blob: fb05acdec106a19b8afaab8fc37706eda4aab445 [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/core/SkPathBuilder.h"
#include "include/core/SkRRect.h"
#include "include/private/SkPathRef.h"
#include "include/private/SkSafe32.h"
#include "src/core/SkGeometry.h"
#include "src/core/SkPathPriv.h"
// need SkDVector
#include "src/pathops/SkPathOpsPoint.h"
SkPathBuilder::SkPathBuilder() {
this->reset();
}
SkPathBuilder::SkPathBuilder(SkPathFillType ft) {
this->reset();
fFillType = ft;
}
SkPathBuilder::SkPathBuilder(const SkPath& src) {
*this = src;
}
SkPathBuilder::~SkPathBuilder() {
}
SkPathBuilder& SkPathBuilder::reset() {
fPts.reset();
fVerbs.reset();
fConicWeights.reset();
fFillType = SkPathFillType::kWinding;
fIsVolatile = false;
// these are internal state
fSegmentMask = 0;
fLastMovePoint = {0, 0};
fLastMoveIndex = -1; // illegal
fNeedsMoveVerb = true;
return *this;
}
SkPathBuilder& SkPathBuilder::operator=(const SkPath& src) {
this->reset().setFillType(src.getFillType());
for (auto [verb, pts, w] : SkPathPriv::Iterate(src)) {
switch (verb) {
case SkPathVerb::kMove: this->moveTo(pts[0]); break;
case SkPathVerb::kLine: this->lineTo(pts[1]); break;
case SkPathVerb::kQuad: this->quadTo(pts[1], pts[2]); break;
case SkPathVerb::kConic: this->conicTo(pts[1], pts[2], w[0]); break;
case SkPathVerb::kCubic: this->cubicTo(pts[1], pts[2], pts[3]); break;
case SkPathVerb::kClose: this->close(); break;
}
}
return *this;
}
void SkPathBuilder::incReserve(int extraPtCount, int extraVbCount) {
fPts.setReserve( Sk32_sat_add(fPts.count(), extraPtCount));
fVerbs.setReserve(Sk32_sat_add(fVerbs.count(), extraVbCount));
}
SkRect SkPathBuilder::computeBounds() const {
SkRect bounds;
bounds.setBounds(fPts.begin(), fPts.count());
return bounds;
}
/*
* Some old behavior in SkPath -- should we keep it?
*
* After each edit (i.e. adding a verb)
this->setConvexityType(SkPathConvexity::kUnknown);
this->setFirstDirection(SkPathPriv::kUnknown_FirstDirection);
*/
SkPathBuilder& SkPathBuilder::moveTo(SkPoint pt) {
// only needed while SkPath is mutable
fLastMoveIndex = SkToInt(fPts.size());
fPts.push_back(pt);
fVerbs.push_back((uint8_t)SkPathVerb::kMove);
fLastMovePoint = pt;
fNeedsMoveVerb = false;
return *this;
}
SkPathBuilder& SkPathBuilder::lineTo(SkPoint pt) {
this->ensureMove();
fPts.push_back(pt);
fVerbs.push_back((uint8_t)SkPathVerb::kLine);
fSegmentMask |= kLine_SkPathSegmentMask;
return *this;
}
SkPathBuilder& SkPathBuilder::quadTo(SkPoint pt1, SkPoint pt2) {
this->ensureMove();
SkPoint* p = fPts.append(2);
p[0] = pt1;
p[1] = pt2;
fVerbs.push_back((uint8_t)SkPathVerb::kQuad);
fSegmentMask |= kQuad_SkPathSegmentMask;
return *this;
}
SkPathBuilder& SkPathBuilder::conicTo(SkPoint pt1, SkPoint pt2, SkScalar w) {
this->ensureMove();
SkPoint* p = fPts.append(2);
p[0] = pt1;
p[1] = pt2;
fVerbs.push_back((uint8_t)SkPathVerb::kConic);
fConicWeights.push_back(w);
fSegmentMask |= kConic_SkPathSegmentMask;
return *this;
}
SkPathBuilder& SkPathBuilder::cubicTo(SkPoint pt1, SkPoint pt2, SkPoint pt3) {
this->ensureMove();
SkPoint* p = fPts.append(3);
p[0] = pt1;
p[1] = pt2;
p[2] = pt3;
fVerbs.push_back((uint8_t)SkPathVerb::kCubic);
fSegmentMask |= kCubic_SkPathSegmentMask;
return *this;
}
SkPathBuilder& SkPathBuilder::close() {
if (fVerbs.count() > 0) {
this->ensureMove();
