blob: 5af114c7e2a863d1ceed6b38077032ae6ae88a1b [file] [log] [blame]
/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/core/SkMaskBlurFilter.h"
#include "include/core/SkColorPriv.h"
#include "include/private/base/SkMalloc.h"
#include "include/private/base/SkTPin.h"
#include "include/private/base/SkTemplates.h"
#include "include/private/base/SkTo.h"
#include "src/base/SkArenaAlloc.h"
#include "src/base/SkVx.h"
#include "src/core/SkGaussFilter.h"
#include <cmath>
#include <climits>
namespace {
static const double kPi = 3.14159265358979323846264338327950288;
class PlanGauss final {
public:
explicit PlanGauss(double sigma) {
auto possibleWindow = static_cast<int>(floor(sigma * 3 * sqrt(2 * kPi) / 4 + 0.5));
auto window = std::max(1, possibleWindow);
fPass0Size = window - 1;
fPass1Size = window - 1;
fPass2Size = (window & 1) == 1 ? window - 1 : window;
// Calculating the border is tricky. I will go through the odd case which is simpler, and
// then through the even case. Given a stack of filters seven wide for the odd case of
// three passes.
//
// S
// aaaAaaa
// bbbBbbb
// cccCccc
// D
//
// The furthest changed pixel is when the filters are in the following configuration.
//
// S
// aaaAaaa
// bbbBbbb
// cccCccc
// D
//
// The A pixel is calculated using the value S, the B uses A, and the C uses B, and
// finally D is C. So, with a window size of seven the border is nine. In general, the
// border is 3*((window - 1)/2).
//
// For even cases the filter stack is more complicated. The spec specifies two passes
// of even filters and a final pass of odd filters. A stack for a width of six looks like
// this.
//
// S
// aaaAaa
// bbBbbb
// cccCccc
// D
//
// The furthest pixel looks like this.
//
// S
// aaaAaa
// bbBbbb
// cccCccc
// D
//
// For a window of size, the border value is seven. In general the border is 3 *
// (window/2) -1.
fBorder = (window & 1) == 1 ? 3 * ((window - 1) / 2) : 3 * (window / 2) - 1;
fSlidingWindow = 2 * fBorder + 1;
// If the window is odd then the divisor is just window ^ 3 otherwise,
// it is window * window * (window + 1) = window ^ 2 + window ^ 3;
auto window2 = window * window;
auto window3 = window2 * window;
auto divisor = (window & 1) == 1 ? window3 : window3 + window2;
fWeight = static_cast<uint64_t>(round(1.0 / divisor * (1ull << 32)));
}
size_t bufferSize() const { return fPass0Size + fPass1Size + fPass2Size; }
int border() const { return fBorder; }
public:
class Scan {
public:
Scan(uint64_t weight, int noChangeCount,
uint32_t* buffer0, uint32_t* buffer0End,
uint32_t* buffer1, uint32_t* buffer1End,
uint32_t* buffer2, uint32_t* buffer2End)
: fWeight{weight}
, fNoChangeCount{noChangeCount}
, fBuffer0{buffer0}
, fBuffer0End{buffer0End}
, fBuffer1{buffer1}
, fBuffer1End{buffer1End}
, fBuffer2{buffer2}
, fBuffer2End{buffer2End}
{ }
template <typename AlphaIter> void blur(const AlphaIter srcBegin, const AlphaIter srcEnd,
uint8_t* dst, int dstStride, uint8_t* dstEnd) const {
auto buffer0Cursor = fBuffer0;
auto buffer1Cursor = fBuffer1;
auto buffer2Cursor = fBuffer2;
std::memset(fBuffer0, 0x00, (fBuffer2End - fBuffer0) * sizeof(*fBuffer0));
uint32_t sum0 = 0;
uint32_t sum1 = 0;
uint32_t sum2 = 0;
// Consume the source generating pixels.
for (AlphaIter src = srcBegin; src < srcEnd; ++src, dst += dstStride) {
uint32_t leadingEdge = *src;
sum0 += leadingEdge;
sum1 += sum0;
sum2 += sum1;
*dst = this->finalScale(sum2);
sum2 -= *buffer2Cursor;
*buffer2Cursor = sum1;
buffer2Cursor = (buffer2Cursor + 1) < fBuffer2End ? buffer2Cursor + 1 : fBuffer2;
sum1 -= *buffer1Cursor;
*buffer1Cursor = sum0;
buffer1Cursor = (buffer1Cursor + 1) < fBuffer1End ? buffer1Cursor + 1 : fBuffer1;
sum0 -= *buffer0Cursor;
*buffer0Cursor = leadingEdge;
buffer0Cursor = (buffer0Cursor + 1) < fBuffer0End ? buffer0Cursor + 1 : fBuffer0;
}
// The leading edge is off the right side of the mask.
for (int i = 0; i < fNoChangeCount; i++) {
uint32_t leadingEdge = 0;
sum0 += leadingEdge;
sum1 += sum0;
sum2 += sum1;
*dst = this->finalScale(sum2);
sum2 -= *buffer2Cursor;
*buffer2Cursor = sum1;
buffer2Cursor = (buffer2Cursor + 1) < fBuffer2End ? buffer2Cursor + 1 : fBuffer2;
sum1 -= *buffer1Cursor;
*buffer1Cursor = sum0;
buffer1Cursor = (buffer1Cursor + 1) < fBuffer1End ? buffer1Cursor + 1 : fBuffer1;
sum0 -= *buffer0Cursor;
*buffer0Cursor = leadingEdge;
buffer0Cursor = (buffer0Cursor + 1) < fBuffer0End ? buffer0Cursor + 1 : fBuffer0;
dst += dstStride;
}
// Starting from the right, fill in the rest of the buffer.
