)
, fHeight(std::min(SkScalarRoundToInt(h), SK_MaxS32 - kPerlinNoise))
, fWrapY(kPerlinNoise + fHeight) {}
bool operator==(const StitchData& other) const {
return fWidth == other.fWidth &&
fWrapX == other.fWrapX &&
fHeight == other.fHeight &&
fWrapY == other.fWrapY;
}
int fWidth; // How much to subtract to wrap for stitching.
int fWrapX; // Minimum value to wrap.
int fHeight;
int fWrapY;
};
struct PaintingData {
PaintingData(const SkISize& tileSize, SkScalar seed,
SkScalar baseFrequencyX, SkScalar baseFrequencyY,
const SkMatrix& matrix)
{
SkVector tileVec;
matrix.mapVector(SkIntToScalar(tileSize.fWidth), SkIntToScalar(tileSize.fHeight),
&tileVec);
SkSize scale;
if (!matrix.decomposeScale(&scale, nullptr)) {
scale.set(SK_ScalarNearlyZero, SK_ScalarNearlyZero);
}
fBaseFrequency.set(baseFrequencyX * SkScalarInvert(scale.width()),
baseFrequencyY * SkScalarInvert(scale.height()));
fTileSize.set(SkScalarRoundToInt(tileVec.fX), SkScalarRoundToInt(tileVec.fY));
this->init(seed);
if (!fTileSize.isEmpty()) {
this->stitch();
}
#if SK_SUPPORT_GPU
SkImageInfo info = SkImageInfo::MakeA8(kBlockSize, 1);
fPermutationsBitmap.installPixels(info, fLatticeSelector, info.minRowBytes());
fPermutationsBitmap.setImmutable();
info = SkImageInfo::Make(kBlockSize, 4, kRGBA_8888_SkColorType, kPremul_SkAlphaType);
fNoiseBitmap.installPixels(info, fNoise[0][0], info.minRowBytes());
fNoiseBitmap.setImmutable();
#endif
}
#if SK_SUPPORT_GPU
PaintingData(const PaintingData& that)
: fSeed(that.fSeed)
, fTileSize(that.fTileSize)
, fBaseFrequency(that.fBaseFrequency)
, fStitchDataInit(that.fStitchDataInit)
, fPermutationsBitmap(that.fPermutationsBitmap)
, fNoiseBitmap(that.fNoiseBitmap) {
memcpy(fLatticeSelector, that.fLatticeSelector, sizeof(fLatticeSelector));
memcpy(fNoise, that.fNoise, sizeof(fNoise));
memcpy(fGradient, that.fGradient, sizeof(fGradient));
}
#endif
int fSeed;
uint8_t fLatticeSelector[kBlockSize];
uint16_t fNoise[4][kBlockSize][2];
SkPoint fGradient[4][kBlockSize];
SkISize fTileSize;
SkVector fBaseFrequency;
StitchData fStitchDataInit;
private:
#if SK_SUPPORT_GPU
SkBitmap fPermutationsBitmap;
SkBitmap fNoiseBitmap;
#endif
inline int random() {
// See https://www.w3.org/TR/SVG11/filters.html#feTurbulenceElement
// m = kRandMaximum, 2**31 - 1 (2147483647)
static constexpr int kRandAmplitude = 16807; // 7**5; primitive root of m
static constexpr int kRandQ = 127773; // m / a
static constexpr int kRandR = 2836; // m % a
int result = kRandAmplitude * (fSeed % kRandQ) - kRandR * (fSeed / kRandQ);
if (result <= 0) {
result += kRandMaximum;
}
fSeed = result;
return result;
}
// Only called once. Could be part of the constructor.
void init(SkScalar seed)
{
// According to the SVG spec, we must truncate (not round) the seed value.
fSeed = SkScalarTruncToInt(seed);
// The seed value clamp to the range [1, kRandMaximum - 1].
if (fSeed <= 0) {
fSeed = -(fSeed % (kRandMaximum - 1)) + 1;
}
if (fSeed > kRandMaximum - 1) {
fSeed = kRandMaximum - 1;
}
for (int channel = 0; channel < 4; ++channel) {
for (int i = 0; i < kBlockSize; ++i) {
fLatticeSelector[i] = i;
fNoise[channel][i][0] = (random() % (2 * kBlockSize));
fNoise[channel][i][1] = (random() % (2 * kBlockSize));
}
}
for (int i = kBlockSize - 1; i > 0; --i) {
int k = fLatticeSelector[i];
int j = random() % kBlockSize;
SkASSERT(j >= 0);
SkASSERT(j < kBlockSize);
fLatticeSelector[i] = fLatticeSelector[j];
fLatticeSelector[j] = k;
}
// Perform the permutations now
{
// Copy noise data
uint16_t noise[4][kBlockSize][2];
for (int i = 0; i < kBlockSize; ++i) {
for (int channel = 0; channel < 4; ++channel) {
for (int j = 0; j < 2; ++j) {
noise[channel][i][j] = fNoise[channel][i][j];
}
}
}
// Do permutations on noise data
for (int i = 0; i < kBlockSize; ++i) {
for (int channel = 0; channel < 4; ++channel) {
for (int j = 0; j < 2; ++j) {
fNoise[channel][i][j] = noise[channel][fLatticeSelector[i]][j];
}
}
}
}
// Half of the largest possible value for 16 bit unsigned int
static constexpr SkScalar kHalfMax16bits = 32767.5f;
// Compute gradients from permutated noise data
static constexpr SkScalar kInvBlockSizef = 1.0 / SkIntToScalar(kBlockSize);
for (int channel = 0; channel < 4; ++channel) {
for (int i = 0; i < kBlockSize; ++i) {
fGradient[channel][i] = SkPoint::Make(
(fNoise[channel][i][0] - kBlockSize) * kInvBlockSizef,
(fNoise[channel][i][1] - kBlockSize) * kInvBlockSizef);
fGradient[channel][i].normalize();
// Put the normalized gradient back into the noise data
fNoise[channel][i][0] =
SkScalarRoundToInt((fGradient[channel][i].fX + 1) * kHalfMax16bits);
fNoise[channel][i][1] =
SkScalarRoundToInt((fGradient[channel][i].fY + 1) * kHalfMax16bits);
}
}
}
// Only called once. Could be part of the constructor.