fVerbs.push_back((uint8_t)SkPathVerb::kClose);
// fLastMovePoint stays where it is -- the previous moveTo
fNeedsMoveVerb = true;
}
return *this;
}
///////////////////////////////////////////////////////////////////////////////////////////
SkPathBuilder& SkPathBuilder::rLineTo(SkPoint p1) {
this->ensureMove();
return this->lineTo(fPts.back() + p1);
}
SkPathBuilder& SkPathBuilder::rQuadTo(SkPoint p1, SkPoint p2) {
this->ensureMove();
SkPoint base = fPts.back();
return this->quadTo(base + p1, base + p2);
}
SkPathBuilder& SkPathBuilder::rConicTo(SkPoint p1, SkPoint p2, SkScalar w) {
this->ensureMove();
SkPoint base = fPts.back();
return this->conicTo(base + p1, base + p2, w);
}
SkPathBuilder& SkPathBuilder::rCubicTo(SkPoint p1, SkPoint p2, SkPoint p3) {
this->ensureMove();
SkPoint base = fPts.back();
return this->cubicTo(base + p1, base + p2, base + p3);
}
///////////////////////////////////////////////////////////////////////////////////////////
SkPath SkPathBuilder::make(sk_sp<SkPathRef> pr) const {
auto convexity = SkPathConvexity::kUnknown;
SkPathFirstDirection dir = SkPathFirstDirection::kUnknown;
switch (fIsA) {
case kIsA_Oval:
pr->setIsOval( true, fIsACCW, fIsAStart);
convexity = SkPathConvexity::kConvex;
dir = fIsACCW ? SkPathFirstDirection::kCCW : SkPathFirstDirection::kCW;
break;
case kIsA_RRect:
pr->setIsRRect(true, fIsACCW, fIsAStart);
convexity = SkPathConvexity::kConvex;
dir = fIsACCW ? SkPathFirstDirection::kCCW : SkPathFirstDirection::kCW;
break;
default: break;
}
// Wonder if we can combine convexity and dir internally...
// unknown, convex_cw, convex_ccw, concave
// Do we ever have direction w/o convexity, or viceversa (inside path)?
//
auto path = SkPath(std::move(pr), fFillType, fIsVolatile, convexity, dir);
// This hopefully can go away in the future when Paths are immutable,
// but if while they are still editable, we need to correctly set this.
const uint8_t* start = path.fPathRef->verbsBegin();
const uint8_t* stop = path.fPathRef->verbsEnd();
if (start < stop) {
SkASSERT(fLastMoveIndex >= 0);
// peek at the last verb, to know if our last contour is closed
const bool isClosed = (stop[-1] == (uint8_t)SkPathVerb::kClose);
path.fLastMoveToIndex = isClosed ? ~fLastMoveIndex : fLastMoveIndex;
}
return path;
}
SkPath SkPathBuilder::snapshot() const {
return this->make(sk_sp<SkPathRef>(new SkPathRef(fPts,
fVerbs,
fConicWeights,
fSegmentMask)));
}
SkPath SkPathBuilder::detach() {
auto path = this->make(sk_sp<SkPathRef>(new SkPathRef(std::move(fPts),
std::move(fVerbs),
std::move(fConicWeights),
fSegmentMask)));
this->reset();
return path;
}
///////////////////////////////////////////////////////////////////////////////////////////////////
static bool arc_is_lone_point(const SkRect& oval, SkScalar startAngle, SkScalar sweepAngle,
SkPoint* pt) {
if (0 == sweepAngle && (0 == startAngle || SkIntToScalar(360) == startAngle)) {
// Chrome uses this path to move into and out of ovals. If not
// treated as a special case the moves can distort the oval's
// bounding box (and break the circle special case).
pt->set(oval.fRight, oval.centerY());
return true;
} else if (0 == oval.width() && 0 == oval.height()) {
// Chrome will sometimes create 0 radius round rects. Having degenerate
// quad segments in the path prevents the path from being recognized as
// a rect.