std::memset(fBuffer0, 0, (fBuffer2End - fBuffer0) * sizeof(*fBuffer0));
sum0 = sum1 = sum2 = 0;
uint8_t* dstCursor = dstEnd;
AlphaIter src = srcEnd;
while (dstCursor > dst) {
dstCursor -= dstStride;
uint32_t leadingEdge = *(--src);
sum0 += leadingEdge;
sum1 += sum0;
sum2 += sum1;
*dstCursor = this->finalScale(sum2);
sum2 -= *buffer2Cursor;
*buffer2Cursor = sum1;
buffer2Cursor = (buffer2Cursor + 1) < fBuffer2End ? buffer2Cursor + 1 : fBuffer2;
sum1 -= *buffer1Cursor;
*buffer1Cursor = sum0;
buffer1Cursor = (buffer1Cursor + 1) < fBuffer1End ? buffer1Cursor + 1 : fBuffer1;
sum0 -= *buffer0Cursor;
*buffer0Cursor = leadingEdge;
buffer0Cursor = (buffer0Cursor + 1) < fBuffer0End ? buffer0Cursor + 1 : fBuffer0;
}
}
private:
inline static constexpr uint64_t kHalf = static_cast<uint64_t>(1) << 31;
uint8_t finalScale(uint32_t sum) const {
return SkTo<uint8_t>((fWeight * sum + kHalf) >> 32);
}
uint64_t fWeight;
int fNoChangeCount;
uint32_t* fBuffer0;
uint32_t* fBuffer0End;
uint32_t* fBuffer1;
uint32_t* fBuffer1End;
uint32_t* fBuffer2;
uint32_t* fBuffer2End;
};
Scan makeBlurScan(int width, uint32_t* buffer) const {
uint32_t* buffer0, *buffer0End, *buffer1, *buffer1End, *buffer2, *buffer2End;
buffer0 = buffer;
buffer0End = buffer1 = buffer0 + fPass0Size;
buffer1End = buffer2 = buffer1 + fPass1Size;
buffer2End = buffer2 + fPass2Size;
int noChangeCount = fSlidingWindow > width ? fSlidingWindow - width : 0;
return Scan(
fWeight, noChangeCount,
buffer0, buffer0End,
buffer1, buffer1End,
buffer2, buffer2End);
}
uint64_t fWeight;
int fBorder;
int fSlidingWindow;
int fPass0Size;
int fPass1Size;
int fPass2Size;
};
} // namespace
// NB 135 is the largest sigma that will not cause a buffer full of 255 mask values to overflow
// using the Gauss filter. It also limits the size of buffers used hold intermediate values. The
// additional + 1 added to window represents adding one more leading element before subtracting the
// trailing element.
// Explanation of maximums:
// sum0 = (window + 1) * 255
// sum1 = (window + 1) * sum0 -> (window + 1) * (window + 1) * 255
// sum2 = (window + 1) * sum1 -> (window + 1) * (window + 1) * (window + 1) * 255 -> window^3 * 255
//
// The value (window + 1)^3 * 255 must fit in a uint32_t. So,
// (window + 1)^3 * 255 < 2^32. window = 255.
//
// window = floor(sigma * 3 * sqrt(2 * kPi) / 4)
// For window <= 255, the largest value for sigma is 135.
SkMaskBlurFilter::SkMaskBlurFilter(double sigmaW, double sigmaH)
: fSigmaW{SkTPin(sigmaW, 0.0, 135.0)}
, fSigmaH{SkTPin(sigmaH, 0.0, 135.0)}
{
SkASSERT(sigmaW >= 0);
SkASSERT(sigmaH >= 0);
}
bool SkMaskBlurFilter::hasNoBlur() const {
return (3 * fSigmaW <= 1) && (3 * fSigmaH <= 1);
}
// We favor A8 masks, and if we need to work with another format, we'll convert to A8 first.
// Each of these converts width (up to 8) mask values to A8.
static void bw_to_a8(uint8_t* a8, const uint8_t* from, int width) {
SkASSERT(0 < width && width <= 8);
uint8_t masks = *from;
for (int i = 0; i < width; ++i) {
a8[i] = (masks >> (7 - i)) & 1 ? 0xFF
: 0x00;
}
}
static void lcd_to_a8(uint8_t* a8, const uint8_t* from, int width) {
SkASSERT(0 < width && width <= 8);
for (int i = 0; i < width; ++i) {
unsigned rgb = reinterpret_cast<const uint16_t*>(from)[i],
r = SkPacked16ToR32(rgb),
g = SkPacked16ToG32(rgb),
b = SkPacked16ToB32(rgb);
a8[i] = (r + g + b) / 3;
}
}
static void argb32_to_a8(uint8_t* a8, const uint8_t* from, int width) {
SkASSERT(0 < width && width <= 8);
for (int i = 0; i < width; ++i) {
uint32_t rgba = reinterpret_cast<const uint32_t*>(from)[i];
a8[i] = SkGetPackedA32(rgba);
}
}
using ToA8 = decltype(bw_to_a8);
using fp88 = skvx::Vec<8, uint16_t>; // 8-wide fixed point 8.8
static fp88 load(const uint8_t* from, int width, ToA8* toA8) {
// Our fast path is a full 8-byte load of A8.