void stitch() {
SkScalar tileWidth = SkIntToScalar(fTileSize.width());
SkScalar tileHeight = SkIntToScalar(fTileSize.height());
SkASSERT(tileWidth > 0 && tileHeight > 0);
// When stitching tiled turbulence, the frequencies must be adjusted
// so that the tile borders will be continuous.
if (fBaseFrequency.fX) {
SkScalar lowFrequencx =
SkScalarFloorToScalar(tileWidth * fBaseFrequency.fX) / tileWidth;
SkScalar highFrequencx =
SkScalarCeilToScalar(tileWidth * fBaseFrequency.fX) / tileWidth;
// BaseFrequency should be non-negative according to the standard.
// lowFrequencx can be 0 if fBaseFrequency.fX is very small.
if (sk_ieee_float_divide(fBaseFrequency.fX, lowFrequencx) < highFrequencx / fBaseFrequency.fX) {
fBaseFrequency.fX = lowFrequencx;
} else {
fBaseFrequency.fX = highFrequencx;
}
}
if (fBaseFrequency.fY) {
SkScalar lowFrequency =
SkScalarFloorToScalar(tileHeight * fBaseFrequency.fY) / tileHeight;
SkScalar highFrequency =
SkScalarCeilToScalar(tileHeight * fBaseFrequency.fY) / tileHeight;
// lowFrequency can be 0 if fBaseFrequency.fY is very small.
if (sk_ieee_float_divide(fBaseFrequency.fY, lowFrequency) < highFrequency / fBaseFrequency.fY) {
fBaseFrequency.fY = lowFrequency;
} else {
fBaseFrequency.fY = highFrequency;
}
}
// Set up TurbulenceInitial stitch values.
fStitchDataInit = StitchData(tileWidth * fBaseFrequency.fX,
tileHeight * fBaseFrequency.fY);
}
public:
#if SK_SUPPORT_GPU
const SkBitmap& getPermutationsBitmap() const { return fPermutationsBitmap; }
const SkBitmap& getNoiseBitmap() const { return fNoiseBitmap; }
#endif
};
/**
* About the noise types : the difference between the first 2 is just minor tweaks to the
* algorithm, they're not 2 entirely different noises. The output looks different, but once the
* noise is generated in the [1, -1] range, the output is brought back in the [0, 1] range by
* doing :
* kFractalNoise_Type : noise * 0.5 + 0.5
* kTurbulence_Type : abs(noise)
* Very little differences between the 2 types, although you can tell the difference visually.
*/
enum Type {
kFractalNoise_Type,
kTurbulence_Type,
kLast_Type = kTurbulence_Type
};
static const int kMaxOctaves = 255; // numOctaves must be <= 0 and <= kMaxOctaves
SkPerlinNoiseShaderImpl(SkPerlinNoiseShaderImpl::Type type, SkScalar baseFrequencyX,
SkScalar baseFrequencyY, int numOctaves, SkScalar seed,
const SkISize* tileSize);
class PerlinNoiseShaderContext : public Context {
public:
PerlinNoiseShaderContext(const SkPerlinNoiseShaderImpl& shader, const ContextRec&);
void shadeSpan(int x, int y, SkPMColor[], int count) override;
private:
SkPMColor shade(const SkPoint& point, StitchData& stitchData) const;
SkScalar calculateTurbulenceValueForPoint(
int channel,
StitchData& stitchData, const SkPoint& point) const;
SkScalar noise2D(int channel,
const StitchData& stitchData, const SkPoint& noiseVector) const;
SkMatrix fMatrix;
PaintingData fPaintingData;
using INHERITED = Context;
};
#if SK_SUPPORT_GPU
std::unique_ptr<GrFragmentProcessor> asFragmentProcessor(const GrFPArgs&) const override;
#endif
skvm::Color onProgram(skvm::Builder*,
skvm::Coord, skvm::Coord, skvm::Color,
const SkMatrixProvider&, const SkMatrix*, const SkColorInfo&,
skvm::Uniforms*, SkArenaAlloc*) const override {
// TODO?
