blob: 189f4212f1b93951bb82e0c95e63998be8414a5e [file] [log] [blame]
/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkCubicMap.h"
#include "SkottieJson.h"
#include "SkottiePriv.h"
#include "SkottieValue.h"
#include "SkSGScene.h"
#include "SkString.h"
#include <memory>
#include <vector>
namespace skottie {
namespace internal {
namespace {
class KeyframeAnimatorBase : public sksg::Animator {
public:
size_t count() const { return fRecs.size(); }
protected:
KeyframeAnimatorBase() = default;
struct KeyframeRec {
float t0, t1;
int vidx0, vidx1, // v0/v1 indices
cmidx; // cubic map index
bool contains(float t) const { return t0 <= t && t <= t1; }
bool isConstant() const { return vidx0 == vidx1; }
bool isValid() const {
SkASSERT(t0 <= t1);
// Constant frames don't need/use t1 and vidx1.
return t0 < t1 || this->isConstant();
}
};
const KeyframeRec& frame(float t) {
if (!fCachedRec || !fCachedRec->contains(t)) {
fCachedRec = findFrame(t);
}
return *fCachedRec;
}
float localT(const KeyframeRec& rec, float t) const {
SkASSERT(rec.isValid());
SkASSERT(!rec.isConstant());
SkASSERT(t > rec.t0 && t < rec.t1);
auto lt = (t - rec.t0) / (rec.t1 - rec.t0);
return rec.cmidx < 0
? lt
: fCubicMaps[rec.cmidx].computeYFromX(lt);
}
virtual int parseValue(const skjson::Value&, const AnimationBuilder* abuilder) = 0;
void parseKeyFrames(const skjson::ArrayValue& jframes, const AnimationBuilder* abuilder) {
// Logically, a keyframe is defined as a (t0, t1, v0, v1) tuple: a given value
// is interpolated in the [v0..v1] interval over the [t0..t1] time span.
//
// There are three interestingly-different keyframe formats handled here.
//
// 1) Legacy keyframe format
//
// - normal keyframes specify t0 ("t"), v0 ("s") and v1 ("e")
// - last frame only specifies a t0
// - t1[frame] == t0[frame + 1]
// - the last entry (where we cannot determine t1) is ignored
//
// 2) Regular (new) keyframe format
//
// - all keyframes specify t0 ("t") and v0 ("s")
// - t1[frame] == t0[frame + 1]
// - v1[frame] == v0[frame + 1]
// - the last entry (where we cannot determine t1/v1) is ignored
//
// 3) Text value keyframe format
//
// - similar to case #2, all keyframes specify t0 & v0
// - unlike case #2, all keyframes are assumed to be constant (v1 == v0),
// and the last frame is not discarded (its t1 is assumed -> inf)
//
for (const skjson::ObjectValue* jframe : jframes) {
if (!jframe) continue;
float t0;
if (!Parse<float>((*jframe)["t"], &t0))
continue;
const auto v0_idx = this->parseValue((*jframe)["s"], abuilder),
v1_idx = this->parseValue((*jframe)["e"], abuilder);
if (!fRecs.empty()) {
if (fRecs.back().t1 >= t0) {
abuilder->log(Logger::Level::kWarning, nullptr,
"Ignoring out-of-order key frame (t:%f < t:%f).",
t0, fRecs.back().t1);
continue;
}
// Back-fill t1 and v1 (if needed).
auto& prev = fRecs.back();
prev.t1 = t0;
// Previous keyframe did not specify an end value (case #2, #3).
if (prev.vidx1 < 0) {
// If this frame has no v0, we're in case #3 (constant text value),
// otherwise case #2 (v0 for current frame is the same as prev frame v1).
prev.vidx1 = v0_idx < 0 ? prev.vidx0 : v0_idx;
}
}
// Start value 's' is required.
if (v0_idx < 0)
continue;
if ((v1_idx < 0) && ParseDefault((*jframe)["h"], false)) {
// Constant keyframe ("h": true).
fRecs.push_back({t0, t0, v0_idx, v0_idx, -1 });
continue;
}
// default is linear lerp
static constexpr SkPoint kDefaultC0 = { 0, 0 },
kDefaultC1 = { 1, 1 };
const auto c0 = ParseDefault<SkPoint>((*jframe)["i"], kDefaultC0),
c1 = ParseDefault<SkPoint>((*jframe)["o"], kDefaultC1);
int cm_idx = -1;
if (c0 != kDefaultC0 || c1 != kDefaultC1) {
// TODO: is it worth de-duping these?
cm_idx = SkToInt(fCubicMaps.size());
fCubicMaps.emplace_back(c1, c0);
}
fRecs.push_back({t0, t0, v0_idx, v1_idx, cm_idx });
}
if (!fRecs.empty()) {
auto& last = fRecs.back();
// If the last entry has only a v0, we're in case #3 - make it a constant frame.