// So we'll conditionally handle the two slow paths using tmp:
// - if we have a function to convert another mask to A8, use it;
// - if not but we have less than 8 bytes to load, load them one at a time.
uint8_t tmp[8] = {0,0,0,0, 0,0,0,0};
if (toA8) {
toA8(tmp, from, width);
from = tmp;
} else if (width < 8) {
for (int i = 0; i < width; ++i) {
tmp[i] = from[i];
}
from = tmp;
}
// Load A8 and convert to 8.8 fixed-point.
return skvx::cast<uint16_t>(skvx::byte8::Load(from)) << 8;
}
static void store(uint8_t* to, const fp88& v, int width) {
skvx::byte8 b = skvx::cast<uint8_t>(v >> 8);
if (width == 8) {
b.store(to);
} else {
uint8_t buffer[8];
b.store(buffer);
for (int i = 0; i < width; i++) {
to[i] = buffer[i];
}
}
}
static constexpr uint16_t _____ = 0u;
static constexpr uint16_t kHalf = 0x80u;
// In all the blur_x_radius_N and blur_y_radius_N functions the gaussian values are encoded
// in 0.16 format, none of the values is greater than one. The incoming mask values are in 8.8
// format. The resulting multiply has a 8.24 format, by the mulhi truncates the lower 16 bits
// resulting in a 8.8 format.
//
// The blur_x_radius_N function below blur along a row of pixels using a kernel with radius N. This
// system is setup to minimize the number of multiplies needed.
//
// Explanation:
// Blurring a specific mask value is given by the following equation where D_n is the resulting
// mask value and S_n is the source value. The example below is for a filter with a radius of 1
// and a width of 3 (radius == (width-1)/2). The indexes for the source and destination are
// aligned. The filter is given by G_n where n is the symmetric filter value.
//
// D[n] = S[n-1]*G[1] + S[n]*G[0] + S[n+1]*G[1].
//
// We can start the source index at an offset relative to the destination separated by the
// radius. This results in a non-traditional restating of the above filter.
//
// D[n] = S[n]*G[1] + S[n+1]*G[0] + S[n+2]*G[1]
//
// If we look at three specific consecutive destinations the following equations result:
//
// D[5] = S[5]*G[1] + S[6]*G[0] + S[7]*G[1]
// D[7] = S[6]*G[1] + S[7]*G[0] + S[8]*G[1]
// D[8] = S[7]*G[1] + S[8]*G[0] + S[9]*G[1].
//
// In the above equations, notice that S[7] is used in all three. In particular, two values are
// used: S[7]*G[0] and S[7]*G[1]. So, S[7] is only multiplied twice, but used in D[5], D[6] and
// D[7].
//
// From the point of view of a source value we end up with the following three equations.
//
// Given S[7]:
// D[5] += S[7]*G[1]
// D[6] += S[7]*G[0]
// D[7] += S[7]*G[1]
//
// In General:
// D[n] += S[n]*G[1]
// D[n+1] += S[n]*G[0]
// D[n+2] += S[n]*G[1]
//
// Now these equations can be ganged using SIMD to form:
// D[n..n+7] += S[n..n+7]*G[1]
// D[n+1..n+8] += S[n..n+7]*G[0]
// D[n+2..n+9] += S[n..n+7]*G[1]
// The next set of values becomes.
// D[n+8..n+15] += S[n+8..n+15]*G[1]
// D[n+9..n+16] += S[n+8..n+15]*G[0]
// D[n+10..n+17] += S[n+8..n+15]*G[1]
// You can see that the D[n+8] and D[n+9] values overlap the two sets, using parts of both
// S[n..7] and S[n+8..n+15].
//
// Just one more transformation allows the code to maintain all working values in
// registers. I introduce the notation {0, S[n..n+7] * G[k]} to mean that the value where 0 is
// prepended to the array of values to form {0, S[n] * G[k], ..., S[n+7]*G[k]}.
//
// D[n..n+7] += S[n..n+7] * G[1]
// D[n..n+8] += {0, S[n..n+7] * G[0]}
// D[n..n+9] += {0, 0, S[n..n+7] * G[1]}
//
// Now we can encode D[n..n+7] in a single Sk8h register called d0, and D[n+8..n+15] in a
// register d8. In addition, S[0..n+7] becomes s0.
//
// The translation of the {0, S[n..n+7] * G[k]} is translated in the following way below.