return {};
}
protected:
void flatten(SkWriteBuffer&) const override;
#ifdef SK_ENABLE_LEGACY_SHADERCONTEXT
Context* onMakeContext(const ContextRec&, SkArenaAlloc*) const override;
#endif
private:
SK_FLATTENABLE_HOOKS(SkPerlinNoiseShaderImpl)
const SkPerlinNoiseShaderImpl::Type fType;
const SkScalar fBaseFrequencyX;
const SkScalar fBaseFrequencyY;
const int fNumOctaves;
const SkScalar fSeed;
const SkISize fTileSize;
const bool fStitchTiles;
friend class ::SkPerlinNoiseShader;
using INHERITED = SkShaderBase;
};
namespace {
// noiseValue is the color component's value (or color)
// limitValue is the maximum perlin noise array index value allowed
// newValue is the current noise dimension (either width or height)
inline int checkNoise(int noiseValue, int limitValue, int newValue) {
// If the noise value would bring us out of bounds of the current noise array while we are
// stiching noise tiles together, wrap the noise around the current dimension of the noise to
// stay within the array bounds in a continuous fashion (so that tiling lines are not visible)
if (noiseValue >= limitValue) {
noiseValue -= newValue;
}
return noiseValue;
}
inline SkScalar smoothCurve(SkScalar t) {
return t * t * (3 - 2 * t);
}
} // end namespace
SkPerlinNoiseShaderImpl::SkPerlinNoiseShaderImpl(SkPerlinNoiseShaderImpl::Type type,
SkScalar baseFrequencyX,
SkScalar baseFrequencyY,
int numOctaves,
SkScalar seed,
const SkISize* tileSize)
: fType(type)
, fBaseFrequencyX(baseFrequencyX)
, fBaseFrequencyY(baseFrequencyY)
, fNumOctaves(numOctaves > kMaxOctaves ? kMaxOctaves : numOctaves/*[0,255] octaves allowed*/)
, fSeed(seed)
, fTileSize(nullptr == tileSize ? SkISize::Make(0, 0) : *tileSize)
, fStitchTiles(!fTileSize.isEmpty())
{
SkASSERT(numOctaves >= 0 && numOctaves <= kMaxOctaves);
SkASSERT(fBaseFrequencyX >= 0);
SkASSERT(fBaseFrequencyY >= 0);
}
sk_sp<SkFlattenable> SkPerlinNoiseShaderImpl::CreateProc(SkReadBuffer& buffer) {
Type type = buffer.read32LE(kLast_Type);
SkScalar freqX = buffer.readScalar();
SkScalar freqY = buffer.readScalar();
int octaves = buffer.read32LE<int>(kMaxOctaves);
SkScalar seed = buffer.readScalar();
SkISize tileSize;
tileSize.fWidth = buffer.readInt();
tileSize.fHeight = buffer.readInt();
switch (type) {
case kFractalNoise_Type:
return SkPerlinNoiseShader::MakeFractalNoise(freqX, freqY, octaves, seed, &tileSize);
case kTurbulence_Type:
return SkPerlinNoiseShader::MakeTurbulence(freqX, freqY, octaves, seed, &tileSize);
default:
// Really shouldn't get here b.c. of earlier check on type
buffer.validate(false);
return nullptr;
}
}
void SkPerlinNoiseShaderImpl::flatten(SkWriteBuffer& buffer) const {
buffer.writeInt((int) fType);
buffer.writeScalar(fBaseFrequencyX);
buffer.writeScalar(fBaseFrequencyY);
buffer.writeInt(fNumOctaves);
buffer.writeScalar(fSeed);
buffer.writeInt(fTileSize.fWidth);
buffer.writeInt(fTileSize.fHeight);
}
SkScalar SkPerlinNoiseShaderImpl::PerlinNoiseShaderContext::noise2D(
int channel, const StitchData& stitchData, const SkPoint& noiseVector) const {
struct Noise {
int noisePositionIntegerValue;
int nextNoisePositionIntegerValue;
SkScalar noisePositionFractionValue;
Noise(SkScalar component)
{
SkScalar position = component + kPerlinNoise;
noisePositionIntegerValue = SkScalarFloorToInt(position);
noisePositionFractionValue = position - SkIntToScalar(noisePositionIntegerValue);
nextNoisePositionIntegerValue = noisePositionIntegerValue + 1;
}
};
Noise noiseX(noiseVector.x());
Noise noiseY(noiseVector.y());
SkScalar u, v;
const SkPerlinNoiseShaderImpl& perlinNoiseShader = static_cast<const SkPerlinNoiseShaderImpl&>(fShader);
// If stitching, adjust lattice points accordingly.
if (perlinNoiseShader.fStitchTiles) {
noiseX.noisePositionIntegerValue =
checkNoise(noiseX.noisePositionIntegerValue, stitchData.fWrapX, stitchData.fWidth);
noiseY.noisePositionIntegerValue =
checkNoise(noiseY.noisePositionIntegerValue, stitchData.fWrapY, stitchData.fHeight);
noiseX.nextNoisePositionIntegerValue =
checkNoise(noiseX.nextNoisePositionIntegerValue, stitchData.fWrapX, stitchData.fWidth);
noiseY.nextNoisePositionIntegerValue =
checkNoise(noiseY.nextNoisePositionIntegerValue, stitchData.fWrapY, stitchData.fHeight);
}
noiseX.noisePositionIntegerValue &= kBlockMask;
noiseY.noisePositionIntegerValue &= kBlockMask;
noiseX.nextNoisePositionIntegerValue &= kBlockMask;
noiseY.nextNoisePositionIntegerValue &= kBlockMask;
int i = fPaintingData.fLatticeSelector[noiseX.noisePositionIntegerValue];
int j = fPaintingData.fLatticeSelector[noiseX.nextNoisePositionIntegerValue];
int b00 = (i + noiseY.noisePositionIntegerValue) & kBlockMask;
int b10 = (j + noiseY.noisePositionIntegerValue) & kBlockMask;
int b01 = (i + noiseY.nextNoisePositionIntegerValue) & kBlockMask;
int b11 = (j + noiseY.nextNoisePositionIntegerValue) & kBlockMask;
SkScalar sx = smoothCurve(noiseX.noisePositionFractionValue);
SkScalar sy = smoothCurve(noiseY.noisePositionFractionValue);
if (sx < 0 || sy < 0 || sx > 1 || sy > 1) {
return 0; // Check for pathological inputs.
