blob: 55be373696edc029fa58765b0984c6e948dd8130 [file] [log] [blame]
/*
* Copyright 2011 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include <algorithm>
#include "include/core/SkBitmap.h"
#include "include/core/SkTileMode.h"
#include "include/effects/SkImageFilters.h"
#include "include/private/SkColorData.h"
#include "include/private/SkTFitsIn.h"
#include "include/private/SkTPin.h"
#include "include/private/SkVx.h"
#include "src/core/SkArenaAlloc.h"
#include "src/core/SkAutoPixmapStorage.h"
#include "src/core/SkGpuBlurUtils.h"
#include "src/core/SkImageFilter_Base.h"
#include "src/core/SkOpts.h"
#include "src/core/SkReadBuffer.h"
#include "src/core/SkSpecialImage.h"
#include "src/core/SkWriteBuffer.h"
#if SK_SUPPORT_GPU
#include "src/gpu/GrTextureProxy.h"
#include "src/gpu/SkGr.h"
#if SK_GPU_V1
#include "src/gpu/v1/SurfaceDrawContext_v1.h"
#endif // SK_GPU_V1
#endif // SK_SUPPORT_GPU
namespace {
class SkBlurImageFilter final : public SkImageFilter_Base {
public:
SkBlurImageFilter(SkScalar sigmaX, SkScalar sigmaY, SkTileMode tileMode,
sk_sp<SkImageFilter> input, const SkRect* cropRect)
: INHERITED(&input, 1, cropRect)
, fSigma{sigmaX, sigmaY}
, fTileMode(tileMode) {}
SkRect computeFastBounds(const SkRect&) const override;
protected:
void flatten(SkWriteBuffer&) const override;
sk_sp<SkSpecialImage> onFilterImage(const Context&, SkIPoint* offset) const override;
SkIRect onFilterNodeBounds(const SkIRect& src, const SkMatrix& ctm,
MapDirection, const SkIRect* inputRect) const override;
private:
friend void ::SkRegisterBlurImageFilterFlattenable();
SK_FLATTENABLE_HOOKS(SkBlurImageFilter)
#if SK_SUPPORT_GPU
sk_sp<SkSpecialImage> gpuFilter(
const Context& ctx, SkVector sigma,
const sk_sp<SkSpecialImage> &input,
SkIRect inputBounds, SkIRect dstBounds, SkIPoint inputOffset, SkIPoint* offset) const;
#endif
SkSize fSigma;
SkTileMode fTileMode;
using INHERITED = SkImageFilter_Base;
};
} // end namespace
sk_sp<SkImageFilter> SkImageFilters::Blur(
SkScalar sigmaX, SkScalar sigmaY, SkTileMode tileMode, sk_sp<SkImageFilter> input,
const CropRect& cropRect) {
if (sigmaX < SK_ScalarNearlyZero && sigmaY < SK_ScalarNearlyZero && !cropRect) {
return input;
}
return sk_sp<SkImageFilter>(
new SkBlurImageFilter(sigmaX, sigmaY, tileMode, input, cropRect));
}
void SkRegisterBlurImageFilterFlattenable() {
SK_REGISTER_FLATTENABLE(SkBlurImageFilter);
SkFlattenable::Register("SkBlurImageFilterImpl", SkBlurImageFilter::CreateProc);
}
sk_sp<SkFlattenable> SkBlurImageFilter::CreateProc(SkReadBuffer& buffer) {
SK_IMAGEFILTER_UNFLATTEN_COMMON(common, 1);
SkScalar sigmaX = buffer.readScalar();
SkScalar sigmaY = buffer.readScalar();
SkTileMode tileMode = buffer.read32LE(SkTileMode::kLastTileMode);
return SkImageFilters::Blur(
sigmaX, sigmaY, tileMode, common.getInput(0), common.cropRect());
}
void SkBlurImageFilter::flatten(SkWriteBuffer& buffer) const {
this->INHERITED::flatten(buffer);
buffer.writeScalar(fSigma.fWidth);
buffer.writeScalar(fSigma.fHeight);
SkASSERT(fTileMode <= SkTileMode::kLastTileMode);
buffer.writeInt(static_cast<int>(fTileMode));
}
///////////////////////////////////////////////////////////////////////////////
namespace {
// This is defined by the SVG spec:
// https://drafts.fxtf.org/filter-effects/#feGaussianBlurElement
int calculate_window(double sigma) {
auto possibleWindow = static_cast<int>(floor(sigma * 3 * sqrt(2 * SK_DoublePI) / 4 + 0.5));
return std::max(1, possibleWindow);
}
// This rather arbitrary-looking value results in a maximum box blur kernel size
// of 1000 pixels on the raster path, which matches the WebKit and Firefox
// implementations. Since the GPU path does not compute a box blur, putting
// the limit on sigma ensures consistent behaviour between the GPU and
// raster paths.