// TODO: optimizing the case where only one of width or height is zero
// should also be considered. This case, however, doesn't seem to be
// as common as the single point case.
pt->set(oval.fRight, oval.fTop);
return true;
}
return false;
}
// Return the unit vectors pointing at the start/stop points for the given start/sweep angles
//
static void angles_to_unit_vectors(SkScalar startAngle, SkScalar sweepAngle,
SkVector* startV, SkVector* stopV, SkRotationDirection* dir) {
SkScalar startRad = SkDegreesToRadians(startAngle),
stopRad = SkDegreesToRadians(startAngle + sweepAngle);
startV->fY = SkScalarSinSnapToZero(startRad);
startV->fX = SkScalarCosSnapToZero(startRad);
stopV->fY = SkScalarSinSnapToZero(stopRad);
stopV->fX = SkScalarCosSnapToZero(stopRad);
/* If the sweep angle is nearly (but less than) 360, then due to precision
loss in radians-conversion and/or sin/cos, we may end up with coincident
vectors, which will fool SkBuildQuadArc into doing nothing (bad) instead
of drawing a nearly complete circle (good).
e.g. canvas.drawArc(0, 359.99, ...)
-vs- canvas.drawArc(0, 359.9, ...)
We try to detect this edge case, and tweak the stop vector
*/
if (*startV == *stopV) {
SkScalar sw = SkScalarAbs(sweepAngle);
if (sw < SkIntToScalar(360) && sw > SkIntToScalar(359)) {
// make a guess at a tiny angle (in radians) to tweak by
SkScalar deltaRad = SkScalarCopySign(SK_Scalar1/512, sweepAngle);
// not sure how much will be enough, so we use a loop
do {
stopRad -= deltaRad;
stopV->fY = SkScalarSinSnapToZero(stopRad);
stopV->fX = SkScalarCosSnapToZero(stopRad);
} while (*startV == *stopV);
}
}
*dir = sweepAngle > 0 ? kCW_SkRotationDirection : kCCW_SkRotationDirection;
}
/**
* If this returns 0, then the caller should just line-to the singlePt, else it should
* ignore singlePt and append the specified number of conics.
*/
static int build_arc_conics(const SkRect& oval, const SkVector& start, const SkVector& stop,
SkRotationDirection dir, SkConic conics[SkConic::kMaxConicsForArc],
SkPoint* singlePt) {
SkMatrix matrix;
matrix.setScale(SkScalarHalf(oval.width()), SkScalarHalf(oval.height()));
matrix.postTranslate(oval.centerX(), oval.centerY());
int count = SkConic::BuildUnitArc(start, stop, dir, &matrix, conics);
if (0 == count) {
matrix.mapXY(stop.x(), stop.y(), singlePt);
}
return count;
}
static bool nearly_equal(const SkPoint& a, const SkPoint& b) {
return SkScalarNearlyEqual(a.fX, b.fX)
&& SkScalarNearlyEqual(a.fY, b.fY);
}
SkPathBuilder& SkPathBuilder::arcTo(const SkRect& oval, SkScalar startAngle, SkScalar sweepAngle,
bool forceMoveTo) {
if (oval.width() < 0 || oval.height() < 0) {
return *this;
}
if (fVerbs.count() == 0) {
forceMoveTo = true;
}
SkPoint lonePt;
if (arc_is_lone_point(oval, startAngle, sweepAngle, &lonePt)) {
return forceMoveTo ? this->moveTo(lonePt) : this->lineTo(lonePt);
}
SkVector startV, stopV;
SkRotationDirection dir;
angles_to_unit_vectors(startAngle, sweepAngle, &startV, &stopV, &dir);
SkPoint singlePt;
// Adds a move-to to 'pt' if forceMoveTo is true. Otherwise a lineTo unless we're sufficiently
// close to 'pt' currently. This prevents spurious lineTos when adding a series of contiguous
// arcs from the same oval.