}
// This is taken 1:1 from SVG spec: http://www.w3.org/TR/SVG11/filters.html#feTurbulenceElement
SkPoint fractionValue = SkPoint::Make(noiseX.noisePositionFractionValue,
noiseY.noisePositionFractionValue); // Offset (0,0)
u = fPaintingData.fGradient[channel][b00].dot(fractionValue);
fractionValue.fX -= SK_Scalar1; // Offset (-1,0)
v = fPaintingData.fGradient[channel][b10].dot(fractionValue);
SkScalar a = SkScalarInterp(u, v, sx);
fractionValue.fY -= SK_Scalar1; // Offset (-1,-1)
v = fPaintingData.fGradient[channel][b11].dot(fractionValue);
fractionValue.fX = noiseX.noisePositionFractionValue; // Offset (0,-1)
u = fPaintingData.fGradient[channel][b01].dot(fractionValue);
SkScalar b = SkScalarInterp(u, v, sx);
return SkScalarInterp(a, b, sy);
}
SkScalar SkPerlinNoiseShaderImpl::PerlinNoiseShaderContext::calculateTurbulenceValueForPoint(
int channel, StitchData& stitchData, const SkPoint& point) const {
const SkPerlinNoiseShaderImpl& perlinNoiseShader = static_cast<const SkPerlinNoiseShaderImpl&>(fShader);
if (perlinNoiseShader.fStitchTiles) {
// Set up TurbulenceInitial stitch values.
stitchData = fPaintingData.fStitchDataInit;
}
SkScalar turbulenceFunctionResult = 0;
SkPoint noiseVector(SkPoint::Make(point.x() * fPaintingData.fBaseFrequency.fX,
point.y() * fPaintingData.fBaseFrequency.fY));
SkScalar ratio = SK_Scalar1;
for (int octave = 0; octave < perlinNoiseShader.fNumOctaves; ++octave) {
SkScalar noise = noise2D(channel, stitchData, noiseVector);
SkScalar numer = (perlinNoiseShader.fType == kFractalNoise_Type) ?
noise : SkScalarAbs(noise);
turbulenceFunctionResult += numer / ratio;
noiseVector.fX *= 2;
noiseVector.fY *= 2;
ratio *= 2;
if (perlinNoiseShader.fStitchTiles) {
// Update stitch values
stitchData = StitchData(SkIntToScalar(stitchData.fWidth) * 2,
SkIntToScalar(stitchData.fHeight) * 2);
}
}
// The value of turbulenceFunctionResult comes from ((turbulenceFunctionResult) + 1) / 2
// by fractalNoise and (turbulenceFunctionResult) by turbulence.
if (perlinNoiseShader.fType == kFractalNoise_Type) {
turbulenceFunctionResult = SkScalarHalf(turbulenceFunctionResult + 1);
}
if (channel == 3) { // Scale alpha by paint value
turbulenceFunctionResult *= SkIntToScalar(getPaintAlpha()) / 255;
}
// Clamp result
return SkTPin(turbulenceFunctionResult, 0.0f, SK_Scalar1);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
SkPMColor SkPerlinNoiseShaderImpl::PerlinNoiseShaderContext::shade(
const SkPoint& point, StitchData& stitchData) const {
SkPoint newPoint;
fMatrix.mapPoints(&newPoint, &point, 1);
newPoint.fX = SkScalarRoundToScalar(newPoint.fX);
newPoint.fY = SkScalarRoundToScalar(newPoint.fY);
U8CPU rgba[4];
for (int channel = 3; channel >= 0; --channel) {
SkScalar value;
value = calculateTurbulenceValueForPoint(channel, stitchData, newPoint);
rgba[channel] = SkScalarFloorToInt(255 * value);
}
return SkPreMultiplyARGB(rgba[3], rgba[0], rgba[1], rgba[2]);
}
#ifdef SK_ENABLE_LEGACY_SHADERCONTEXT
SkShaderBase::Context* SkPerlinNoiseShaderImpl::onMakeContext(const ContextRec& rec,
SkArenaAlloc* alloc) const {
// should we pay attention to rec's device-colorspace?
return alloc->make<PerlinNoiseShaderContext>(*this, rec);
}
#endif
static inline SkMatrix total_matrix(const SkShaderBase::ContextRec& rec,
const SkShaderBase& shader) {
SkMatrix matrix;
if (rec.fLocalMatrix) {
matrix = SkShaderBase::ConcatLocalMatrices(*rec.fLocalMatrix, shader.getLocalMatrix());
} else {
matrix = shader.getLocalMatrix();
}
matrix.postConcat(*rec.fMatrix);
return matrix;
}
SkPerlinNoiseShaderImpl::PerlinNoiseShaderContext::PerlinNoiseShaderContext(
const SkPerlinNoiseShaderImpl& shader, const ContextRec& rec)
: INHERITED(shader, rec)
, fMatrix(total_matrix(rec, shader)) // used for temp storage, adjusted below
, fPaintingData(shader.fTileSize, shader.fSeed, shader.fBaseFrequencyX,
shader.fBaseFrequencyY, fMatrix)
{
// This (1,1) translation is due to WebKit's 1 based coordinates for the noise
// (as opposed to 0 based, usually). The same adjustment is in the setData() function.
