blob: f9f4df82517f61313081edf6b0f3a8d3dcbdd904 [file] [log] [blame]
/*
* Copyright 2020 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/core/SkCanvas.h"
#include "include/core/SkM44.h"
#include "include/core/SkPaint.h"
#include "include/core/SkRRect.h"
#include "include/core/SkStream.h"
#include "include/core/SkVertices.h"
#include "include/utils/SkRandom.h"
#include "samplecode/Sample.h"
#include "tools/Resources.h"
struct VSphere {
SkV2 fCenter;
SkScalar fRadius;
VSphere(SkV2 center, SkScalar radius) : fCenter(center), fRadius(radius) {}
bool contains(SkV2 v) const {
return (v - fCenter).length() <= fRadius;
}
SkV2 pinLoc(SkV2 p) const {
auto v = p - fCenter;
if (v.length() > fRadius) {
v *= (fRadius / v.length());
}
return fCenter + v;
}
SkV3 computeUnitV3(SkV2 v) const {
v = (v - fCenter) * (1 / fRadius);
SkScalar len2 = v.lengthSquared();
if (len2 > 1) {
v = v.normalize();
len2 = 1;
}
SkScalar z = SkScalarSqrt(1 - len2);
return {v.x, v.y, z};
}
struct RotateInfo {
SkV3 fAxis;
SkScalar fAngle;
};
RotateInfo computeRotationInfo(SkV2 a, SkV2 b) const {
SkV3 u = this->computeUnitV3(a);
SkV3 v = this->computeUnitV3(b);
SkV3 axis = u.cross(v);
SkScalar length = axis.length();
if (!SkScalarNearlyZero(length)) {
return {axis * (1.0f / length), acos(u.dot(v))};
}
return {{0, 0, 0}, 0};
}
SkM44 computeRotation(SkV2 a, SkV2 b) const {
auto [axis, angle] = this->computeRotationInfo(a, b);
return SkM44::Rotate(axis, angle);
}
};
static SkM44 inv(const SkM44& m) {
SkM44 inverse;
SkAssertResult(m.invert(&inverse));
return inverse;
}
// Compute the inverse transpose (of the upper-left 3x3) of a matrix, used to transform vectors
static SkM44 normals(SkM44 m) {
m.setRow(3, {0, 0, 0, 1});
m.setCol(3, {0, 0, 0, 1});
SkAssertResult(m.invert(&m));
return m.transpose();
}
class Sample3DView : public Sample {
protected:
float fNear = 0.05f;
float fFar = 4;
float fAngle = SK_ScalarPI / 12;
SkV3 fEye { 0, 0, 1.0f/tan(fAngle/2) - 1 };
SkV3 fCOA { 0, 0, 0 };
SkV3 fUp { 0, 1, 0 };
public:
void concatCamera(SkCanvas* canvas, const SkRect& area, SkScalar zscale) {
SkM44 camera = SkM44::LookAt(fEye, fCOA, fUp),
perspective = SkM44::Perspective(fNear, fFar, fAngle),
viewport = SkM44::Translate(area.centerX(), area.centerY(), 0) *
SkM44::Scale(area.width()*0.5f, area.height()*0.5f, zscale);
canvas->concat(viewport * perspective * camera * inv(viewport));
}
};
struct Face {
SkScalar fRx, fRy;
SkColor fColor;
static SkM44 T(SkScalar x, SkScalar y, SkScalar z) {
return SkM44::Translate(x, y, z);
}
static SkM44 R(SkV3 axis, SkScalar rad) {
return SkM44::Rotate(axis, rad);
}
SkM44 asM44(SkScalar scale) const {
return R({0,1,0}, fRy) * R({1,0,0}, fRx) * T(0, 0, scale);
}
};
static bool isFrontFacing(const SkM44& m) {
SkM44 m2(SkM44::kUninitialized_Constructor);
if (!m.invert(&m2)) {
m2.setIdentity();
}
/*
* Classically we want to dot the transpose(inverse(ctm)) with our surface normal.
* In this case, the normal is known to be {0, 0, 1}, so we only actually need to look
* at the z-scale of the inverse (the transpose doesn't change the main diagonal, so
* no need to actually transpose).
