| /* |
| * Copyright 2012 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| #include "src/pathops/SkPathOpsTypes.h" |
| |
| #include "include/private/SkFloatBits.h" |
| #include "include/private/SkFloatingPoint.h" |
| |
| #include <algorithm> |
| #include <cstdint> |
| |
| static bool arguments_denormalized(float a, float b, int epsilon) { |
| float denormalizedCheck = FLT_EPSILON * epsilon / 2; |
| return fabsf(a) <= denormalizedCheck && fabsf(b) <= denormalizedCheck; |
| } |
| |
| // from http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/ |
| // FIXME: move to SkFloatBits.h |
| static bool equal_ulps(float a, float b, int epsilon, int depsilon) { |
| if (arguments_denormalized(a, b, depsilon)) { |
| return true; |
| } |
| int aBits = SkFloatAs2sCompliment(a); |
| int bBits = SkFloatAs2sCompliment(b); |
| // Find the difference in ULPs. |
| return aBits < bBits + epsilon && bBits < aBits + epsilon; |
| } |
| |
| static bool equal_ulps_no_normal_check(float a, float b, int epsilon, int depsilon) { |
| int aBits = SkFloatAs2sCompliment(a); |
| int bBits = SkFloatAs2sCompliment(b); |
| // Find the difference in ULPs. |
| return aBits < bBits + epsilon && bBits < aBits + epsilon; |
| } |
| |
| static bool equal_ulps_pin(float a, float b, int epsilon, int depsilon) { |
| if (!SkScalarIsFinite(a) || !SkScalarIsFinite(b)) { |
| return false; |
| } |
| if (arguments_denormalized(a, b, depsilon)) { |
| return true; |
| } |
| int aBits = SkFloatAs2sCompliment(a); |
| int bBits = SkFloatAs2sCompliment(b); |
| // Find the difference in ULPs. |
| return aBits < bBits + epsilon && bBits < aBits + epsilon; |
| } |
| |
| static bool d_equal_ulps(float a, float b, int epsilon) { |
| int aBits = SkFloatAs2sCompliment(a); |
| int bBits = SkFloatAs2sCompliment(b); |
| // Find the difference in ULPs. |
| return aBits < bBits + epsilon && bBits < aBits + epsilon; |
| } |
| |
| static bool not_equal_ulps(float a, float b, int epsilon) { |
| if (arguments_denormalized(a, b, epsilon)) { |
| return false; |
| } |
| int aBits = SkFloatAs2sCompliment(a); |
| int bBits = SkFloatAs2sCompliment(b); |
| // Find the difference in ULPs. |
| return aBits >= bBits + epsilon || bBits >= aBits + epsilon; |
| } |
| |
| static bool not_equal_ulps_pin(float a, float b, int epsilon) { |
| if (!SkScalarIsFinite(a) || !SkScalarIsFinite(b)) { |
| return false; |
| } |
| if (arguments_denormalized(a, b, epsilon)) { |
| return false; |
| } |
| int aBits = SkFloatAs2sCompliment(a); |
| int bBits = SkFloatAs2sCompliment(b); |
| // Find the difference in ULPs. |
| return aBits >= bBits + epsilon || bBits >= aBits + epsilon; |
| } |
| |
| static bool d_not_equal_ulps(float a, float b, int epsilon) { |
| int aBits = SkFloatAs2sCompliment(a); |
| int bBits = SkFloatAs2sCompliment(b); |
| // Find the difference in ULPs. |
| return aBits >= bBits + epsilon || bBits >= aBits + epsilon; |
| } |
| |
| static bool less_ulps(float a, float b, int epsilon) { |
| if (arguments_denormalized(a, b, epsilon)) { |
| return a <= b - FLT_EPSILON * epsilon; |
| } |
| int aBits = SkFloatAs2sCompliment(a); |
| int bBits = SkFloatAs2sCompliment(b); |
| // Find the difference in ULPs. |
| return aBits <= bBits - epsilon; |
| } |
| |
| static bool less_or_equal_ulps(float a, float b, int epsilon) { |
| if (arguments_denormalized(a, b, epsilon)) { |
| return a < b + FLT_EPSILON * epsilon; |
| } |
| int aBits = SkFloatAs2sCompliment(a); |
| int bBits = SkFloatAs2sCompliment(b); |
| // Find the difference in ULPs. |
| return aBits < bBits + epsilon; |
| } |
| |
| // equality using the same error term as between |
| bool AlmostBequalUlps(float a, float b) { |
| const int UlpsEpsilon = 2; |
| return equal_ulps(a, b, UlpsEpsilon, UlpsEpsilon); |
| } |
| |
| bool AlmostPequalUlps(float a, float b) { |
| const int UlpsEpsilon = 8; |
| return equal_ulps(a, b, UlpsEpsilon, UlpsEpsilon); |
| } |
| |
| bool AlmostDequalUlps(float a, float b) { |
| const int UlpsEpsilon = 16; |
| return d_equal_ulps(a, b, UlpsEpsilon); |
| } |
| |
| bool AlmostDequalUlps(double a, double b) { |
| if (fabs(a) < SK_ScalarMax && fabs(b) < SK_ScalarMax) { |
| return AlmostDequalUlps(SkDoubleToScalar(a), SkDoubleToScalar(b)); |
| } |