auto addPt = [forceMoveTo, this](const SkPoint& pt) {
if (forceMoveTo) {
this->moveTo(pt);
} else if (!nearly_equal(fPts.back(), pt)) {
this->lineTo(pt);
}
};
// At this point, we know that the arc is not a lone point, but startV == stopV
// indicates that the sweepAngle is too small such that angles_to_unit_vectors
// cannot handle it.
if (startV == stopV) {
SkScalar endAngle = SkDegreesToRadians(startAngle + sweepAngle);
SkScalar radiusX = oval.width() / 2;
SkScalar radiusY = oval.height() / 2;
// We do not use SkScalar[Sin|Cos]SnapToZero here. When sin(startAngle) is 0 and sweepAngle
// is very small and radius is huge, the expected behavior here is to draw a line. But
// calling SkScalarSinSnapToZero will make sin(endAngle) be 0 which will then draw a dot.
singlePt.set(oval.centerX() + radiusX * SkScalarCos(endAngle),
oval.centerY() + radiusY * SkScalarSin(endAngle));
addPt(singlePt);
return *this;
}
SkConic conics[SkConic::kMaxConicsForArc];
int count = build_arc_conics(oval, startV, stopV, dir, conics, &singlePt);
if (count) {
this->incReserve(count * 2 + 1);
const SkPoint& pt = conics[0].fPts[0];
addPt(pt);
for (int i = 0; i < count; ++i) {
this->conicTo(conics[i].fPts[1], conics[i].fPts[2], conics[i].fW);
}
} else {
addPt(singlePt);
}
return *this;
}
SkPathBuilder& SkPathBuilder::addArc(const SkRect& oval, SkScalar startAngle, SkScalar sweepAngle) {
if (oval.isEmpty() || 0 == sweepAngle) {
return *this;
}
const SkScalar kFullCircleAngle = SkIntToScalar(360);
if (sweepAngle >= kFullCircleAngle || sweepAngle <= -kFullCircleAngle) {
// We can treat the arc as an oval if it begins at one of our legal starting positions.
// See SkPath::addOval() docs.
SkScalar startOver90 = startAngle / 90.f;
SkScalar startOver90I = SkScalarRoundToScalar(startOver90);
SkScalar error = startOver90 - startOver90I;
if (SkScalarNearlyEqual(error, 0)) {
// Index 1 is at startAngle == 0.
SkScalar startIndex = std::fmod(startOver90I + 1.f, 4.f);
startIndex = startIndex < 0 ? startIndex + 4.f : startIndex;
return this->addOval(oval, sweepAngle > 0 ? SkPathDirection::kCW : SkPathDirection::kCCW,
(unsigned) startIndex);
}
}
return this->arcTo(oval, startAngle, sweepAngle, true);
}
SkPathBuilder& SkPathBuilder::arcTo(SkPoint p1, SkPoint p2, SkScalar radius) {
this->ensureMove();
if (radius == 0) {
return this->lineTo(p1);
}
// need to know our prev pt so we can construct tangent vectors
SkPoint start = fPts.back();
// need double precision for these calcs.
SkDVector befored, afterd;
befored.set({p1.fX - start.fX, p1.fY - start.fY}).normalize();
afterd.set({p2.fX - p1.fX, p2.fY - p1.fY}).normalize();
double cosh = befored.dot(afterd);
double sinh = befored.cross(afterd);
if (!befored.isFinite() || !afterd.isFinite() || SkScalarNearlyZero(SkDoubleToScalar(sinh))) {
return this->lineTo(p1);
}
// safe to convert back to floats now
SkVector before = befored.asSkVector();
SkVector after = afterd.asSkVector();
SkScalar dist = SkScalarAbs(SkDoubleToScalar(radius * (1 - cosh) / sinh));
SkScalar xx = p1.fX - dist * before.fX;
SkScalar yy = p1.fY - dist * before.fY;
after.setLength(dist);
this->lineTo(xx, yy);
SkScalar weight = SkScalarSqrt(SkDoubleToScalar(SK_ScalarHalf + cosh * 0.5));
return this->conicTo(p1, p1 + after, weight);
}
// This converts the SVG arc to conics.
// Partly adapted from Niko's code in kdelibs/kdecore/svgicons.