fMatrix.setTranslate(-fMatrix.getTranslateX() + SK_Scalar1,
-fMatrix.getTranslateY() + SK_Scalar1);
}
void SkPerlinNoiseShaderImpl::PerlinNoiseShaderContext::shadeSpan(
int x, int y, SkPMColor result[], int count) {
SkPoint point = SkPoint::Make(SkIntToScalar(x), SkIntToScalar(y));
StitchData stitchData;
for (int i = 0; i < count; ++i) {
result[i] = shade(point, stitchData);
point.fX += SK_Scalar1;
}
}
/////////////////////////////////////////////////////////////////////
#if SK_SUPPORT_GPU
class GrPerlinNoise2Effect : public GrFragmentProcessor {
public:
static std::unique_ptr<GrFragmentProcessor> Make(
SkPerlinNoiseShaderImpl::Type type,
int numOctaves,
bool stitchTiles,
std::unique_ptr<SkPerlinNoiseShaderImpl::PaintingData> paintingData,
GrSurfaceProxyView permutationsView,
GrSurfaceProxyView noiseView,
const SkMatrix& matrix,
const GrCaps& caps) {
static constexpr GrSamplerState kRepeatXSampler = {GrSamplerState::WrapMode::kRepeat,
GrSamplerState::WrapMode::kClamp,
GrSamplerState::Filter::kNearest};
auto permutationsFP =
GrTextureEffect::Make(std::move(permutationsView), kPremul_SkAlphaType,
SkMatrix::I(), kRepeatXSampler, caps);
auto noiseFP = GrTextureEffect::Make(std::move(noiseView), kPremul_SkAlphaType,
SkMatrix::I(), kRepeatXSampler, caps);
return GrMatrixEffect::Make(matrix, std::unique_ptr<GrFragmentProcessor>(
new GrPerlinNoise2Effect(type, numOctaves, stitchTiles, std::move(paintingData),
std::move(permutationsFP), std::move(noiseFP))));
}
const char* name() const override { return "PerlinNoise"; }
std::unique_ptr<GrFragmentProcessor> clone() const override {
return std::unique_ptr<GrFragmentProcessor>(new GrPerlinNoise2Effect(*this));
}
const SkPerlinNoiseShaderImpl::StitchData& stitchData() const { return fPaintingData->fStitchDataInit; }
SkPerlinNoiseShaderImpl::Type type() const { return fType; }
bool stitchTiles() const { return fStitchTiles; }
const SkVector& baseFrequency() const { return fPaintingData->fBaseFrequency; }
int numOctaves() const { return fNumOctaves; }
private:
class Impl : public ProgramImpl {
public:
void emitCode(EmitArgs&) override;
private:
void onSetData(const GrGLSLProgramDataManager&, const GrFragmentProcessor&) override;
GrGLSLProgramDataManager::UniformHandle fStitchDataUni;
GrGLSLProgramDataManager::UniformHandle fBaseFrequencyUni;
};
std::unique_ptr<ProgramImpl> onMakeProgramImpl() const override {
return std::make_unique<Impl>();
}
void onAddToKey(const GrShaderCaps& caps, skgpu::KeyBuilder* b) const override;
bool onIsEqual(const GrFragmentProcessor& sBase) const override {
const GrPerlinNoise2Effect& s = sBase.cast<GrPerlinNoise2Effect>();
return fType == s.fType &&
fPaintingData->fBaseFrequency == s.fPaintingData->fBaseFrequency &&
fNumOctaves == s.fNumOctaves &&
fStitchTiles == s.fStitchTiles &&
fPaintingData->fStitchDataInit == s.fPaintingData->fStitchDataInit;
}
GrPerlinNoise2Effect(SkPerlinNoiseShaderImpl::Type type,
int numOctaves,
bool stitchTiles,
std::unique_ptr<SkPerlinNoiseShaderImpl::PaintingData> paintingData,
std::unique_ptr<GrFragmentProcessor> permutationsFP,
std::unique_ptr<GrFragmentProcessor> noiseFP)
: INHERITED(kGrPerlinNoise2Effect_ClassID, kNone_OptimizationFlags)
, fType(type)
, fNumOctaves(numOctaves)
, fStitchTiles(stitchTiles)
, fPaintingData(std::move(paintingData)) {
this->registerChild(std::move(permutationsFP), SkSL::SampleUsage::Explicit());
this->registerChild(std::move(noiseFP), SkSL::SampleUsage::Explicit());
this->setUsesSampleCoordsDirectly();
}
GrPerlinNoise2Effect(const GrPerlinNoise2Effect& that)
: INHERITED(that)
, fType(that.fType)
, fNumOctaves(that.fNumOctaves)
, fStitchTiles(that.fStitchTiles)
, fPaintingData(new SkPerlinNoiseShaderImpl::PaintingData(*that.fPaintingData)) {}
GR_DECLARE_FRAGMENT_PROCESSOR_TEST
SkPerlinNoiseShaderImpl::Type fType;
int fNumOctaves;
bool fStitchTiles;
std::unique_ptr<SkPerlinNoiseShaderImpl::PaintingData> fPaintingData;
using INHERITED = GrFragmentProcessor;
};
/////////////////////////////////////////////////////////////////////
GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrPerlinNoise2Effect);
#if GR_TEST_UTILS
std::unique_ptr<GrFragmentProcessor> GrPerlinNoise2Effect::TestCreate(GrProcessorTestData* d) {
int numOctaves = d->fRandom->nextRangeU(2, 10);
bool stitchTiles = d->fRandom->nextBool();
SkScalar seed = SkIntToScalar(d->fRandom->nextU());
SkISize tileSize;
tileSize.fWidth = d->fRandom->nextRangeU(4, 4096);
tileSize.fHeight = d->fRandom->nextRangeU(4, 4096);
SkScalar baseFrequencyX = d->fRandom->nextRangeScalar(0.01f, 0.99f);
SkScalar baseFrequencyY = d->fRandom->nextRangeScalar(0.01f, 0.99f);
sk_sp<SkShader> shader(d->fRandom->nextBool() ?