static constexpr SkScalar kMaxSigma = 532.f;
static SkVector map_sigma(const SkSize& localSigma, const SkMatrix& ctm) {
SkVector sigma = SkVector::Make(localSigma.width(), localSigma.height());
ctm.mapVectors(&sigma, 1);
sigma.fX = std::min(SkScalarAbs(sigma.fX), kMaxSigma);
sigma.fY = std::min(SkScalarAbs(sigma.fY), kMaxSigma);
// Disable blurring on axes that were never finite, or became non-finite after mapping by ctm.
if (!SkScalarIsFinite(sigma.fX)) {
sigma.fX = 0.f;
}
if (!SkScalarIsFinite(sigma.fY)) {
sigma.fY = 0.f;
}
return sigma;
}
class Pass {
public:
explicit Pass(int border) : fBorder(border) {}
virtual ~Pass() = default;
void blur(int srcLeft, int srcRight, int dstRight,
const uint32_t* src, int srcStride,
uint32_t* dst, int dstStride) {
this->startBlur();
auto srcStart = srcLeft - fBorder,
srcEnd = srcRight - fBorder,
dstEnd = dstRight,
srcIdx = srcStart,
dstIdx = 0;
const uint32_t* srcCursor = src;
uint32_t* dstCursor = dst;
if (dstIdx < srcIdx) {
// The destination pixels are not effected by the src pixels,
// change to zero as per the spec.
// https://drafts.fxtf.org/filter-effects/#FilterPrimitivesOverviewIntro
while (dstIdx < srcIdx) {
*dstCursor = 0;
dstCursor += dstStride;
SK_PREFETCH(dstCursor);
dstIdx++;
}
} else if (srcIdx < dstIdx) {
// The edge of the source is before the edge of the destination. Calculate the sums for
// the pixels before the start of the destination.
if (int commonEnd = std::min(dstIdx, srcEnd); srcIdx < commonEnd) {
// Preload the blur with values from src before dst is entered.
int n = commonEnd - srcIdx;
this->blurSegment(n, srcCursor, srcStride, nullptr, 0);
srcIdx += n;
srcCursor += n * srcStride;
}
if (srcIdx < dstIdx) {
// The weird case where src is out of pixels before dst is even started.
int n = dstIdx - srcIdx;
this->blurSegment(n, nullptr, 0, nullptr, 0);
srcIdx += n;
}
}
// Both srcIdx and dstIdx are in sync now, and can run in a 1:1 fashion. This is the
// normal mode of operation.
SkASSERT(srcIdx == dstIdx);
if (int commonEnd = std::min(dstEnd, srcEnd); dstIdx < commonEnd) {
int n = commonEnd - dstIdx;
this->blurSegment(n, srcCursor, srcStride, dstCursor, dstStride);
srcCursor += n * srcStride;
dstCursor += n * dstStride;
dstIdx += n;
srcIdx += n;
}
// Drain the remaining blur values into dst assuming 0's for the leading edge.
if (dstIdx < dstEnd) {
int n = dstEnd - dstIdx;
this->blurSegment(n, nullptr, 0, dstCursor, dstStride);
}
}
protected:
virtual void startBlur() = 0;
virtual void blurSegment(
int n, const uint32_t* src, int srcStride, uint32_t* dst, int dstStride) = 0;
private:
const int fBorder;
};
class PassMaker {
public:
explicit PassMaker(int window) : fWindow{window} {}
virtual ~PassMaker() = default;
virtual Pass* makePass(void* buffer, SkArenaAlloc* alloc) const = 0;
virtual size_t bufferSizeBytes() const = 0;
int window() const {return fWindow;}
private:
const int fWindow;
};
// Implement a scanline processor that uses a three-box filter to approximate a Gaussian blur.
// The GaussPass is limit to processing sigmas < 135.
class GaussPass final : public Pass {
public:
// NB 136 is the largest sigma that will not cause a buffer full of 255 mask values to overflow
// using the Gauss filter. It also limits the size of buffers used hold intermediate values.