//
// Sk8h v0 = s0*G[0]
// Sk8h v1 = s0*G[1]
// /* D[n..n+7] += S[n..n+7] * G[1] */
// d0 += v1;
// /* D[n..n+8] += {0, S[n..n+7] * G[0]} */
// d0 += {_____, v0[0], v0[1], v0[2], v0[3], v0[4], v0[5], v0[6]}
// d1 += {v0[7], _____, _____, _____, _____, _____, _____, _____}
// /* D[n..n+9] += {0, 0, S[n..n+7] * G[1]} */
// d0 += {_____, _____, v1[0], v1[1], v1[2], v1[3], v1[4], v1[5]}
// d1 += {v1[6], v1[7], _____, _____, _____, _____, _____, _____}
// Where we rely on the compiler to generate efficient code for the {____, n, ....} notation.
static void blur_x_radius_1(
const fp88& s0,
const fp88& g0, const fp88& g1, const fp88&, const fp88&, const fp88&,
fp88* d0, fp88* d8) {
auto v1 = mulhi(s0, g1);
auto v0 = mulhi(s0, g0);
// D[n..n+7] += S[n..n+7] * G[1]
*d0 += v1;
//D[n..n+8] += {0, S[n..n+7] * G[0]}
*d0 += fp88{_____, v0[0], v0[1], v0[2], v0[3], v0[4], v0[5], v0[6]};
*d8 += fp88{v0[7], _____, _____, _____, _____, _____, _____, _____};
// D[n..n+9] += {0, 0, S[n..n+7] * G[1]}
*d0 += fp88{_____, _____, v1[0], v1[1], v1[2], v1[3], v1[4], v1[5]};
*d8 += fp88{v1[6], v1[7], _____, _____, _____, _____, _____, _____};
}
static void blur_x_radius_2(
const fp88& s0,
const fp88& g0, const fp88& g1, const fp88& g2, const fp88&, const fp88&,
fp88* d0, fp88* d8) {
auto v0 = mulhi(s0, g0);
auto v1 = mulhi(s0, g1);
auto v2 = mulhi(s0, g2);
// D[n..n+7] += S[n..n+7] * G[2]
*d0 += v2;
// D[n..n+8] += {0, S[n..n+7] * G[1]}
*d0 += fp88{_____, v1[0], v1[1], v1[2], v1[3], v1[4], v1[5], v1[6]};
*d8 += fp88{v1[7], _____, _____, _____, _____, _____, _____, _____};
// D[n..n+9] += {0, 0, S[n..n+7] * G[0]}
*d0 += fp88{_____, _____, v0[0], v0[1], v0[2], v0[3], v0[4], v0[5]};
*d8 += fp88{v0[6], v0[7], _____, _____, _____, _____, _____, _____};
// D[n..n+10] += {0, 0, 0, S[n..n+7] * G[1]}
*d0 += fp88{_____, _____, _____, v1[0], v1[1], v1[2], v1[3], v1[4]};
*d8 += fp88{v1[5], v1[6], v1[7], _____, _____, _____, _____, _____};
// D[n..n+11] += {0, 0, 0, 0, S[n..n+7] * G[2]}
*d0 += fp88{_____, _____, _____, _____, v2[0], v2[1], v2[2], v2[3]};
*d8 += fp88{v2[4], v2[5], v2[6], v2[7], _____, _____, _____, _____};
}
static void blur_x_radius_3(
const fp88& s0,
const fp88& g0, const fp88& g1, const fp88& g2, const fp88& g3, const fp88&,
fp88* d0, fp88* d8) {
auto v0 = mulhi(s0, g0);
auto v1 = mulhi(s0, g1);
auto v2 = mulhi(s0, g2);
auto v3 = mulhi(s0, g3);
// D[n..n+7] += S[n..n+7] * G[3]
*d0 += v3;
// D[n..n+8] += {0, S[n..n+7] * G[2]}
*d0 += fp88{_____, v2[0], v2[1], v2[2], v2[3], v2[4], v2[5], v2[6]};
*d8 += fp88{v2[7], _____, _____, _____, _____, _____, _____, _____};
// D[n..n+9] += {0, 0, S[n..n+7] * G[1]}
*d0 += fp88{_____, _____, v1[0], v1[1], v1[2], v1[3], v1[4], v1[5]};
*d8 += fp88{v1[6], v1[7], _____, _____, _____, _____, _____, _____};
// D[n..n+10] += {0, 0, 0, S[n..n+7] * G[0]}
*d0 += fp88{_____, _____, _____, v0[0], v0[1], v0[2], v0[3], v0[4]};
*d8 += fp88{v0[5], v0[6], v0[7], _____, _____, _____, _____, _____};
// D[n..n+11] += {0, 0, 0, 0, S[n..n+7] * G[1]}
*d0 += fp88{_____, _____, _____, _____, v1[0], v1[1], v1[2], v1[3]};
*d8 += fp88{v1[4], v1[5], v1[6], v1[7], _____, _____, _____, _____};
// D[n..n+12] += {0, 0, 0, 0, 0, S[n..n+7] * G[2]}
*d0 += fp88{_____, _____, _____, _____, _____, v2[0], v2[1], v2[2]};
*d8 += fp88{v2[3], v2[4], v2[5], v2[6], v2[7], _____, _____, _____};
// D[n..n+13] += {0, 0, 0, 0, 0, 0, S[n..n+7] * G[3]}
*d0 += fp88{_____, _____, _____, _____, _____, _____, v3[0], v3[1]};
*d8 += fp88{v3[2], v3[3], v3[4], v3[5], v3[6], v3[7], _____, _____};
}
static void blur_x_radius_4(
const fp88& s0,
const fp88& g0, const fp88& g1, const fp88& g2, const fp88& g3, const fp88& g4,
fp88* d0, fp88* d8) {
auto v0 = mulhi(s0, g0);
auto v1 = mulhi(s0, g1);
auto v2 = mulhi(s0, g2);
auto v3 = mulhi(s0, g3);
auto v4 = mulhi(s0, g4);
// D[n..n+7] += S[n..n+7] * G[4]