SkPerlinNoiseShader::MakeFractalNoise(baseFrequencyX, baseFrequencyY, numOctaves, seed,
stitchTiles ? &tileSize : nullptr) :
SkPerlinNoiseShader::MakeTurbulence(baseFrequencyX, baseFrequencyY, numOctaves, seed,
stitchTiles ? &tileSize : nullptr));
GrTest::TestAsFPArgs asFPArgs(d);
return as_SB(shader)->asFragmentProcessor(asFPArgs.args());
}
#endif
void GrPerlinNoise2Effect::Impl::emitCode(EmitArgs& args) {
const GrPerlinNoise2Effect& pne = args.fFp.cast<GrPerlinNoise2Effect>();
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
fBaseFrequencyUni = uniformHandler->addUniform(&pne, kFragment_GrShaderFlag, SkSLType::kHalf2,
"baseFrequency");
const char* baseFrequencyUni = uniformHandler->getUniformCStr(fBaseFrequencyUni);
const char* stitchDataUni = nullptr;
if (pne.stitchTiles()) {
fStitchDataUni = uniformHandler->addUniform(&pne, kFragment_GrShaderFlag, SkSLType::kHalf2,
"stitchData");
stitchDataUni = uniformHandler->getUniformCStr(fStitchDataUni);
}
// Add noise function
const GrShaderVar gPerlinNoiseArgs[] = {{"chanCoord", SkSLType::kHalf },
{"noiseVec ", SkSLType::kHalf2}};
const GrShaderVar gPerlinNoiseStitchArgs[] = {{"chanCoord" , SkSLType::kHalf },
{"noiseVec" , SkSLType::kHalf2},
{"stitchData", SkSLType::kHalf2}};
SkString noiseCode;
noiseCode.append(
"half4 floorVal;"
"floorVal.xy = floor(noiseVec);"
"floorVal.zw = floorVal.xy + half2(1);"
"half2 fractVal = fract(noiseVec);"
// smooth curve : t^2*(3 - 2*t)
"half2 noiseSmooth = fractVal*fractVal*(half2(3) - 2*fractVal);"
);
// Adjust frequencies if we're stitching tiles
if (pne.stitchTiles()) {
noiseCode.append(
"if (floorVal.x >= stitchData.x) { floorVal.x -= stitchData.x; };"
"if (floorVal.y >= stitchData.y) { floorVal.y -= stitchData.y; };"
"if (floorVal.z >= stitchData.x) { floorVal.z -= stitchData.x; };"
"if (floorVal.w >= stitchData.y) { floorVal.w -= stitchData.y; };"
);
}
// NOTE: We need to explicitly pass half4(1) as input color here, because the helper function
// can't see fInputColor (which is "_input" in the FP's outer function). skbug.com/10506
SkString sampleX = this->invokeChild(0, "half4(1)", args, "half2(floorVal.x, 0.5)");
SkString sampleY = this->invokeChild(0, "half4(1)", args, "half2(floorVal.z, 0.5)");
noiseCode.appendf("half2 latticeIdx = half2(%s.a, %s.a);", sampleX.c_str(), sampleY.c_str());
#if defined(SK_BUILD_FOR_ANDROID)
// Android rounding for Tegra devices, like, for example: Xoom (Tegra 2), Nexus 7 (Tegra 3).
// The issue is that colors aren't accurate enough on Tegra devices. For example, if an 8 bit
// value of 124 (or 0.486275 here) is entered, we can get a texture value of 123.513725
// (or 0.484368 here). The following rounding operation prevents these precision issues from
// affecting the result of the noise by making sure that we only have multiples of 1/255.
// (Note that 1/255 is about 0.003921569, which is the value used here).
noiseCode.append(
"latticeIdx = floor(latticeIdx * half2(255.0) + half2(0.5)) * half2(0.003921569);");
#endif
// Get (x,y) coordinates with the permutated x
noiseCode.append("half4 bcoords = 256*latticeIdx.xyxy + floorVal.yyww;");
noiseCode.append("half2 uv;");
// This is the math to convert the two 16bit integer packed into rgba 8 bit input into a
// [-1,1] vector and perform a dot product between that vector and the provided vector.