// Explanation of maximums:
// sum0 = window * 255
// sum1 = window * sum0 -> window * window * 255
// sum2 = window * sum1 -> window * window * window * 255 -> window^3 * 255
//
// The value window^3 * 255 must fit in a uint32_t. So,
// window^3 < 2^32. window = 255.
//
// window = floor(sigma * 3 * sqrt(2 * kPi) / 4 + 0.5)
// For window <= 255, the largest value for sigma is 136.
static PassMaker* MakeMaker(double sigma, SkArenaAlloc* alloc) {
SkASSERT(0 <= sigma);
int window = calculate_window(sigma);
if (255 <= window) {
return nullptr;
}
class Maker : public PassMaker {
public:
explicit Maker(int window) : PassMaker{window} {}
Pass* makePass(void* buffer, SkArenaAlloc* alloc) const override {
return GaussPass::Make(this->window(), buffer, alloc);
}
size_t bufferSizeBytes() const override {
int window = this->window();
size_t onePassSize = window - 1;
// If the window is odd, then there is an obvious middle element. For even sizes
// 2 passes are shifted, and the last pass has an extra element. Like this:
// S
// aaaAaa
// bbBbbb
// cccCccc
// D
size_t bufferCount = (window & 1) == 1 ? 3 * onePassSize : 3 * onePassSize + 1;
return bufferCount * sizeof(skvx::Vec<4, uint32_t>);
}
};
return alloc->make<Maker>(window);
}
static GaussPass* Make(int window, void* buffers, SkArenaAlloc* alloc) {
// We don't need to store the trailing edge pixel in the buffer;
int passSize = window - 1;
skvx::Vec<4, uint32_t>* buffer0 = static_cast<skvx::Vec<4, uint32_t>*>(buffers);
skvx::Vec<4, uint32_t>* buffer1 = buffer0 + passSize;
skvx::Vec<4, uint32_t>* buffer2 = buffer1 + passSize;
// If the window is odd just one buffer is needed, but if it's even, then there is one
// more element on that pass.
skvx::Vec<4, uint32_t>* buffersEnd = buffer2 + ((window & 1) ? passSize : passSize + 1);
// Calculating the border is tricky. The border is the distance in pixels between the first
// dst pixel and the first src pixel (or the last src pixel and the last dst pixel).
// I will go through the odd case which is simpler, and then through the even case. Given a
// stack of filters seven wide for the odd case of three passes.
//
// S
// aaaAaaa
// bbbBbbb
// cccCccc
// D
//
// The furthest changed pixel is when the filters are in the following configuration.
//
// S
// aaaAaaa
// bbbBbbb
// cccCccc
// D
//
// The A pixel is calculated using the value S, the B uses A, and the C uses B, and
// finally D is C. So, with a window size of seven the border is nine. In the odd case, the
// border is 3*((window - 1)/2).
//
// For even cases the filter stack is more complicated. The spec specifies two passes
// of even filters and a final pass of odd filters. A stack for a width of six looks like
// this.
//
// S
// aaaAaa
// bbBbbb
// cccCccc
// D
//
// The furthest pixel looks like this.
//
// S
// aaaAaa
// bbBbbb
// cccCccc
// D
//
// For a window of six, the border value is eight. In the even case the border is 3 *
// (window/2) - 1.
int border = (window & 1) == 1 ? 3 * ((window - 1) / 2) : 3 * (window / 2) - 1;
// If the window is odd then the divisor is just window ^ 3 otherwise,
// it is window * window * (window + 1) = window ^ 3 + window ^ 2;
int window2 = window * window;
int window3 = window2 * window;
int divisor = (window & 1) == 1 ? window3 : window3 + window2;
return alloc->make<GaussPass>(buffer0, buffer1, buffer2, buffersEnd, border, divisor);
}
GaussPass(skvx::Vec<4, uint32_t>* buffer0,
skvx::Vec<4, uint32_t>* buffer1,
skvx::Vec<4, uint32_t>* buffer2,
skvx::Vec<4, uint32_t>* buffersEnd,
int border,
int divisor)
: Pass{border}
, fBuffer0{buffer0}
, fBuffer1{buffer1}
, fBuffer2{buffer2}
, fBuffersEnd{buffersEnd}
, fDivider(divisor) {}
private:
void startBlur() override {
skvx::Vec<4, uint32_t> zero = {0u, 0u, 0u, 0u};
zero.store(fSum0);
zero.store(fSum1);
auto half = fDivider.half();
skvx::Vec<4, uint32_t>{half, half, half, half}.store(fSum2);
sk_bzero(fBuffer0, (fBuffersEnd - fBuffer0) * sizeof(skvx::Vec<4, uint32_t>));
fBuffer0Cursor = fBuffer0;
fBuffer1Cursor = fBuffer1;
fBuffer2Cursor = fBuffer2;
}
// GaussPass implements the common three pass box filter approximation of Gaussian blur,
// but combines all three passes into a single pass. This approach is facilitated by three
// circular buffers the width of the window which track values for trailing edges of each of
// the three passes. This allows the algorithm to use more precision in the calculation
// because the values are not rounded each pass. And this implementation also avoids a trap
// that's easy to fall into resulting in blending in too many zeroes near the edge.