| // We allow divide-by-zero here. It only happens if one of a,b is zero, and the other is NaN. |
| // (Otherwise, we'd hit the condition above). Thus, if std::max returns 0, we compute NaN / 0, |
| // which will produce NaN. The comparison will return false, which is the correct answer. |
| return sk_ieee_double_divide(fabs(a - b), std::max(fabs(a), fabs(b))) < FLT_EPSILON * 16; |
| } |
| |
| bool AlmostEqualUlps(float a, float b) { |
| const int UlpsEpsilon = 16; |
| return equal_ulps(a, b, UlpsEpsilon, UlpsEpsilon); |
| } |
| |
| bool AlmostEqualUlpsNoNormalCheck(float a, float b) { |
| const int UlpsEpsilon = 16; |
| return equal_ulps_no_normal_check(a, b, UlpsEpsilon, UlpsEpsilon); |
| } |
| |
| bool AlmostEqualUlps_Pin(float a, float b) { |
| const int UlpsEpsilon = 16; |
| return equal_ulps_pin(a, b, UlpsEpsilon, UlpsEpsilon); |
| } |
| |
| bool NotAlmostEqualUlps(float a, float b) { |
| const int UlpsEpsilon = 16; |
| return not_equal_ulps(a, b, UlpsEpsilon); |
| } |
| |
| bool NotAlmostEqualUlps_Pin(float a, float b) { |
| const int UlpsEpsilon = 16; |
| return not_equal_ulps_pin(a, b, UlpsEpsilon); |
| } |
| |
| bool NotAlmostDequalUlps(float a, float b) { |
| const int UlpsEpsilon = 16; |
| return d_not_equal_ulps(a, b, UlpsEpsilon); |
| } |
| |
| bool RoughlyEqualUlps(float a, float b) { |
| const int UlpsEpsilon = 256; |
| const int DUlpsEpsilon = 1024; |
| return equal_ulps(a, b, UlpsEpsilon, DUlpsEpsilon); |
| } |
| |
| bool AlmostBetweenUlps(float a, float b, float c) { |
| const int UlpsEpsilon = 2; |
| return a <= c ? less_or_equal_ulps(a, b, UlpsEpsilon) && less_or_equal_ulps(b, c, UlpsEpsilon) |
| : less_or_equal_ulps(b, a, UlpsEpsilon) && less_or_equal_ulps(c, b, UlpsEpsilon); |
| } |
| |
| bool AlmostLessUlps(float a, float b) { |
| const int UlpsEpsilon = 16; |
| return less_ulps(a, b, UlpsEpsilon); |
| } |
| |
| bool AlmostLessOrEqualUlps(float a, float b) { |
| const int UlpsEpsilon = 16; |
| return less_or_equal_ulps(a, b, UlpsEpsilon); |
| } |
| |
| int UlpsDistance(float a, float b) { |
| SkFloatIntUnion floatIntA, floatIntB; |
| floatIntA.fFloat = a; |
| floatIntB.fFloat = b; |
| // Different signs means they do not match. |
| if ((floatIntA.fSignBitInt < 0) != (floatIntB.fSignBitInt < 0)) { |
| // Check for equality to make sure +0 == -0 |
| return a == b ? 0 : SK_MaxS32; |
| } |
| // Find the difference in ULPs. |
| return SkTAbs(floatIntA.fSignBitInt - floatIntB.fSignBitInt); |
| } |
| |
| // cube root approximation using bit hack for 64-bit float |
| // adapted from Kahan's cbrt |
| static double cbrt_5d(double d) { |
| const unsigned int B1 = 715094163; |
| double t = 0.0; |
| unsigned int* pt = (unsigned int*) &t; |
| unsigned int* px = (unsigned int*) &d; |
| pt[1] = px[1] / 3 + B1; |
| return t; |
| } |
| |
| // iterative cube root approximation using Halley's method (double) |
| static double cbrta_halleyd(const double a, const double R) { |
| const double a3 = a * a * a; |
| const double b = a * (a3 + R + R) / (a3 + a3 + R); |
| return b; |
| } |
| |
| // cube root approximation using 3 iterations of Halley's method (double) |
| static double halley_cbrt3d(double d) { |
| double a = cbrt_5d(d); |
| a = cbrta_halleyd(a, d); |
| a = cbrta_halleyd(a, d); |
| return cbrta_halleyd(a, d); |
| } |
| |
| double SkDCubeRoot(double x) { |
| if (approximately_zero_cubed(x)) { |
| return 0; |
| } |
| double result = halley_cbrt3d(fabs(x)); |
| if (x < 0) { |
| result = -result; |
| } |
| return result; |
| } |
| |
| SkOpGlobalState::SkOpGlobalState(SkOpContourHead* head, |
| SkArenaAlloc* allocator |
| SkDEBUGPARAMS(bool debugSkipAssert) |
| SkDEBUGPARAMS(const char* testName)) |
| : fAllocator(allocator) |
| , fCoincidence(nullptr) |
| , fContourHead(head) |
| , fNested(0) |
| , fWindingFailed(false) |
| , fPhase(SkOpPhase::kIntersecting) |
| SkDEBUGPARAMS(fDebugTestName(testName)) |
| SkDEBUGPARAMS(fAngleID(0)) |
| SkDEBUGPARAMS(fCoinID(0)) |
| SkDEBUGPARAMS(fContourID(0)) |
| SkDEBUGPARAMS(fPtTID(0)) |
| SkDEBUGPARAMS(fSegmentID(0)) |
| SkDEBUGPARAMS(fSpanID(0)) |
| SkDEBUGPARAMS(fDebugSkipAssert(debugSkipAssert)) { |
| #if DEBUG_T_SECT_LOOP_COUNT |
| debugResetLoopCounts(); |
| #endif |
| #if DEBUG_COIN |
| fPreviousFuncName = nullptr; |
| #endif |
| } |