if (last.vidx0 >= 0 && last.vidx1 < 0) {
last.vidx1 = last.vidx0;
last.t1 = last.t0;
}
// If we couldn't determine a valid t1 for the last frame, discard it
// (most likely the last frame entry for all 3 cases).
if (!last.isValid()) {
fRecs.pop_back();
}
}
fRecs.shrink_to_fit();
fCubicMaps.shrink_to_fit();
SkASSERT(fRecs.empty() || fRecs.back().isValid());
}
void reserve(size_t frame_count) {
fRecs.reserve(frame_count);
fCubicMaps.reserve(frame_count);
}
private:
const KeyframeRec* findFrame(float t) const {
SkASSERT(!fRecs.empty());
auto f0 = &fRecs.front(),
f1 = &fRecs.back();
SkASSERT(f0->isValid());
SkASSERT(f1->isValid());
if (t < f0->t0) {
return f0;
}
if (t > f1->t1) {
return f1;
}
while (f0 != f1) {
SkASSERT(f0 < f1);
SkASSERT(t >= f0->t0 && t <= f1->t1);
const auto f = f0 + (f1 - f0) / 2;
SkASSERT(f->isValid());
if (t > f->t1) {
f0 = f + 1;
} else {
f1 = f;
}
}
SkASSERT(f0 == f1);
SkASSERT(f0->contains(t));
return f0;
}
std::vector<KeyframeRec> fRecs;
std::vector<SkCubicMap> fCubicMaps;
const KeyframeRec* fCachedRec = nullptr;
using INHERITED = sksg::Animator;
};
template <typename T>
class KeyframeAnimator final : public KeyframeAnimatorBase {
public:
static std::unique_ptr<KeyframeAnimator> Make(const skjson::ArrayValue* jv,
const AnimationBuilder* abuilder,
std::function<void(const T&)>&& apply) {
if (!jv) return nullptr;
std::unique_ptr<KeyframeAnimator> animator(
new KeyframeAnimator(*jv, abuilder, std::move(apply)));
if (!animator->count())
return nullptr;
return animator;
}
protected:
void onTick(float t) override {
fApplyFunc(*this->eval(this->frame(t), t, &fScratch));
}
private:
KeyframeAnimator(const skjson::ArrayValue& jframes,
const AnimationBuilder* abuilder,
std::function<void(const T&)>&& apply)
: fApplyFunc(std::move(apply)) {
// Generally, each keyframe holds two values (start, end) and a cubic mapper. Except
// the last frame, which only holds a marker timestamp. Then, the values series is
// contiguous (keyframe[i].end == keyframe[i + 1].start), and we dedupe them.
// => we'll store (keyframes.size) values and (keyframe.size - 1) recs and cubic maps.
fVs.reserve(jframes.size());
this->reserve(SkTMax<size_t>(jframes.size(), 1) - 1);
this->parseKeyFrames(jframes, abuilder);
fVs.shrink_to_fit();
}
int parseValue(const skjson::Value& jv, const AnimationBuilder* abuilder) override {
T val;
if (!ValueTraits<T>::FromJSON(jv, abuilder, &val) ||
(!fVs.empty() && !ValueTraits<T>::CanLerp(val, fVs.back()))) {
return -1;
}
// TODO: full deduping?
if (fVs.empty() || val != fVs.back()) {
fVs.push_back(std::move(val));
}
return SkToInt(fVs.size()) - 1;
}
const T* eval(const KeyframeRec& rec, float t, T* v) const {
SkASSERT(rec.isValid());
if (rec.isConstant() || t <= rec.t0) {
return &fVs[rec.vidx0];
} else if (t >= rec.t1) {
return &fVs[rec.vidx1];
}
const auto lt = this->localT(rec, t);
const auto& v0 = fVs[rec.vidx0];
const auto& v1 = fVs[rec.vidx1];
ValueTraits<T>::Lerp(v0, v1, lt, v);
return v;
}
const std::function<void(const T&)> fApplyFunc;
std::vector<T> fVs;
// LERP storage: we use this to temporarily store interpolation results.
// Alternatively, the temp result could live on the stack -- but for vector values that would
// involve dynamic allocations on each tick. This a trade-off to avoid allocator pressure
// during animation.
T fScratch; // lerp storage
using INHERITED = KeyframeAnimatorBase;
};
template <typename T>
static inline bool BindPropertyImpl(const skjson::ObjectValue* jprop,
const AnimationBuilder* abuilder,
AnimatorScope* ascope,
std::function<void(const T&)>&& apply,
const T* noop = nullptr) {
if (!jprop) return false;
const auto& jpropA = (*jprop)["a"];
const auto& jpropK = (*jprop)["k"];
if (!(*jprop)["x"].is<skjson::NullValue>()) {
abuilder->log(Logger::Level::kWarning, nullptr, "Unsupported expression.");
}
// Older Json versions don't have an "a" animation marker.