//
// In general, a window sum has the form:
// sum_n+1 = sum_n + leading_edge - trailing_edge.
// If instead we do the subtraction at the end of the previous iteration, we can just
// calculate the sums instead of having to do the subtractions too.
//
// In previous iteration:
// sum_n+1 = sum_n - trailing_edge.
//
// In this iteration:
// sum_n+1 = sum_n + leading_edge.
//
// Now we can stack all three sums and do them at once. Sum0 gets its leading edge from the
// actual data. Sum1's leading edge is just Sum0, and Sum2's leading edge is Sum1. So, doing the
// three passes at the same time has the form:
//
// sum0_n+1 = sum0_n + leading edge
// sum1_n+1 = sum1_n + sum0_n+1
// sum2_n+1 = sum2_n + sum1_n+1
//
// sum2_n+1 / window^3 is the new value of the destination pixel.
//
// Reduce the sums by the trailing edges which were stored in the circular buffers for the
// next go around. This is the case for odd sized windows, even windows the the third
// circular buffer is one larger then the first two circular buffers.
//
// sum2_n+2 = sum2_n+1 - buffer2[i];
// buffer2[i] = sum1;
// sum1_n+2 = sum1_n+1 - buffer1[i];
// buffer1[i] = sum0;
// sum0_n+2 = sum0_n+1 - buffer0[i];
// buffer0[i] = leading edge
void blurSegment(
int n, const uint32_t* src, int srcStride, uint32_t* dst, int dstStride) override {
skvx::Vec<4, uint32_t>* buffer0Cursor = fBuffer0Cursor;
skvx::Vec<4, uint32_t>* buffer1Cursor = fBuffer1Cursor;
skvx::Vec<4, uint32_t>* buffer2Cursor = fBuffer2Cursor;
skvx::Vec<4, uint32_t> sum0 = skvx::Vec<4, uint32_t>::Load(fSum0);
skvx::Vec<4, uint32_t> sum1 = skvx::Vec<4, uint32_t>::Load(fSum1);
skvx::Vec<4, uint32_t> sum2 = skvx::Vec<4, uint32_t>::Load(fSum2);
// Given an expanded input pixel, move the window ahead using the leadingEdge value.
auto processValue = [&](const skvx::Vec<4, uint32_t>& leadingEdge) {
sum0 += leadingEdge;
sum1 += sum0;
sum2 += sum1;
skvx::Vec<4, uint32_t> blurred = fDivider.divide(sum2);
sum2 -= *buffer2Cursor;
*buffer2Cursor = sum1;
buffer2Cursor = (buffer2Cursor + 1) < fBuffersEnd ? buffer2Cursor + 1 : fBuffer2;
sum1 -= *buffer1Cursor;
*buffer1Cursor = sum0;
buffer1Cursor = (buffer1Cursor + 1) < fBuffer2 ? buffer1Cursor + 1 : fBuffer1;
sum0 -= *buffer0Cursor;
*buffer0Cursor = leadingEdge;
buffer0Cursor = (buffer0Cursor + 1) < fBuffer1 ? buffer0Cursor + 1 : fBuffer0;
return skvx::cast<uint8_t>(blurred);
};
auto loadEdge = [&](const uint32_t* srcCursor) {
return skvx::cast<uint32_t>(skvx::Vec<4, uint8_t>::Load(srcCursor));
};
if (!src && !dst) {
while (n --> 0) {
(void)processValue(0);
}
} else if (src && !dst) {
while (n --> 0) {
(void)processValue(loadEdge(src));
src += srcStride;
}
} else if (!src && dst) {
while (n --> 0) {
processValue(0u).store(dst);
dst += dstStride;
}
} else if (src && dst) {
while (n --> 0) {
processValue(loadEdge(src)).store(dst);
src += srcStride;
dst += dstStride;
}
}
// Store the state
fBuffer0Cursor = buffer0Cursor;
fBuffer1Cursor = buffer1Cursor;
fBuffer2Cursor = buffer2Cursor;
sum0.store(fSum0);
sum1.store(fSum1);
sum2.store(fSum2);
}
skvx::Vec<4, uint32_t>* const fBuffer0;
skvx::Vec<4, uint32_t>* const fBuffer1;
skvx::Vec<4, uint32_t>* const fBuffer2;
skvx::Vec<4, uint32_t>* const fBuffersEnd;