*d0 += v4;
// D[n..n+8] += {0, S[n..n+7] * G[3]}
*d0 += fp88{_____, v3[0], v3[1], v3[2], v3[3], v3[4], v3[5], v3[6]};
*d8 += fp88{v3[7], _____, _____, _____, _____, _____, _____, _____};
// D[n..n+9] += {0, 0, S[n..n+7] * G[2]}
*d0 += fp88{_____, _____, v2[0], v2[1], v2[2], v2[3], v2[4], v2[5]};
*d8 += fp88{v2[6], v2[7], _____, _____, _____, _____, _____, _____};
// D[n..n+10] += {0, 0, 0, S[n..n+7] * G[1]}
*d0 += fp88{_____, _____, _____, v1[0], v1[1], v1[2], v1[3], v1[4]};
*d8 += fp88{v1[5], v1[6], v1[7], _____, _____, _____, _____, _____};
// D[n..n+11] += {0, 0, 0, 0, S[n..n+7] * G[0]}
*d0 += fp88{_____, _____, _____, _____, v0[0], v0[1], v0[2], v0[3]};
*d8 += fp88{v0[4], v0[5], v0[6], v0[7], _____, _____, _____, _____};
// D[n..n+12] += {0, 0, 0, 0, 0, S[n..n+7] * G[1]}
*d0 += fp88{_____, _____, _____, _____, _____, v1[0], v1[1], v1[2]};
*d8 += fp88{v1[3], v1[4], v1[5], v1[6], v1[7], _____, _____, _____};
// D[n..n+13] += {0, 0, 0, 0, 0, 0, S[n..n+7] * G[2]}
*d0 += fp88{_____, _____, _____, _____, _____, _____, v2[0], v2[1]};
*d8 += fp88{v2[2], v2[3], v2[4], v2[5], v2[6], v2[7], _____, _____};
// D[n..n+14] += {0, 0, 0, 0, 0, 0, 0, S[n..n+7] * G[3]}
*d0 += fp88{_____, _____, _____, _____, _____, _____, _____, v3[0]};
*d8 += fp88{v3[1], v3[2], v3[3], v3[4], v3[5], v3[6], v3[7], _____};
// D[n..n+15] += {0, 0, 0, 0, 0, 0, 0, 0, S[n..n+7] * G[4]}
*d8 += v4;
}
using BlurX = decltype(blur_x_radius_1);
// BlurX will only be one of the functions blur_x_radius_(1|2|3|4).
static void blur_row(
BlurX blur,
const fp88& g0, const fp88& g1, const fp88& g2, const fp88& g3, const fp88& g4,
const uint8_t* src, int srcW,
uint8_t* dst, int dstW) {
// Clear the buffer to handle summing wider than source.
fp88 d0(kHalf), d8(kHalf);
// Go by multiples of 8 in src.
int x = 0;
for (; x <= srcW - 8; x += 8) {
blur(load(src, 8, nullptr), g0, g1, g2, g3, g4, &d0, &d8);
store(dst, d0, 8);
d0 = d8;
d8 = fp88(kHalf);
src += 8;
dst += 8;
}
// There are src values left, but the remainder of src values is not a multiple of 8.
int srcTail = srcW - x;
if (srcTail > 0) {
blur(load(src, srcTail, nullptr), g0, g1, g2, g3, g4, &d0, &d8);
int dstTail = std::min(8, dstW - x);
store(dst, d0, dstTail);
d0 = d8;
dst += dstTail;
x += dstTail;
}
// There are dst mask values to complete.
int dstTail = dstW - x;
if (dstTail > 0) {
store(dst, d0, dstTail);
}
}
// BlurX will only be one of the functions blur_x_radius_(1|2|3|4).
static void blur_x_rect(BlurX blur,
uint16_t* gauss,
const uint8_t* src, size_t srcStride, int srcW,
uint8_t* dst, size_t dstStride, int dstW, int dstH) {
fp88 g0(gauss[0]),
g1(gauss[1]),
g2(gauss[2]),
g3(gauss[3]),
g4(gauss[4]);
// Blur *ALL* the rows.
for (int y = 0; y < dstH; y++) {
blur_row(blur, g0, g1, g2, g3, g4, src, srcW, dst, dstW);
src += srcStride;
dst += dstStride;
}
}
static void direct_blur_x(int radius, uint16_t* gauss,
const uint8_t* src, size_t srcStride, int srcW,
uint8_t* dst, size_t dstStride, int dstW, int dstH) {
switch (radius) {
case 1:
blur_x_rect(blur_x_radius_1, gauss, src, srcStride, srcW, dst, dstStride, dstW, dstH);
break;
case 2:
blur_x_rect(blur_x_radius_2, gauss, src, srcStride, srcW, dst, dstStride, dstW, dstH);
break;
case 3:
blur_x_rect(blur_x_radius_3, gauss, src, srcStride, srcW, dst, dstStride, dstW, dstH);
break;
case 4:
blur_x_rect(blur_x_radius_4, gauss, src, srcStride, srcW, dst, dstStride, dstW, dstH);
break;
default:
SkASSERTF(false, "The radius %d is not handled\n", radius);
}
}
// The operations of the blur_y_radius_N functions work on a theme similar to the blur_x_radius_N
// functions, but end up being simpler because there is no complicated shift of registers. We
// start with the non-traditional form of the gaussian filter. In the following r is the value
// when added generates the next value in the column.
