blob: ee45889a64bdb95b71eefa43644be65669f09400 [file] [log] [blame]
/*
* Copyright 2018 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/**************************************************************************************************
*** This file was autogenerated from GrConfigConversionEffect.fp; do not modify.
**************************************************************************************************/
#ifndef GrConfigConversionEffect_DEFINED
#define GrConfigConversionEffect_DEFINED
#include "include/core/SkTypes.h"
#include "include/gpu/GrContext.h"
#include "src/gpu/GrClip.h"
#include "src/gpu/GrContextPriv.h"
#include "src/gpu/GrProxyProvider.h"
#include "src/gpu/GrRenderTargetContext.h"
#include "src/gpu/GrCoordTransform.h"
#include "src/gpu/GrFragmentProcessor.h"
class GrConfigConversionEffect : public GrFragmentProcessor {
public:
static bool TestForPreservingPMConversions(GrContext* context) {
static constexpr int kSize = 256;
static constexpr GrColorType kColorType = GrColorType::kRGBA_8888;
SkAutoTMalloc<uint32_t> data(kSize * kSize * 3);
uint32_t* srcData = data.get();
uint32_t* firstRead = data.get() + kSize * kSize;
uint32_t* secondRead = data.get() + 2 * kSize * kSize;
// Fill with every possible premultiplied A, color channel value. There will be 256-y
// duplicate values in row y. We set r, g, and b to the same value since they are handled
// identically.
for (int y = 0; y < kSize; ++y) {
for (int x = 0; x < kSize; ++x) {
uint8_t* color = reinterpret_cast<uint8_t*>(&srcData[kSize * y + x]);
color[3] = y;
color[2] = SkTMin(x, y);
color[1] = SkTMin(x, y);
color[0] = SkTMin(x, y);
}
}
memset(firstRead, 0, kSize * kSize * sizeof(uint32_t));
memset(secondRead, 0, kSize * kSize * sizeof(uint32_t));
const SkImageInfo ii =
SkImageInfo::Make(kSize, kSize, kRGBA_8888_SkColorType, kPremul_SkAlphaType);
sk_sp<GrRenderTargetContext> readRTC(context->priv().makeDeferredRenderTargetContext(
SkBackingFit::kExact, kSize, kSize, kColorType, nullptr));
sk_sp<GrRenderTargetContext> tempRTC(context->priv().makeDeferredRenderTargetContext(
SkBackingFit::kExact, kSize, kSize, kColorType, nullptr));
if (!readRTC || !readRTC->asTextureProxy() || !tempRTC) {
return false;
}
// Adding discard to appease vulkan validation warning about loading uninitialized data on
// draw
readRTC->discard();
GrProxyProvider* proxyProvider = context->priv().proxyProvider();
SkPixmap pixmap(ii, srcData, 4 * kSize);
// This function is only ever called if we are in a GrContext that has a GrGpu since we are
// calling read pixels here. Thus the pixel data will be uploaded immediately and we don't
// need to keep the pixel data alive in the proxy. Therefore the ReleaseProc is nullptr.
sk_sp<SkImage> image = SkImage::MakeFromRaster(pixmap, nullptr, nullptr);
sk_sp<GrTextureProxy> dataProxy = proxyProvider->createTextureProxy(
std::move(image), 1, SkBudgeted::kYes, SkBackingFit::kExact);
if (!dataProxy) {
return false;
}
static const SkRect kRect = SkRect::MakeIWH(kSize, kSize);
// We do a PM->UPM draw from dataTex to readTex and read the data. Then we do a UPM->PM draw
// from readTex to tempTex followed by a PM->UPM draw to readTex and finally read the data.
// We then verify that two reads produced the same values.
GrPaint paint1;
GrPaint paint2;
GrPaint paint3;
std::unique_ptr<GrFragmentProcessor> pmToUPM(
new GrConfigConversionEffect(PMConversion::kToUnpremul));
std::unique_ptr<GrFragmentProcessor> upmToPM(
new GrConfigConversionEffect(PMConversion::kToPremul));
paint1.addColorTextureProcessor(dataProxy, SkMatrix::I());
paint1.addColorFragmentProcessor(pmToUPM->clone());
paint1.setPorterDuffXPFactory(SkBlendMode::kSrc);
readRTC->fillRectToRect(GrNoClip(), std::move(paint1), GrAA::kNo, SkMatrix::I(), kRect,
kRect);
if (!readRTC->readPixels(ii, firstRead, 0, {0, 0})) {
return false;
}
// Adding discard to appease vulkan validation warning about loading uninitialized data on
// draw
tempRTC->discard();
paint2.addColorTextureProcessor(readRTC->asTextureProxyRef(), SkMatrix::I());
paint2.addColorFragmentProcessor(std::move(upmToPM));
paint2.setPorterDuffXPFactory(SkBlendMode::kSrc);
tempRTC->fillRectToRect(GrNoClip(), std::move(paint2), GrAA::kNo, SkMatrix::I(), kRect,
kRect);
paint3.addColorTextureProcessor(tempRTC->asTextureProxyRef(), SkMatrix::I());
paint3.addColorFragmentProcessor(std::move(pmToUPM));
paint3.setPorterDuffXPFactory(SkBlendMode::kSrc);
readRTC->fillRectToRect(GrNoClip(), std::move(paint3), GrAA::kNo, SkMatrix::I(), kRect,
kRect);
if (!readRTC->readPixels(ii, secondRead, 0, {0, 0})) {
return false;
}
for (int y = 0; y < kSize; ++y) {
for (int x = 0; x <= y; ++x) {
if (firstRead[kSize * y + x] != secondRead[kSize * y + x]) {
return false;
}
}
}
return true;
}
static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> fp,
PMConversion pmConversion) {
if (!fp) {
return nullptr;
}
std::unique_ptr<GrFragmentProcessor> ccFP(new GrConfigConversionEffect(pmConversion));
std::unique_ptr<GrFragmentProcessor> fpPipeline[] = {std::move(fp), std::move(ccFP)};
return GrFragmentProcessor::RunInSeries(fpPipeline, 2);
}
GrConfigConversionEffect(const GrConfigConversionEffect& src);
std::unique_ptr<GrFragmentProcessor> clone() const override;
const char* name() const override { return "ConfigConversionEffect"; }
PMConversion pmConversion;
private:
GrConfigConversionEffect(PMConversion pmConversion)
: INHERITED(kGrConfigConversionEffect_ClassID, kNone_OptimizationFlags)
, pmConversion(pmConversion) {}
GrGLSLFragmentProcessor* onCreateGLSLInstance() const override;
void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const override;
bool onIsEqual(const GrFragmentProcessor&) const override;
GR_DECLARE_FRAGMENT_PROCESSOR_TEST
typedef GrFragmentProcessor INHERITED;
};
#endif