const skvx::ScaledDividerU32 fDivider;
// blur state
char fSum0[sizeof(skvx::Vec<4, uint32_t>)];
char fSum1[sizeof(skvx::Vec<4, uint32_t>)];
char fSum2[sizeof(skvx::Vec<4, uint32_t>)];
skvx::Vec<4, uint32_t>* fBuffer0Cursor;
skvx::Vec<4, uint32_t>* fBuffer1Cursor;
skvx::Vec<4, uint32_t>* fBuffer2Cursor;
};
// Implement a scanline processor that uses a two-box filter to approximate a Tent filter.
// The TentPass is limit to processing sigmas < 2183.
class TentPass final : public Pass {
public:
// NB 2183 is the largest sigma that will not cause a buffer full of 255 mask values to overflow
// using the Tent filter. It also limits the size of buffers used hold intermediate values.
// Explanation of maximums:
// sum0 = window * 255
// sum1 = window * sum0 -> window * window * 255
//
// The value window^2 * 255 must fit in a uint32_t. So,
// window^2 < 2^32. window = 4104.
//
// window = floor(sigma * 3 * sqrt(2 * kPi) / 4 + 0.5)
// For window <= 4104, the largest value for sigma is 2183.
static PassMaker* MakeMaker(double sigma, SkArenaAlloc* alloc) {
SkASSERT(0 <= sigma);
int gaussianWindow = calculate_window(sigma);
// This is a naive method of using the window size for the Gaussian blur to calculate the
// window size for the Tent blur. This seems to work well in practice.
//
// We can use a single pixel to generate the effective blur area given a window size. For
// the Gaussian blur this is 3 * window size. For the Tent filter this is 2 * window size.
int tentWindow = 3 * gaussianWindow / 2;
if (tentWindow >= 4104) {
return nullptr;
}
class Maker : public PassMaker {
public:
explicit Maker(int window) : PassMaker{window} {}
Pass* makePass(void* buffer, SkArenaAlloc* alloc) const override {
return TentPass::Make(this->window(), buffer, alloc);
}
size_t bufferSizeBytes() const override {
size_t onePassSize = this->window() - 1;
// If the window is odd, then there is an obvious middle element. For even sizes 2
// passes are shifted, and the last pass has an extra element. Like this:
// S
// aaaAaa
// bbBbbb
// D
size_t bufferCount = 2 * onePassSize;
return bufferCount * sizeof(skvx::Vec<4, uint32_t>);
}
};
return alloc->make<Maker>(tentWindow);
}
static TentPass* Make(int window, void* buffers, SkArenaAlloc* alloc) {
if (window > 4104) {
return nullptr;
}
// We don't need to store the trailing edge pixel in the buffer;
int passSize = window - 1;
skvx::Vec<4, uint32_t>* buffer0 = static_cast<skvx::Vec<4, uint32_t>*>(buffers);
skvx::Vec<4, uint32_t>* buffer1 = buffer0 + passSize;
skvx::Vec<4, uint32_t>* buffersEnd = buffer1 + passSize;
// Calculating the border is tricky. The border is the distance in pixels between the first
// dst pixel and the first src pixel (or the last src pixel and the last dst pixel).
// I will go through the odd case which is simpler, and then through the even case. Given a
// stack of filters seven wide for the odd case of three passes.
//
// S
// aaaAaaa
// bbbBbbb
// D
//
// The furthest changed pixel is when the filters are in the following configuration.
//
// S
// aaaAaaa
// bbbBbbb
// D
//
// The A pixel is calculated using the value S, the B uses A, and the D uses B.
// So, with a window size of seven the border is nine. In the odd case, the border is
// window - 1.