// Save it as a string because we will repeat it 4x.
static constexpr const char* inc8bit = "0.00390625"; // 1.0 / 256.0
SkString dotLattice =
SkStringPrintf("dot((lattice.ga + lattice.rb*%s)*2 - half2(1), fractVal)", inc8bit);
SkString sampleA = this->invokeChild(1, "half4(1)", args, "half2(bcoords.x, chanCoord)");
SkString sampleB = this->invokeChild(1, "half4(1)", args, "half2(bcoords.y, chanCoord)");
SkString sampleC = this->invokeChild(1, "half4(1)", args, "half2(bcoords.w, chanCoord)");
SkString sampleD = this->invokeChild(1, "half4(1)", args, "half2(bcoords.z, chanCoord)");
// Compute u, at offset (0,0)
noiseCode.appendf("half4 lattice = %s;", sampleA.c_str());
noiseCode.appendf("uv.x = %s;", dotLattice.c_str());
// Compute v, at offset (-1,0)
noiseCode.append("fractVal.x -= 1.0;");
noiseCode.appendf("lattice = %s;", sampleB.c_str());
noiseCode.appendf("uv.y = %s;", dotLattice.c_str());
// Compute 'a' as a linear interpolation of 'u' and 'v'
noiseCode.append("half2 ab;");
noiseCode.append("ab.x = mix(uv.x, uv.y, noiseSmooth.x);");
// Compute v, at offset (-1,-1)
noiseCode.append("fractVal.y -= 1.0;");
noiseCode.appendf("lattice = %s;", sampleC.c_str());
noiseCode.appendf("uv.y = %s;", dotLattice.c_str());
// Compute u, at offset (0,-1)
noiseCode.append("fractVal.x += 1.0;");
noiseCode.appendf("lattice = %s;", sampleD.c_str());
noiseCode.appendf("uv.x = %s;", dotLattice.c_str());
// Compute 'b' as a linear interpolation of 'u' and 'v'
noiseCode.append("ab.y = mix(uv.x, uv.y, noiseSmooth.x);");
// Compute the noise as a linear interpolation of 'a' and 'b'
noiseCode.append("return mix(ab.x, ab.y, noiseSmooth.y);");
SkString noiseFuncName = fragBuilder->getMangledFunctionName("noiseFuncName");
if (pne.stitchTiles()) {
fragBuilder->emitFunction(SkSLType::kHalf, noiseFuncName.c_str(),
{gPerlinNoiseStitchArgs, std::size(gPerlinNoiseStitchArgs)},
noiseCode.c_str());
} else {
fragBuilder->emitFunction(SkSLType::kHalf, noiseFuncName.c_str(),
{gPerlinNoiseArgs, std::size(gPerlinNoiseArgs)},
noiseCode.c_str());
}
// There are rounding errors if the floor operation is not performed here
fragBuilder->codeAppendf("half2 noiseVec = half2(floor(%s.xy) * %s);",
args.fSampleCoord, baseFrequencyUni);
// Clear the color accumulator
fragBuilder->codeAppendf("half4 color = half4(0);");
if (pne.stitchTiles()) {
// Set up TurbulenceInitial stitch values.
fragBuilder->codeAppendf("half2 stitchData = %s;", stitchDataUni);
}
fragBuilder->codeAppendf("half ratio = 1.0;");
// Loop over all octaves
fragBuilder->codeAppendf("for (int octave = 0; octave < %d; ++octave) {", pne.numOctaves());
fragBuilder->codeAppendf( "color += ");
if (pne.type() != SkPerlinNoiseShaderImpl::kFractalNoise_Type) {
fragBuilder->codeAppend("abs(");
}
// There are 4 lines, put y coords at center of each.
static constexpr const char* chanCoordR = "0.5";
static constexpr const char* chanCoordG = "1.5";
static constexpr const char* chanCoordB = "2.5";
static constexpr const char* chanCoordA = "3.5";
if (pne.stitchTiles()) {
fragBuilder->codeAppendf(
"half4(%s(%s, noiseVec, stitchData), %s(%s, noiseVec, stitchData),"
"%s(%s, noiseVec, stitchData), %s(%s, noiseVec, stitchData))",
noiseFuncName.c_str(), chanCoordR,
noiseFuncName.c_str(), chanCoordG,
noiseFuncName.c_str(), chanCoordB,
noiseFuncName.c_str(), chanCoordA);
} else {
fragBuilder->codeAppendf(
"half4(%s(%s, noiseVec), %s(%s, noiseVec),"
"%s(%s, noiseVec), %s(%s, noiseVec))",
noiseFuncName.c_str(), chanCoordR,
noiseFuncName.c_str(), chanCoordG,
noiseFuncName.c_str(), chanCoordB,
noiseFuncName.c_str(), chanCoordA);
}
if (pne.type() != SkPerlinNoiseShaderImpl::kFractalNoise_Type) {
fragBuilder->codeAppend(")"); // end of "abs("
}
fragBuilder->codeAppend(" * ratio;");
fragBuilder->codeAppend("noiseVec *= half2(2.0);"
"ratio *= 0.5;");
if (pne.stitchTiles()) {
fragBuilder->codeAppend("stitchData *= half2(2.0);");
}
fragBuilder->codeAppend("}"); // end of the for loop on octaves
if (pne.type() == SkPerlinNoiseShaderImpl::kFractalNoise_Type) {
// The value of turbulenceFunctionResult comes from ((turbulenceFunctionResult) + 1) / 2
// by fractalNoise and (turbulenceFunctionResult) by turbulence.