*/
return m2.rc(2,2) > 0;
}
const Face faces[] = {
{ 0, 0, SK_ColorRED }, // front
{ 0, SK_ScalarPI, SK_ColorGREEN }, // back
{ SK_ScalarPI/2, 0, SK_ColorBLUE }, // top
{-SK_ScalarPI/2, 0, SK_ColorCYAN }, // bottom
{ 0, SK_ScalarPI/2, SK_ColorMAGENTA }, // left
{ 0,-SK_ScalarPI/2, SK_ColorYELLOW }, // right
};
#include "include/effects/SkRuntimeEffect.h"
struct LightOnSphere {
SkV2 fLoc;
SkScalar fDistance;
SkScalar fRadius;
SkV3 computeWorldPos(const VSphere& s) const {
return s.computeUnitV3(fLoc) * fDistance;
}
void draw(SkCanvas* canvas) const {
SkPaint paint;
paint.setAntiAlias(true);
paint.setColor(SK_ColorWHITE);
canvas->drawCircle(fLoc.x, fLoc.y, fRadius + 2, paint);
paint.setColor(SK_ColorBLACK);
canvas->drawCircle(fLoc.x, fLoc.y, fRadius, paint);
}
};
#include "include/core/SkTime.h"
class RotateAnimator {
SkV3 fAxis = {0, 0, 0};
SkScalar fAngle = 0,
fPrevAngle = 1234567;
double fNow = 0,
fPrevNow = 0;
SkScalar fAngleSpeed = 0,
fAngleSign = 1;
inline static constexpr double kSlowDown = 4;
inline static constexpr SkScalar kMaxSpeed = 16;
public:
void update(SkV3 axis, SkScalar angle) {
if (angle != fPrevAngle) {
fPrevAngle = fAngle;
fAngle = angle;
fPrevNow = fNow;
fNow = SkTime::GetSecs();
fAxis = axis;
}
}
SkM44 rotation() {
if (fAngleSpeed > 0) {
double now = SkTime::GetSecs();
double dtime = now - fPrevNow;
fPrevNow = now;
double delta = fAngleSign * fAngleSpeed * dtime;
fAngle += delta;
fAngleSpeed -= kSlowDown * dtime;
if (fAngleSpeed < 0) {
fAngleSpeed = 0;
}
}
return SkM44::Rotate(fAxis, fAngle);
}
void start() {
if (fPrevNow != fNow) {
fAngleSpeed = (fAngle - fPrevAngle) / (fNow - fPrevNow);
fAngleSign = fAngleSpeed < 0 ? -1 : 1;
fAngleSpeed = std::min(kMaxSpeed, std::abs(fAngleSpeed));
} else {
fAngleSpeed = 0;
}
fPrevNow = SkTime::GetSecs();
fAngle = 0;
}
void reset() {
fAngleSpeed = 0;
fAngle = 0;
fPrevAngle = 1234567;
}
bool isAnimating() const { return fAngleSpeed != 0; }
};
class SampleCubeBase : public Sample3DView {
enum {
DX = 400,
DY = 300
};
SkM44 fRotation; // part of model
RotateAnimator fRotateAnimator;
protected:
enum Flags {
kCanRunOnCPU = 1 << 0,
kShowLightDome = 1 << 1,
};
LightOnSphere fLight = {{200 + DX, 200 + DY}, 800, 12};
VSphere fSphere;
Flags fFlags;
public:
SampleCubeBase(Flags flags)
: fSphere({200 + DX, 200 + DY}, 400)
, fFlags(flags)
{}
bool onChar(SkUnichar uni) override {
switch (uni) {
case 'Z': fLight.fDistance += 10; return true;
case 'z': fLight.fDistance -= 10; return true;
}
return this->Sample3DView::onChar(uni);
}
virtual void drawFace(SkCanvas*, SkColor, int face, bool front, const SkM44& localToWorld) = 0;
void onDrawContent(SkCanvas* canvas) override {
if (!canvas->recordingContext() && !(fFlags & kCanRunOnCPU)) {
return;
}
canvas->save();
canvas->translate(DX, DY);
this->concatCamera(canvas, {0, 0, 400, 400}, 200);
SkM44 m = fRotateAnimator.rotation() * fRotation;
for (bool front : {false, true}) {
int index = 0;
for (auto f : faces) {
SkAutoCanvasRestore acr(canvas, true);
SkM44 trans = SkM44::Translate(200, 200, 0); // center of the rotation
canvas->concat(trans);
// "World" space - content is centered at the origin, in device scale (+-200)
SkM44 localToWorld = m * f.asM44(200) * inv(trans);
canvas->concat(localToWorld);
this->drawFace(canvas, f.fColor, index++, front, localToWorld);
}
}
canvas->restore(); // camera & center the content in the window
if (fFlags & kShowLightDome){
fLight.draw(canvas);
SkPaint paint;
paint.setAntiAlias(true);
paint.setStyle(SkPaint::kStroke_Style);
paint.setColor(0x40FF0000);
canvas->drawCircle(fSphere.fCenter.x, fSphere.fCenter.y, fSphere.fRadius, paint);
canvas->drawLine(fSphere.fCenter.x, fSphere.fCenter.y - fSphere.fRadius,
fSphere.fCenter.x, fSphere.fCenter.y + fSphere.fRadius, paint);
canvas->drawLine(fSphere.fCenter.x - fSphere.fRadius, fSphere.fCenter.y,
fSphere.fCenter.x + fSphere.fRadius, fSphere.fCenter.y, paint);
}
}
Click* onFindClickHandler(SkScalar x, SkScalar y, skui::ModifierKey modi) override {
SkV2 p = fLight.fLoc - SkV2{x, y};
if (p.length() <= fLight.fRadius) {
Click* c = new Click();
c->fMeta.setS32("type", 0);
return c;
}