//
// For even cases the filter stack is more complicated. It uses two passes
// of even filters offset from each other. A stack for a width of six looks like
// this.
//
// S
// aaaAaa
// bbBbbb
// D
//
// The furthest pixel looks like this.
//
// S
// aaaAaa
// bbBbbb
// D
//
// For a window of six, the border value is 5. In the even case the border is
// window - 1.
int border = window - 1;
int divisor = window * window;
return alloc->make<TentPass>(buffer0, buffer1, buffersEnd, border, divisor);
}
TentPass(skvx::Vec<4, uint32_t>* buffer0,
skvx::Vec<4, uint32_t>* buffer1,
skvx::Vec<4, uint32_t>* buffersEnd,
int border,
int divisor)
: Pass{border}
, fBuffer0{buffer0}
, fBuffer1{buffer1}
, fBuffersEnd{buffersEnd}
, fDivider(divisor) {}
private:
void startBlur() override {
skvx::Vec<4, uint32_t>{0u, 0u, 0u, 0u}.store(fSum0);
auto half = fDivider.half();
skvx::Vec<4, uint32_t>{half, half, half, half}.store(fSum1);
sk_bzero(fBuffer0, (fBuffersEnd - fBuffer0) * sizeof(skvx::Vec<4, uint32_t>));
fBuffer0Cursor = fBuffer0;
fBuffer1Cursor = fBuffer1;
}
// TentPass implements the common two pass box filter approximation of Tent filter,
// but combines all both passes into a single pass. This approach is facilitated by two
// circular buffers the width of the window which track values for trailing edges of each of
// both passes. This allows the algorithm to use more precision in the calculation
// because the values are not rounded each pass. And this implementation also avoids a trap
// that's easy to fall into resulting in blending in too many zeroes near the edge.
//
// In general, a window sum has the form:
// sum_n+1 = sum_n + leading_edge - trailing_edge.
// If instead we do the subtraction at the end of the previous iteration, we can just
// calculate the sums instead of having to do the subtractions too.
//
// In previous iteration:
// sum_n+1 = sum_n - trailing_edge.
//
// In this iteration:
// sum_n+1 = sum_n + leading_edge.
//
// Now we can stack all three sums and do them at once. Sum0 gets its leading edge from the
// actual data. Sum1's leading edge is just Sum0, and Sum2's leading edge is Sum1. So, doing the
// three passes at the same time has the form:
//
// sum0_n+1 = sum0_n + leading edge
// sum1_n+1 = sum1_n + sum0_n+1
//
// sum1_n+1 / window^2 is the new value of the destination pixel.
//
// Reduce the sums by the trailing edges which were stored in the circular buffers for the
// next go around.
//
// sum1_n+2 = sum1_n+1 - buffer1[i];
// buffer1[i] = sum0;
// sum0_n+2 = sum0_n+1 - buffer0[i];
// buffer0[i] = leading edge
void blurSegment(
int n, const uint32_t* src, int srcStride, uint32_t* dst, int dstStride) override {
skvx::Vec<4, uint32_t>* buffer0Cursor = fBuffer0Cursor;
skvx::Vec<4, uint32_t>* buffer1Cursor = fBuffer1Cursor;
skvx::Vec<4, uint32_t> sum0 = skvx::Vec<4, uint32_t>::Load(fSum0);
skvx::Vec<4, uint32_t> sum1 = skvx::Vec<4, uint32_t>::Load(fSum1);
// Given an expanded input pixel, move the window ahead using the leadingEdge value.