//
// D[n+0r] = S[n+0r]*G[1]
// + S[n+1r]*G[0]
// + S[n+2r]*G[1]
//
// Expanding out in a way similar to blur_x_radius_N for specific values of n.
//
// D[n+0r] = S[n-2r]*G[1] + S[n-1r]*G[0] + S[n+0r]*G[1]
// D[n+1r] = S[n-1r]*G[1] + S[n+0r]*G[0] + S[n+1r]*G[1]
// D[n+2r] = S[n+0r]*G[1] + S[n+1r]*G[0] + S[n+2r]*G[1]
//
// We can see that S[n+0r] is in all three D[] equations, but is only multiplied twice. Now we
// can look at the calculation form the point of view of a source value.
//
// Given S[n+0r]:
// D[n+0r] += S[n+0r]*G[1];
// /* D[n+0r] is done and can be stored now. */
// D[n+1r] += S[n+0r]*G[0];
// D[n+2r] = S[n+0r]*G[1];
//
// Remember, by induction, that D[n+0r] == S[n-2r]*G[1] + S[n-1r]*G[0] before adding in
// S[n+0r]*G[1]. So, after the addition D[n+0r] has finished calculation and can be stored. Also,
// notice that D[n+2r] is receiving its first value from S[n+0r]*G[1] and is not added in. Notice
// how values flow in the following two iterations in source.
//
// D[n+0r] += S[n+0r]*G[1]
// D[n+1r] += S[n+0r]*G[0]
// D[n+2r] = S[n+0r]*G[1]
// /* ------- */
// D[n+1r] += S[n+1r]*G[1]
// D[n+2r] += S[n+1r]*G[0]
// D[n+3r] = S[n+1r]*G[1]
//
// Instead of using memory we can introduce temporaries d01 and d12. The update step changes
// to the following.
//
// answer = d01 + S[n+0r]*G[1]
// d01 = d12 + S[n+0r]*G[0]
// d12 = S[n+0r]*G[1]
// return answer
//
// Finally, this can be ganged into SIMD style.
// answer[0..7] = d01[0..7] + S[n+0r..n+0r+7]*G[1]
// d01[0..7] = d12[0..7] + S[n+0r..n+0r+7]*G[0]
// d12[0..7] = S[n+0r..n+0r+7]*G[1]
// return answer[0..7]
static fp88 blur_y_radius_1(
const fp88& s0,
const fp88& g0, const fp88& g1, const fp88&, const fp88&, const fp88&,
fp88* d01, fp88* d12, fp88*, fp88*, fp88*, fp88*, fp88*, fp88*) {
auto v0 = mulhi(s0, g0);
auto v1 = mulhi(s0, g1);
fp88 answer = *d01 + v1;
*d01 = *d12 + v0;
*d12 = v1 + kHalf;
return answer;
}
static fp88 blur_y_radius_2(
const fp88& s0,
const fp88& g0, const fp88& g1, const fp88& g2, const fp88&, const fp88&,
fp88* d01, fp88* d12, fp88* d23, fp88* d34, fp88*, fp88*, fp88*, fp88*) {
auto v0 = mulhi(s0, g0);
auto v1 = mulhi(s0, g1);
auto v2 = mulhi(s0, g2);
fp88 answer = *d01 + v2;
*d01 = *d12 + v1;
*d12 = *d23 + v0;
*d23 = *d34 + v1;
*d34 = v2 + kHalf;
return answer;
}
static fp88 blur_y_radius_3(
const fp88& s0,
const fp88& g0, const fp88& g1, const fp88& g2, const fp88& g3, const fp88&,
fp88* d01, fp88* d12, fp88* d23, fp88* d34, fp88* d45, fp88* d56, fp88*, fp88*) {
auto v0 = mulhi(s0, g0);
auto v1 = mulhi(s0, g1);
auto v2 = mulhi(s0, g2);
auto v3 = mulhi(s0, g3);
fp88 answer = *d01 + v3;
*d01 = *d12 + v2;
*d12 = *d23 + v1;
*d23 = *d34 + v0;
*d34 = *d45 + v1;
*d45 = *d56 + v2;
*d56 = v3 + kHalf;
return answer;
}
static fp88 blur_y_radius_4(
const fp88& s0,
const fp88& g0, const fp88& g1, const fp88& g2, const fp88& g3, const fp88& g4,
fp88* d01, fp88* d12, fp88* d23, fp88* d34, fp88* d45, fp88* d56, fp88* d67, fp88* d78) {
auto v0 = mulhi(s0, g0);
auto v1 = mulhi(s0, g1);
auto v2 = mulhi(s0, g2);
auto v3 = mulhi(s0, g3);
auto v4 = mulhi(s0, g4);
fp88 answer = *d01 + v4;
*d01 = *d12 + v3;
*d12 = *d23 + v2;
*d23 = *d34 + v1;
*d34 = *d45 + v0;
*d45 = *d56 + v1;
*d56 = *d67 + v2;
*d67 = *d78 + v3;
*d78 = v4 + kHalf;
return answer;
}
using BlurY = decltype(blur_y_radius_1);
// BlurY will be one of blur_y_radius_(1|2|3|4).