if (fSphere.contains({x, y})) {
Click* c = new Click();
c->fMeta.setS32("type", 1);
fRotation = fRotateAnimator.rotation() * fRotation;
fRotateAnimator.reset();
return c;
}
return nullptr;
}
bool onClick(Click* click) override {
if (click->fMeta.hasS32("type", 0)) {
fLight.fLoc = fSphere.pinLoc({click->fCurr.fX, click->fCurr.fY});
return true;
}
if (click->fMeta.hasS32("type", 1)) {
if (click->fState == skui::InputState::kUp) {
fRotation = fRotateAnimator.rotation() * fRotation;
fRotateAnimator.start();
} else {
auto [axis, angle] = fSphere.computeRotationInfo(
{click->fOrig.fX, click->fOrig.fY},
{click->fCurr.fX, click->fCurr.fY});
fRotateAnimator.update(axis, angle);
}
return true;
}
return true;
}
bool onAnimate(double nanos) override {
return fRotateAnimator.isAnimating();
}
private:
using INHERITED = Sample3DView;
};
class SampleBump3D : public SampleCubeBase {
sk_sp<SkShader> fBmpShader, fImgShader;
sk_sp<SkRuntimeEffect> fEffect;
SkRRect fRR;
public:
SampleBump3D() : SampleCubeBase(Flags(kCanRunOnCPU | kShowLightDome)) {}
SkString name() override { return SkString("bump3d"); }
void onOnceBeforeDraw() override {
fRR = SkRRect::MakeRectXY({20, 20, 380, 380}, 50, 50);
auto img = GetResourceAsImage("images/brickwork-texture.jpg");
fImgShader = img->makeShader(SkSamplingOptions(), SkMatrix::Scale(2, 2));
img = GetResourceAsImage("images/brickwork_normal-map.jpg");
fBmpShader = img->makeShader(SkSamplingOptions(), SkMatrix::Scale(2, 2));
const char code[] = R"(
uniform shader color_map;
uniform shader normal_map;
uniform float4x4 localToWorld;
uniform float4x4 localToWorldAdjInv;
uniform float3 lightPos;
float3 convert_normal_sample(half4 c) {
float3 n = 2 * c.rgb - 1;
n.y = -n.y;
return n;
}
half4 main(float2 p) {
float3 norm = convert_normal_sample(normal_map.eval(p));
float3 plane_norm = normalize(localToWorldAdjInv * norm.xyz0).xyz;
float3 plane_pos = (localToWorld * p.xy01).xyz;
float3 light_dir = normalize(lightPos - plane_pos);
float ambient = 0.2;
float dp = dot(plane_norm, light_dir);
float scale = min(ambient + max(dp, 0), 1);
return color_map.eval(p) * scale.xxx1;
}
)";
auto [effect, error] = SkRuntimeEffect::MakeForShader(SkString(code));
if (!effect) {
SkDebugf("runtime error %s\n", error.c_str());
}
fEffect = effect;
}
void drawFace(SkCanvas* canvas, SkColor color, int face, bool front,
const SkM44& localToWorld) override {
if (!front || !isFrontFacing(canvas->getLocalToDevice())) {
return;
}
SkRuntimeShaderBuilder builder(fEffect);
builder.uniform("lightPos") = fLight.computeWorldPos(fSphere);
builder.uniform("localToWorld") = localToWorld;
builder.uniform("localToWorldAdjInv") = normals(localToWorld);
builder.child("color_map") = fImgShader;
builder.child("normal_map") = fBmpShader;
SkPaint paint;
paint.setColor(color);
paint.setShader(builder.makeShader());
canvas->drawRRect(fRR, paint);
}
};
DEF_SAMPLE( return new SampleBump3D; )
#include "modules/skottie/include/Skottie.h"
class SampleSkottieCube : public SampleCubeBase {
sk_sp<skottie::Animation> fAnim[6];
public:
SampleSkottieCube() : SampleCubeBase(kCanRunOnCPU) {}
SkString name() override { return SkString("skottie3d"); }
void onOnceBeforeDraw() override {
const char* files[] = {
"skottie/skottie-chained-mattes.json",
"skottie/skottie-gradient-ramp.json",
"skottie/skottie_sample_2.json",
"skottie/skottie-3d-3planes.json",
"skottie/skottie-text-animator-4.json",
"skottie/skottie-motiontile-effect-phase.json",
};
for (unsigned i = 0; i < std::size(files); ++i) {
if (auto stream = GetResourceAsStream(files[i])) {
fAnim[i] = skottie::Animation::Make(stream.get());
}
}
}
void drawFace(SkCanvas* canvas, SkColor color, int face, bool front, const SkM44&) override {
if (!front || !isFrontFacing(canvas->getLocalToDevice())) {
return;
}
SkPaint paint;
paint.setColor(color);
SkRect r = {0, 0, 400, 400};
canvas->drawRect(r, paint);
fAnim[face]->render(canvas, &r);
}
bool onAnimate(double nanos) override {
for (auto& anim : fAnim) {
SkScalar dur = anim->duration();
SkScalar t = fmod(1e-9 * nanos, dur) / dur;
anim->seek(t);
}
return true;
}
};
DEF_SAMPLE( return new SampleSkottieCube; )