auto processValue = [&](const skvx::Vec<4, uint32_t>& leadingEdge) {
sum0 += leadingEdge;
sum1 += sum0;
skvx::Vec<4, uint32_t> blurred = fDivider.divide(sum1);
sum1 -= *buffer1Cursor;
*buffer1Cursor = sum0;
buffer1Cursor = (buffer1Cursor + 1) < fBuffersEnd ? buffer1Cursor + 1 : fBuffer1;
sum0 -= *buffer0Cursor;
*buffer0Cursor = leadingEdge;
buffer0Cursor = (buffer0Cursor + 1) < fBuffer1 ? buffer0Cursor + 1 : fBuffer0;
return skvx::cast<uint8_t>(blurred);
};
auto loadEdge = [&](const uint32_t* srcCursor) {
return skvx::cast<uint32_t>(skvx::Vec<4, uint8_t>::Load(srcCursor));
};
if (!src && !dst) {
while (n --> 0) {
(void)processValue(0);
}
} else if (src && !dst) {
while (n --> 0) {
(void)processValue(loadEdge(src));
src += srcStride;
}
} else if (!src && dst) {
while (n --> 0) {
processValue(0u).store(dst);
dst += dstStride;
}
} else if (src && dst) {
while (n --> 0) {
processValue(loadEdge(src)).store(dst);
src += srcStride;
dst += dstStride;
}
}
// Store the state
fBuffer0Cursor = buffer0Cursor;
fBuffer1Cursor = buffer1Cursor;
sum0.store(fSum0);
sum1.store(fSum1);
}
skvx::Vec<4, uint32_t>* const fBuffer0;
skvx::Vec<4, uint32_t>* const fBuffer1;
skvx::Vec<4, uint32_t>* const fBuffersEnd;
const skvx::ScaledDividerU32 fDivider;
// blur state
char fSum0[sizeof(skvx::Vec<4, uint32_t>)];
char fSum1[sizeof(skvx::Vec<4, uint32_t>)];
skvx::Vec<4, uint32_t>* fBuffer0Cursor;
skvx::Vec<4, uint32_t>* fBuffer1Cursor;
};
sk_sp<SkSpecialImage> copy_image_with_bounds(
const SkImageFilter_Base::Context& ctx, const sk_sp<SkSpecialImage> &input,
SkIRect srcBounds, SkIRect dstBounds) {
SkBitmap inputBM;
if (!input->getROPixels(&inputBM)) {
return nullptr;
}
if (inputBM.colorType() != kN32_SkColorType) {
return nullptr;
}
SkBitmap src;
inputBM.extractSubset(&src, srcBounds);
// Make everything relative to the destination bounds.
srcBounds.offset(-dstBounds.x(), -dstBounds.y());
dstBounds.offset(-dstBounds.x(), -dstBounds.y());
auto srcW = srcBounds.width(),
dstW = dstBounds.width(),
dstH = dstBounds.height();
SkImageInfo dstInfo = SkImageInfo::Make(dstW, dstH, inputBM.colorType(), inputBM.alphaType());
SkBitmap dst;
if (!dst.tryAllocPixels(dstInfo)) {
return nullptr;
}
// There is no blurring to do, but we still need to copy the source while accounting for the
// dstBounds. Remember that the src was intersected with the dst.
int y = 0;
size_t dstWBytes = dstW * sizeof(uint32_t);
for (;y < srcBounds.top(); y++) {
sk_bzero(dst.getAddr32(0, y), dstWBytes);
}
for (;y < srcBounds.bottom(); y++) {
int x = 0;
uint32_t* dstPtr = dst.getAddr32(0, y);
for (;x < srcBounds.left(); x++) {
*dstPtr++ = 0;
}
memcpy(dstPtr, src.getAddr32(x - srcBounds.left(), y - srcBounds.top()),
srcW * sizeof(uint32_t));
dstPtr += srcW;
x += srcW;
for (;x < dstBounds.right(); x++) {
*dstPtr++ = 0;
}
}
for (;y < dstBounds.bottom(); y++) {
sk_bzero(dst.getAddr32(0, y), dstWBytes);
}
return SkSpecialImage::MakeFromRaster(SkIRect::MakeWH(dstBounds.width(),
dstBounds.height()),
dst, ctx.surfaceProps());
}
// TODO: Implement CPU backend for different fTileMode.
sk_sp<SkSpecialImage> cpu_blur(
const SkImageFilter_Base::Context& ctx,
SkVector sigma, const sk_sp<SkSpecialImage> &input,
SkIRect srcBounds, SkIRect dstBounds) {
// map_sigma limits sigma to 532 to match 1000px box filter limit of WebKit and Firefox.
// Since this does not exceed the limits of the TentPass (2183), there won't be overflow when
// computing a kernel over a pixel window filled with 255.
static_assert(kMaxSigma <= 2183.0f);
SkSTArenaAlloc<1024> alloc;
auto makeMaker = [&](double sigma) -> PassMaker* {
SkASSERT(0 <= sigma && sigma <= 2183); // should be guaranteed after map_sigma
if (PassMaker* maker = GaussPass::MakeMaker(sigma, &alloc)) {
return maker;
}
if (PassMaker* maker = TentPass::MakeMaker(sigma, &alloc)) {
return maker;
}
SK_ABORT("Sigma is out of range.");
};
PassMaker* makerX = makeMaker(sigma.x());
PassMaker* makerY = makeMaker(sigma.y());
if (makerX->window() <= 1 && makerY->window() <= 1) {
return copy_image_with_bounds(ctx, input, srcBounds, dstBounds);
}
SkBitmap inputBM;
if (!input->getROPixels(&inputBM)) {
return nullptr;
}
if (inputBM.colorType() != kN32_SkColorType) {
return nullptr;
}
SkBitmap src;
inputBM.extractSubset(&src, srcBounds);
// Make everything relative to the destination bounds.