fragBuilder->codeAppendf("color = color * half4(0.5) + half4(0.5);");
}
// Clamp values
fragBuilder->codeAppendf("color = saturate(color);");
// Pre-multiply the result
fragBuilder->codeAppendf("return half4(color.rgb * color.aaa, color.a);");
}
void GrPerlinNoise2Effect::Impl::onSetData(const GrGLSLProgramDataManager& pdman,
const GrFragmentProcessor& processor) {
const GrPerlinNoise2Effect& turbulence = processor.cast<GrPerlinNoise2Effect>();
const SkVector& baseFrequency = turbulence.baseFrequency();
pdman.set2f(fBaseFrequencyUni, baseFrequency.fX, baseFrequency.fY);
if (turbulence.stitchTiles()) {
const SkPerlinNoiseShaderImpl::StitchData& stitchData = turbulence.stitchData();
pdman.set2f(fStitchDataUni,
SkIntToScalar(stitchData.fWidth),
SkIntToScalar(stitchData.fHeight));
}
}
void GrPerlinNoise2Effect::onAddToKey(const GrShaderCaps& caps, skgpu::KeyBuilder* b) const {
uint32_t key = fNumOctaves;
key = key << 3; // Make room for next 3 bits
switch (fType) {
case SkPerlinNoiseShaderImpl::kFractalNoise_Type:
key |= 0x1;
break;
case SkPerlinNoiseShaderImpl::kTurbulence_Type:
key |= 0x2;
break;
default:
// leave key at 0
break;
}
if (fStitchTiles) {
key |= 0x4; // Flip the 3rd bit if tile stitching is on
}
b->add32(key);
}
/////////////////////////////////////////////////////////////////////
std::unique_ptr<GrFragmentProcessor> SkPerlinNoiseShaderImpl::asFragmentProcessor(
const GrFPArgs& args) const {
SkASSERT(args.fContext);
const auto localMatrix = this->totalLocalMatrix(args.fLocalMatrix);
const auto paintMatrix = SkMatrix::Concat(args.fMatrixProvider.localToDevice(), *localMatrix);
// Either we don't stitch tiles, either we have a valid tile size
SkASSERT(!fStitchTiles || !fTileSize.isEmpty());
std::unique_ptr<SkPerlinNoiseShaderImpl::PaintingData> paintingData =
std::make_unique<SkPerlinNoiseShaderImpl::PaintingData>(fTileSize,
fSeed,
fBaseFrequencyX,
fBaseFrequencyY,
paintMatrix);
SkMatrix m = args.fMatrixProvider.localToDevice();
m.setTranslateX(-localMatrix->getTranslateX() + SK_Scalar1);
m.setTranslateY(-localMatrix->getTranslateY() + SK_Scalar1);
auto context = args.fContext;
if (0 == fNumOctaves) {
if (kFractalNoise_Type == fType) {
// Incoming alpha is assumed to be 1. So emit rgba = (1/4, 1/4, 1/4, 1/2)
// TODO: Either treat the output of this shader as sRGB or allow client to specify a
// color space of the noise. Either way, this case (and the GLSL) need to convert to
// the destination.
return GrFragmentProcessor::MakeColor(SkPMColor4f::FromBytes_RGBA(0x80404040));
}
// Emit zero.
return GrFragmentProcessor::MakeColor(SK_PMColor4fTRANSPARENT);
}
const SkBitmap& permutationsBitmap = paintingData->getPermutationsBitmap();
const SkBitmap& noiseBitmap = paintingData->getNoiseBitmap();
auto permutationsView = std::get<0>(GrMakeCachedBitmapProxyView(
context,
permutationsBitmap,
/*label=*/"PerlinNoiseShader_FragmentProcessor_PermutationsView"));
auto noiseView = std::get<0>(GrMakeCachedBitmapProxyView(
context, noiseBitmap, /*label=*/"PerlinNoiseShader_FragmentProcessor_NoiseView"));
if (permutationsView && noiseView) {
return GrPerlinNoise2Effect::Make(fType,
fNumOctaves,
fStitchTiles,
std::move(paintingData),
std::move(permutationsView),
std::move(noiseView),
m,
*context->priv().caps());
}
return nullptr;
}
#endif
///////////////////////////////////////////////////////////////////////////////////////////////////
static bool valid_input(SkScalar baseX, SkScalar baseY, int numOctaves, const SkISize* tileSize,
SkScalar seed) {
if (!(baseX >= 0 && baseY >= 0)) {
return false;
}
if (!(numOctaves >= 0 && numOctaves <= SkPerlinNoiseShaderImpl::kMaxOctaves)) {
return false;
}
if (tileSize && !(tileSize->width() >= 0 && tileSize->height() >= 0)) {
return false;
}
if (!SkScalarIsFinite(seed)) {
return false;
}
return true;
}
sk_sp<SkShader> SkPerlinNoiseShader::MakeFractalNoise(SkScalar baseFrequencyX,
SkScalar baseFrequencyY,
int numOctaves, SkScalar seed,
const SkISize* tileSize) {
if (!valid_input(baseFrequencyX, baseFrequencyY, numOctaves, tileSize, seed)) {
return nullptr;
}
return sk_sp<SkShader>(new SkPerlinNoiseShaderImpl(SkPerlinNoiseShaderImpl::kFractalNoise_Type,
baseFrequencyX, baseFrequencyY, numOctaves, seed,
tileSize));
}
sk_sp<SkShader> SkPerlinNoiseShader::MakeTurbulence(SkScalar baseFrequencyX,
SkScalar baseFrequencyY,
int numOctaves, SkScalar seed,
const SkISize* tileSize) {
if (!valid_input(baseFrequencyX, baseFrequencyY, numOctaves, tileSize, seed)) {
return nullptr;
}
return sk_sp<SkShader>(new SkPerlinNoiseShaderImpl(SkPerlinNoiseShaderImpl::kTurbulence_Type,
baseFrequencyX, baseFrequencyY, numOctaves, seed,
tileSize));
}
void SkPerlinNoiseShader::RegisterFlattenables() {
SK_REGISTER_FLATTENABLE(SkPerlinNoiseShaderImpl);
}