// Then transcribed from webkit/chrome's SVGPathNormalizer::decomposeArcToCubic()
// See also SVG implementation notes:
// http://www.w3.org/TR/SVG/implnote.html#ArcConversionEndpointToCenter
// Note that arcSweep bool value is flipped from the original implementation.
SkPathBuilder& SkPathBuilder::arcTo(SkPoint rad, SkScalar angle, SkPathBuilder::ArcSize arcLarge,
SkPathDirection arcSweep, SkPoint endPt) {
this->ensureMove();
SkPoint srcPts[2] = { fPts.back(), endPt };
// If rx = 0 or ry = 0 then this arc is treated as a straight line segment (a "lineto")
// joining the endpoints.
// http://www.w3.org/TR/SVG/implnote.html#ArcOutOfRangeParameters
if (!rad.fX || !rad.fY) {
return this->lineTo(endPt);
}
// If the current point and target point for the arc are identical, it should be treated as a
// zero length path. This ensures continuity in animations.
if (srcPts[0] == srcPts[1]) {
return this->lineTo(endPt);
}
SkScalar rx = SkScalarAbs(rad.fX);
SkScalar ry = SkScalarAbs(rad.fY);
SkVector midPointDistance = srcPts[0] - srcPts[1];
midPointDistance *= 0.5f;
SkMatrix pointTransform;
pointTransform.setRotate(-angle);
SkPoint transformedMidPoint;
pointTransform.mapPoints(&transformedMidPoint, &midPointDistance, 1);
SkScalar squareRx = rx * rx;
SkScalar squareRy = ry * ry;
SkScalar squareX = transformedMidPoint.fX * transformedMidPoint.fX;
SkScalar squareY = transformedMidPoint.fY * transformedMidPoint.fY;
// Check if the radii are big enough to draw the arc, scale radii if not.
// http://www.w3.org/TR/SVG/implnote.html#ArcCorrectionOutOfRangeRadii
SkScalar radiiScale = squareX / squareRx + squareY / squareRy;
if (radiiScale > 1) {
radiiScale = SkScalarSqrt(radiiScale);
rx *= radiiScale;
ry *= radiiScale;
}
pointTransform.setScale(1 / rx, 1 / ry);
pointTransform.preRotate(-angle);
SkPoint unitPts[2];
pointTransform.mapPoints(unitPts, srcPts, (int) std::size(unitPts));
SkVector delta = unitPts[1] - unitPts[0];
SkScalar d = delta.fX * delta.fX + delta.fY * delta.fY;
SkScalar scaleFactorSquared = std::max(1 / d - 0.25f, 0.f);
SkScalar scaleFactor = SkScalarSqrt(scaleFactorSquared);
if ((arcSweep == SkPathDirection::kCCW) != SkToBool(arcLarge)) { // flipped from the original implementation
scaleFactor = -scaleFactor;
}
delta.scale(scaleFactor);
SkPoint centerPoint = unitPts[0] + unitPts[1];
centerPoint *= 0.5f;
centerPoint.offset(-delta.fY, delta.fX);
unitPts[0] -= centerPoint;
unitPts[1] -= centerPoint;
SkScalar theta1 = SkScalarATan2(unitPts[0].fY, unitPts[0].fX);
SkScalar theta2 = SkScalarATan2(unitPts[1].fY, unitPts[1].fX);
SkScalar thetaArc = theta2 - theta1;
if (thetaArc < 0 && (arcSweep == SkPathDirection::kCW)) { // arcSweep flipped from the original implementation
thetaArc += SK_ScalarPI * 2;
} else if (thetaArc > 0 && (arcSweep != SkPathDirection::kCW)) { // arcSweep flipped from the original implementation
thetaArc -= SK_ScalarPI * 2;
}
// Very tiny angles cause our subsequent math to go wonky (skbug.com/9272)
// so we do a quick check here. The precise tolerance amount is just made up.