// For those, we attempt to parse both ways.
if (!ParseDefault<bool>(jpropA, false)) {
T val;
if (ValueTraits<T>::FromJSON(jpropK, abuilder, &val)) {
// Static property.
if (noop && val == *noop)
return false;
apply(val);
return true;
}
if (!jpropA.is<skjson::NullValue>()) {
abuilder->log(Logger::Level::kError, jprop,
"Could not parse (explicit) static property.");
return false;
}
}
// Keyframe property.
auto animator = KeyframeAnimator<T>::Make(jpropK, abuilder, std::move(apply));
if (!animator) {
abuilder->log(Logger::Level::kError, jprop, "Could not parse keyframed property.");
return false;
}
ascope->push_back(std::move(animator));
return true;
}
class SplitPointAnimator final : public sksg::Animator {
public:
static std::unique_ptr<SplitPointAnimator> Make(const skjson::ObjectValue* jprop,
const AnimationBuilder* abuilder,
std::function<void(const VectorValue&)>&& apply,
const VectorValue*) {
if (!jprop) return nullptr;
std::unique_ptr<SplitPointAnimator> split_animator(
new SplitPointAnimator(std::move(apply)));
// This raw pointer is captured in lambdas below. But the lambdas are owned by
// the object itself, so the scope is bound to the life time of the object.
auto* split_animator_ptr = split_animator.get();
if (!BindPropertyImpl<ScalarValue>((*jprop)["x"], abuilder, &split_animator->fAnimators,
[split_animator_ptr](const ScalarValue& x) { split_animator_ptr->setX(x); }) ||
!BindPropertyImpl<ScalarValue>((*jprop)["y"], abuilder, &split_animator->fAnimators,
[split_animator_ptr](const ScalarValue& y) { split_animator_ptr->setY(y); })) {
abuilder->log(Logger::Level::kError, jprop, "Could not parse split property.");
return nullptr;
}
if (split_animator->fAnimators.empty()) {
// Static split property: commit the (buffered) value and discard.
split_animator->onTick(0);
return nullptr;
}
return split_animator;
}
void onTick(float t) override {
for (const auto& animator : fAnimators) {
animator->tick(t);
}
const VectorValue vec = { fX, fY };
fApplyFunc(vec);
}
void setX(const ScalarValue& x) { fX = x; }
void setY(const ScalarValue& y) { fY = y; }
private:
explicit SplitPointAnimator(std::function<void(const VectorValue&)>&& apply)
: fApplyFunc(std::move(apply)) {}
const std::function<void(const VectorValue&)> fApplyFunc;
sksg::AnimatorList fAnimators;
ScalarValue fX = 0,
fY = 0;
using INHERITED = sksg::Animator;
};
bool BindSplitPositionProperty(const skjson::Value& jv,
const AnimationBuilder* abuilder,
AnimatorScope* ascope,
std::function<void(const VectorValue&)>&& apply,
const VectorValue* noop) {
if (auto split_animator = SplitPointAnimator::Make(jv, abuilder, std::move(apply), noop)) {
ascope->push_back(std::unique_ptr<sksg::Animator>(split_animator.release()));
return true;
}
return false;
}
} // namespace
template <>
bool AnimationBuilder::bindProperty(const skjson::Value& jv,
AnimatorScope* ascope,
std::function<void(const ScalarValue&)>&& apply,
const ScalarValue* noop) const {
return BindPropertyImpl(jv, this, ascope, std::move(apply), noop);
}
template <>
bool AnimationBuilder::bindProperty(const skjson::Value& jv,
AnimatorScope* ascope,
std::function<void(const VectorValue&)>&& apply,
const VectorValue* noop) const {
if (!jv.is<skjson::ObjectValue>())
return false;
return ParseDefault<bool>(jv.as<skjson::ObjectValue>()["s"], false)
? BindSplitPositionProperty(jv, this, ascope, std::move(apply), noop)
: BindPropertyImpl(jv, this, ascope, std::move(apply), noop);
}
template <>
bool AnimationBuilder::bindProperty(const skjson::Value& jv,
AnimatorScope* ascope,
std::function<void(const ShapeValue&)>&& apply,
const ShapeValue* noop) const {
return BindPropertyImpl(jv, this, ascope, std::move(apply), noop);
}
template <>
bool AnimationBuilder::bindProperty(const skjson::Value& jv,
AnimatorScope* ascope,
std::function<void(const TextValue&)>&& apply,
const TextValue* noop) const {
return BindPropertyImpl(jv, this, ascope, std::move(apply), noop);
}
} // namespace internal
} // namespace skottie