static void blur_column(
ToA8 toA8,
BlurY blur, int radius, int width,
const fp88& g0, const fp88& g1, const fp88& g2, const fp88& g3, const fp88& g4,
const uint8_t* src, size_t srcRB, int srcH,
uint8_t* dst, size_t dstRB) {
fp88 d01(kHalf), d12(kHalf), d23(kHalf), d34(kHalf),
d45(kHalf), d56(kHalf), d67(kHalf), d78(kHalf);
auto flush = [&](uint8_t* to, const fp88& v0, const fp88& v1) {
store(to, v0, width);
to += dstRB;
store(to, v1, width);
return to + dstRB;
};
for (int y = 0; y < srcH; y += 1) {
auto s = load(src, width, toA8);
auto b = blur(s,
g0, g1, g2, g3, g4,
&d01, &d12, &d23, &d34, &d45, &d56, &d67, &d78);
store(dst, b, width);
src += srcRB;
dst += dstRB;
}
if (radius >= 1) {
dst = flush(dst, d01, d12);
}
if (radius >= 2) {
dst = flush(dst, d23, d34);
}
if (radius >= 3) {
dst = flush(dst, d45, d56);
}
if (radius >= 4) {
flush(dst, d67, d78);
}
}
// BlurY will be one of blur_y_radius_(1|2|3|4).
static void blur_y_rect(ToA8 toA8, const int strideOf8,
BlurY blur, int radius, uint16_t *gauss,
const uint8_t *src, size_t srcRB, int srcW, int srcH,
uint8_t *dst, size_t dstRB) {
fp88 g0(gauss[0]),
g1(gauss[1]),
g2(gauss[2]),
g3(gauss[3]),
g4(gauss[4]);
int x = 0;
for (; x <= srcW - 8; x += 8) {
blur_column(toA8, blur, radius, 8,
g0, g1, g2, g3, g4,
src, srcRB, srcH,
dst, dstRB);
src += strideOf8;
dst += 8;
}
int xTail = srcW - x;
if (xTail > 0) {
blur_column(toA8, blur, radius, xTail,
g0, g1, g2, g3, g4,
src, srcRB, srcH,
dst, dstRB);
}
}
static void direct_blur_y(ToA8 toA8, const int strideOf8,
int radius, uint16_t* gauss,
const uint8_t* src, size_t srcRB, int srcW, int srcH,
uint8_t* dst, size_t dstRB) {
switch (radius) {
case 1:
blur_y_rect(toA8, strideOf8, blur_y_radius_1, 1, gauss,
src, srcRB, srcW, srcH,
dst, dstRB);
break;
case 2:
blur_y_rect(toA8, strideOf8, blur_y_radius_2, 2, gauss,
src, srcRB, srcW, srcH,
dst, dstRB);
break;
case 3:
blur_y_rect(toA8, strideOf8, blur_y_radius_3, 3, gauss,
src, srcRB, srcW, srcH,
dst, dstRB);
break;
case 4:
blur_y_rect(toA8, strideOf8, blur_y_radius_4, 4, gauss,
src, srcRB, srcW, srcH,
dst, dstRB);
break;
default:
SkASSERTF(false, "The radius %d is not handled\n", radius);
}
}
static SkIPoint small_blur(double sigmaX, double sigmaY, const SkMask& src, SkMaskBuilder* dst) {
SkASSERT(sigmaX == sigmaY); // TODO
SkASSERT(0.01 <= sigmaX && sigmaX < 2);
SkASSERT(0.01 <= sigmaY && sigmaY < 2);
SkGaussFilter filterX{sigmaX},
filterY{sigmaY};
int radiusX = filterX.radius(),
radiusY = filterY.radius();
SkASSERT(radiusX <= 4 && radiusY <= 4);
auto prepareGauss = [](const SkGaussFilter& filter, uint16_t* factors) {
int i = 0;
for (double d : filter) {
factors[i++] = static_cast<uint16_t>(round(d * (1 << 16)));
}
};
uint16_t gaussFactorsX[SkGaussFilter::kGaussArrayMax],
gaussFactorsY[SkGaussFilter::kGaussArrayMax];
prepareGauss(filterX, gaussFactorsX);
prepareGauss(filterY, gaussFactorsY);
*dst = SkMaskBuilder::PrepareDestination(radiusX, radiusY, src);
if (src.fImage == nullptr) {
return {SkTo<int32_t>(radiusX), SkTo<int32_t>(radiusY)};
}
if (dst->fImage == nullptr) {
dst->bounds().setEmpty();
return {0, 0};
}
int srcW = src.fBounds.width(),
srcH = src.fBounds.height();
int dstW = dst->fBounds.width(),
dstH = dst->fBounds.height();
size_t srcRB = src.fRowBytes,
dstRB = dst->fRowBytes;
//TODO: handle bluring in only one direction.
// Blur vertically and copy to destination.
switch (src.fFormat) {
case SkMask::kBW_Format:
direct_blur_y(bw_to_a8, 1,
radiusY, gaussFactorsY,
src.fImage, srcRB, srcW, srcH,
dst->image() + radiusX, dstRB);
break;
case SkMask::kA8_Format:
direct_blur_y(nullptr, 8,
radiusY, gaussFactorsY,
src.fImage, srcRB, srcW, srcH,
dst->image() + radiusX, dstRB);
break;
case SkMask::kARGB32_Format:
direct_blur_y(argb32_to_a8, 32,
radiusY, gaussFactorsY,
src.fImage, srcRB, srcW, srcH,
dst->image() + radiusX, dstRB);
break;
case SkMask::kLCD16_Format:
direct_blur_y(lcd_to_a8, 16, radiusY, gaussFactorsY,
src.fImage, srcRB, srcW, srcH,
dst->image() + radiusX, dstRB);
break;
default:
SK_ABORT("Unhandled format.");
}
// Blur horizontally in place.
direct_blur_x(radiusX, gaussFactorsX,
dst->fImage + radiusX, dstRB, srcW,
dst->image(), dstRB, dstW, dstH);
return {radiusX, radiusY};
}
// TODO: assuming sigmaW = sigmaH. Allow different sigmas. Right now the
// API forces the sigmas to be the same.