// PI/million happens to fix the bug in 9272, but a larger value is probably
// ok too.
if (SkScalarAbs(thetaArc) < (SK_ScalarPI / (1000 * 1000))) {
return this->lineTo(endPt);
}
pointTransform.setRotate(angle);
pointTransform.preScale(rx, ry);
// the arc may be slightly bigger than 1/4 circle, so allow up to 1/3rd
int segments = SkScalarCeilToInt(SkScalarAbs(thetaArc / (2 * SK_ScalarPI / 3)));
SkScalar thetaWidth = thetaArc / segments;
SkScalar t = SkScalarTan(0.5f * thetaWidth);
if (!SkScalarIsFinite(t)) {
return *this;
}
SkScalar startTheta = theta1;
SkScalar w = SkScalarSqrt(SK_ScalarHalf + SkScalarCos(thetaWidth) * SK_ScalarHalf);
auto scalar_is_integer = [](SkScalar scalar) -> bool {
return scalar == SkScalarFloorToScalar(scalar);
};
bool expectIntegers = SkScalarNearlyZero(SK_ScalarPI/2 - SkScalarAbs(thetaWidth)) &&
scalar_is_integer(rx) && scalar_is_integer(ry) &&
scalar_is_integer(endPt.fX) && scalar_is_integer(endPt.fY);
for (int i = 0; i < segments; ++i) {
SkScalar endTheta = startTheta + thetaWidth,
sinEndTheta = SkScalarSinSnapToZero(endTheta),
cosEndTheta = SkScalarCosSnapToZero(endTheta);
unitPts[1].set(cosEndTheta, sinEndTheta);
unitPts[1] += centerPoint;
unitPts[0] = unitPts[1];
unitPts[0].offset(t * sinEndTheta, -t * cosEndTheta);
SkPoint mapped[2];
pointTransform.mapPoints(mapped, unitPts, (int) std::size(unitPts));
/*
Computing the arc width introduces rounding errors that cause arcs to start
outside their marks. A round rect may lose convexity as a result. If the input
values are on integers, place the conic on integers as well.
*/
if (expectIntegers) {
for (SkPoint& point : mapped) {
point.fX = SkScalarRoundToScalar(point.fX);
point.fY = SkScalarRoundToScalar(point.fY);
}
}
this->conicTo(mapped[0], mapped[1], w);
startTheta = endTheta;
}
#ifndef SK_LEGACY_PATH_ARCTO_ENDPOINT
// The final point should match the input point (by definition); replace it to
// ensure that rounding errors in the above math don't cause any problems.
fPts.back() = endPt;
#endif
return *this;
}
///////////////////////////////////////////////////////////////////////////////////////////
namespace {
template <unsigned N> class PointIterator {
public:
PointIterator(SkPathDirection dir, unsigned startIndex)
: fCurrent(startIndex % N)
, fAdvance(dir == SkPathDirection::kCW ? 1 : N - 1)
{}
const SkPoint& current() const {
SkASSERT(fCurrent < N);
return fPts[fCurrent];
}
const SkPoint& next() {
fCurrent = (fCurrent + fAdvance) % N;
return this->current();
}
protected:
SkPoint fPts[N];
private:
unsigned fCurrent;
unsigned fAdvance;
};
class RectPointIterator : public PointIterator<4> {
public:
RectPointIterator(const SkRect& rect, SkPathDirection dir, unsigned startIndex)
: PointIterator(dir, startIndex) {
fPts[0] = SkPoint::Make(rect.fLeft, rect.fTop);
fPts[1] = SkPoint::Make(rect.fRight, rect.fTop);
fPts[2] = SkPoint::Make(rect.fRight, rect.fBottom);
fPts[3] = SkPoint::Make(rect.fLeft, rect.fBottom);
}
};
class OvalPointIterator : public PointIterator<4> {
public:
OvalPointIterator(const SkRect& oval, SkPathDirection dir, unsigned startIndex)
: PointIterator(dir, startIndex) {
const SkScalar cx = oval.centerX();
const SkScalar cy = oval.centerY();
fPts[0] = SkPoint::Make(cx, oval.fTop);
fPts[1] = SkPoint::Make(oval.fRight, cy);
fPts[2] = SkPoint::Make(cx, oval.fBottom);
fPts[3] = SkPoint::Make(oval.fLeft, cy);
}
};
class RRectPointIterator : public PointIterator<8> {
public:
RRectPointIterator(const SkRRect& rrect, SkPathDirection dir, unsigned startIndex)
: PointIterator(dir, startIndex)
{
const SkRect& bounds = rrect.getBounds();
const SkScalar L = bounds.fLeft;
const SkScalar T = bounds.fTop;
const SkScalar R = bounds.fRight;
const SkScalar B = bounds.fBottom;
fPts[0] = SkPoint::Make(L + rrect.radii(SkRRect::kUpperLeft_Corner).fX, T);
fPts[1] = SkPoint::Make(R - rrect.radii(SkRRect::kUpperRight_Corner).fX, T);
fPts[2] = SkPoint::Make(R, T + rrect.radii(SkRRect::kUpperRight_Corner).fY);
fPts[3] = SkPoint::Make(R, B - rrect.radii(SkRRect::kLowerRight_Corner).fY);
fPts[4] = SkPoint::Make(R - rrect.radii(SkRRect::kLowerRight_Corner).fX, B);
fPts[5] = SkPoint::Make(L + rrect.radii(SkRRect::kLowerLeft_Corner).fX, B);
fPts[6] = SkPoint::Make(L, B - rrect.radii(SkRRect::kLowerLeft_Corner).fY);
fPts[7] = SkPoint::Make(L, T + rrect.radii(SkRRect::kUpperLeft_Corner).fY);
}
};
} // anonymous namespace
SkPathBuilder& SkPathBuilder::addRect(const SkRect& rect, SkPathDirection dir, unsigned index) {
const int kPts = 4; // moveTo + 3 lines
const int kVerbs = 5; // moveTo + 3 lines + close
this->incReserve(kPts, kVerbs);
RectPointIterator iter(rect, dir, index);
this->moveTo(iter.current());
this->lineTo(iter.next());
this->lineTo(iter.next());
this->lineTo(iter.next());
return this->close();
}
SkPathBuilder& SkPathBuilder::addOval(const SkRect& oval, SkPathDirection dir, unsigned index) {
const IsA prevIsA = fIsA;
const int kPts = 9; // moveTo + 4 conics(2 pts each)
const int kVerbs = 6; // moveTo + 4 conics + close
this->incReserve(kPts, kVerbs);
OvalPointIterator ovalIter(oval, dir, index);
RectPointIterator rectIter(oval, dir, index + (dir == SkPathDirection::kCW ? 0 : 1));
// The corner iterator pts are tracking "behind" the oval/radii pts.
this->moveTo(ovalIter.current());
for (unsigned i = 0; i < 4; ++i) {
this->conicTo(rectIter.next(), ovalIter.next(), SK_ScalarRoot2Over2);
}
this->close();
if (prevIsA == kIsA_JustMoves) {
fIsA = kIsA_Oval;
fIsACCW = (dir == SkPathDirection::kCCW);
fIsAStart = index % 4;
}
return *this;
}
SkPathBuilder& SkPathBuilder::addRRect(const SkRRect& rrect, SkPathDirection dir, unsigned index) {
const IsA prevIsA = fIsA;
const SkRect& bounds = rrect.getBounds();
if (rrect.isRect() || rrect.isEmpty()) {
// degenerate(rect) => radii points are collapsing
this->addRect(bounds, dir, (index + 1) / 2);
} else if (rrect.isOval()) {
// degenerate(oval) => line points are collapsing
this->addOval(bounds, dir, index / 2);
} else {
// we start with a conic on odd indices when moving CW vs. even indices when moving CCW
const bool startsWithConic = ((index & 1) == (dir == SkPathDirection::kCW));
const SkScalar weight = SK_ScalarRoot2Over2;
const int kVerbs = startsWithConic
? 9 // moveTo + 4x conicTo + 3x lineTo + close
: 10; // moveTo + 4x lineTo + 4x conicTo + close
this->incReserve(kVerbs);
RRectPointIterator rrectIter(rrect, dir, index);
// Corner iterator indices follow the collapsed radii model,
// adjusted such that the start pt is "behind" the radii start pt.
const unsigned rectStartIndex = index / 2 + (dir == SkPathDirection::kCW ? 0 : 1);
RectPointIterator rectIter(bounds, dir, rectStartIndex);
this->moveTo(rrectIter.current());
if (startsWithConic) {
for (unsigned i = 0; i < 3; ++i) {
this->conicTo(rectIter.next(), rrectIter.next(), weight);
this->lineTo(rrectIter.next());
}
this->conicTo(rectIter.next(), rrectIter.next(), weight);
// final lineTo handled by close().