SkIPoint SkMaskBlurFilter::blur(const SkMask& src, SkMaskBuilder* dst) const {
if (fSigmaW < 2.0 && fSigmaH < 2.0) {
return small_blur(fSigmaW, fSigmaH, src, dst);
}
// 1024 is a place holder guess until more analysis can be done.
SkSTArenaAlloc<1024> alloc;
PlanGauss planW(fSigmaW);
PlanGauss planH(fSigmaH);
int borderW = planW.border(),
borderH = planH.border();
SkASSERT(borderH >= 0 && borderW >= 0);
*dst = SkMaskBuilder::PrepareDestination(borderW, borderH, src);
if (src.fImage == nullptr) {
return {SkTo<int32_t>(borderW), SkTo<int32_t>(borderH)};
}
if (dst->fImage == nullptr) {
dst->bounds().setEmpty();
return {0, 0};
}
int srcW = src.fBounds.width(),
srcH = src.fBounds.height(),
dstW = dst->fBounds.width(),
dstH = dst->fBounds.height();
SkASSERT(srcW >= 0 && srcH >= 0 && dstW >= 0 && dstH >= 0);
auto bufferSize = std::max(planW.bufferSize(), planH.bufferSize());
auto buffer = alloc.makeArrayDefault<uint32_t>(bufferSize);
// Blur both directions.
int tmpW = srcH,
tmpH = dstW;
// Make sure not to overflow the multiply for the tmp buffer size.
if (tmpH > std::numeric_limits<int>::max() / tmpW) {
return {0, 0};
}
auto tmp = alloc.makeArrayDefault<uint8_t>(tmpW * tmpH);
// Blur horizontally, and transpose.
const PlanGauss::Scan& scanW = planW.makeBlurScan(srcW, buffer);
switch (src.fFormat) {
case SkMask::kBW_Format: {
const uint8_t* bwStart = src.fImage;
auto start = SkMask::AlphaIter<SkMask::kBW_Format>(bwStart, 0);
auto end = SkMask::AlphaIter<SkMask::kBW_Format>(bwStart + (srcW / 8), srcW % 8);
for (int y = 0; y < srcH; ++y, start >>= src.fRowBytes, end >>= src.fRowBytes) {
auto tmpStart = &tmp[y];
scanW.blur(start, end, tmpStart, tmpW, tmpStart + tmpW * tmpH);
}
} break;
case SkMask::kA8_Format: {
const uint8_t* a8Start = src.fImage;
auto start = SkMask::AlphaIter<SkMask::kA8_Format>(a8Start);
auto end = SkMask::AlphaIter<SkMask::kA8_Format>(a8Start + srcW);
for (int y = 0; y < srcH; ++y, start >>= src.fRowBytes, end >>= src.fRowBytes) {
auto tmpStart = &tmp[y];
scanW.blur(start, end, tmpStart, tmpW, tmpStart + tmpW * tmpH);
}
} break;
case SkMask::kARGB32_Format: {
const uint32_t* argbStart = reinterpret_cast<const uint32_t*>(src.fImage);
auto start = SkMask::AlphaIter<SkMask::kARGB32_Format>(argbStart);
auto end = SkMask::AlphaIter<SkMask::kARGB32_Format>(argbStart + srcW);
for (int y = 0; y < srcH; ++y, start >>= src.fRowBytes, end >>= src.fRowBytes) {
auto tmpStart = &tmp[y];
scanW.blur(start, end, tmpStart, tmpW, tmpStart + tmpW * tmpH);
}
} break;
case SkMask::kLCD16_Format: {
const uint16_t* lcdStart = reinterpret_cast<const uint16_t*>(src.fImage);
auto start = SkMask::AlphaIter<SkMask::kLCD16_Format>(lcdStart);
auto end = SkMask::AlphaIter<SkMask::kLCD16_Format>(lcdStart + srcW);
for (int y = 0; y < srcH; ++y, start >>= src.fRowBytes, end >>= src.fRowBytes) {
auto tmpStart = &tmp[y];
scanW.blur(start, end, tmpStart, tmpW, tmpStart + tmpW * tmpH);
}
} break;
default:
SK_ABORT("Unhandled format.");
}
// Blur vertically (scan in memory order because of the transposition),
// and transpose back to the original orientation.
const PlanGauss::Scan& scanH = planH.makeBlurScan(tmpW, buffer);
for (int y = 0; y < tmpH; y++) {
auto tmpStart = &tmp[y * tmpW];
auto dstStart = &dst->image()[y];
scanH.blur(tmpStart, tmpStart + tmpW,
dstStart, dst->fRowBytes, dstStart + dst->fRowBytes * dstH);
}
return {SkTo<int32_t>(borderW), SkTo<int32_t>(borderH)};
}