} else {
for (unsigned i = 0; i < 4; ++i) {
this->lineTo(rrectIter.next());
this->conicTo(rectIter.next(), rrectIter.next(), weight);
}
}
this->close();
}
if (prevIsA == kIsA_JustMoves) {
fIsA = kIsA_RRect;
fIsACCW = (dir == SkPathDirection::kCCW);
fIsAStart = index % 8;
}
return *this;
}
SkPathBuilder& SkPathBuilder::addCircle(SkScalar x, SkScalar y, SkScalar r, SkPathDirection dir) {
if (r >= 0) {
this->addOval(SkRect::MakeLTRB(x - r, y - r, x + r, y + r), dir);
}
return *this;
}
SkPathBuilder& SkPathBuilder::addPolygon(const SkPoint pts[], int count, bool isClosed) {
if (count <= 0) {
return *this;
}
this->moveTo(pts[0]);
this->polylineTo(&pts[1], count - 1);
if (isClosed) {
this->close();
}
return *this;
}
SkPathBuilder& SkPathBuilder::polylineTo(const SkPoint pts[], int count) {
if (count > 0) {
this->ensureMove();
this->incReserve(count, count);
memcpy(fPts.append(count), pts, count * sizeof(SkPoint));
memset(fVerbs.append(count), (uint8_t)SkPathVerb::kLine, count);
fSegmentMask |= kLine_SkPathSegmentMask;
}
return *this;
}
//////////////////////////////////////////////////////////////////////////////////////////////////
SkPathBuilder& SkPathBuilder::offset(SkScalar dx, SkScalar dy) {
for (auto& p : fPts) {
p += {dx, dy};
}
return *this;
}
SkPathBuilder& SkPathBuilder::addPath(const SkPath& src) {
SkPath::RawIter iter(src);
SkPoint pts[4];
SkPath::Verb verb;
while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
switch (verb) {
case SkPath::kMove_Verb: this->moveTo (pts[0]); break;
case SkPath::kLine_Verb: this->lineTo (pts[1]); break;
case SkPath::kQuad_Verb: this->quadTo (pts[1], pts[2]); break;
case SkPath::kCubic_Verb: this->cubicTo(pts[1], pts[2], pts[3]); break;
case SkPath::kConic_Verb: this->conicTo(pts[1], pts[2], iter.conicWeight()); break;
case SkPath::kClose_Verb: this->close(); break;
case SkPath::kDone_Verb: SkUNREACHABLE;
}
}
return *this;
}
SkPathBuilder& SkPathBuilder::privateReverseAddPath(const SkPath& src) {
const uint8_t* verbsBegin = src.fPathRef->verbsBegin();
const uint8_t* verbs = src.fPathRef->verbsEnd();
const SkPoint* pts = src.fPathRef->pointsEnd();
const SkScalar* conicWeights = src.fPathRef->conicWeightsEnd();
bool needMove = true;
bool needClose = false;
while (verbs > verbsBegin) {
uint8_t v = *--verbs;
int n = SkPathPriv::PtsInVerb(v);
if (needMove) {
--pts;
this->moveTo(pts->fX, pts->fY);
needMove = false;
}
pts -= n;
switch ((SkPathVerb)v) {
case SkPathVerb::kMove:
if (needClose) {
this->close();
needClose = false;
}
needMove = true;
pts += 1; // so we see the point in "if (needMove)" above
break;
case SkPathVerb::kLine:
this->lineTo(pts[0]);
break;
case SkPathVerb::kQuad:
this->quadTo(pts[1], pts[0]);
break;
case SkPathVerb::kConic:
this->conicTo(pts[1], pts[0], *--conicWeights);
break;
case SkPathVerb::kCubic:
this->cubicTo(pts[2], pts[1], pts[0]);
break;
case SkPathVerb::kClose:
needClose = true;
break;
default:
SkDEBUGFAIL("unexpected verb");
}
}
return *this;
}