srcBounds.offset(-dstBounds.x(), -dstBounds.y());
dstBounds.offset(-dstBounds.x(), -dstBounds.y());
auto srcW = srcBounds.width(),
srcH = srcBounds.height(),
dstW = dstBounds.width(),
dstH = dstBounds.height();
SkImageInfo dstInfo = inputBM.info().makeWH(dstW, dstH);
SkBitmap dst;
if (!dst.tryAllocPixels(dstInfo)) {
return nullptr;
}
size_t bufferSizeBytes = std::max(makerX->bufferSizeBytes(), makerY->bufferSizeBytes());
auto buffer = alloc.makeBytesAlignedTo(bufferSizeBytes, alignof(skvx::Vec<4, uint32_t>));
// Basic Plan: The three cases to handle
// * Horizontal and Vertical - blur horizontally while copying values from the source to
// the destination. Then, do an in-place vertical blur.
// * Horizontal only - blur horizontally copying values from the source to the destination.
// * Vertical only - blur vertically copying values from the source to the destination.
// Default to vertical only blur case. If a horizontal blur is needed, then these values
// will be adjusted while doing the horizontal blur.
auto intermediateSrc = static_cast<uint32_t *>(src.getPixels());
auto intermediateRowBytesAsPixels = src.rowBytesAsPixels();
auto intermediateWidth = srcW;
// Because the border is calculated before the fork of the GPU/CPU path. The border is
// the maximum of the two rendering methods. In the case where sigma is zero, then the
// src and dst left values are the same. If sigma is small resulting in a window size of
// 1, then border calculations add some pixels which will always be zero. Inset the
// destination by those zero pixels. This case is very rare.
auto intermediateDst = dst.getAddr32(srcBounds.left(), 0);
// The following code is executed very rarely, I have never seen it in a real web
// page. If sigma is small but not zero then shared GPU/CPU border calculation
// code adds extra pixels for the border. Just clear everything to clear those pixels.
// This solution is overkill, but very simple.
if (makerX->window() == 1 || makerY->window() == 1) {
dst.eraseColor(0);
}
if (makerX->window() > 1) {
Pass* pass = makerX->makePass(buffer, &alloc);
// Make int64 to avoid overflow in multiplication below.
int64_t shift = srcBounds.top() - dstBounds.top();
// For the horizontal blur, starts part way down in anticipation of the vertical blur.
// For a vertical sigma of zero shift should be zero. But, for small sigma,
// shift may be > 0 but the vertical window could be 1.
intermediateSrc = static_cast<uint32_t *>(dst.getPixels())
+ (shift > 0 ? shift * dst.rowBytesAsPixels() : 0);
intermediateRowBytesAsPixels = dst.rowBytesAsPixels();
intermediateWidth = dstW;
intermediateDst = static_cast<uint32_t *>(dst.getPixels());
const uint32_t* srcCursor = static_cast<uint32_t*>(src.getPixels());
uint32_t* dstCursor = intermediateSrc;
for (auto y = 0; y < srcH; y++) {
pass->blur(srcBounds.left(), srcBounds.right(), dstBounds.right(),
srcCursor, 1, dstCursor, 1);
srcCursor += src.rowBytesAsPixels();
dstCursor += intermediateRowBytesAsPixels;
}
}
if (makerY->window() > 1) {
Pass* pass = makerY->makePass(buffer, &alloc);
const uint32_t* srcCursor = intermediateSrc;
uint32_t* dstCursor = intermediateDst;
for (auto x = 0; x < intermediateWidth; x++) {
pass->blur(srcBounds.top(), srcBounds.bottom(), dstBounds.bottom(),
srcCursor, intermediateRowBytesAsPixels,
dstCursor, dst.rowBytesAsPixels());
srcCursor += 1;
dstCursor += 1;
}
}
return SkSpecialImage::MakeFromRaster(SkIRect::MakeWH(dstBounds.width(),
dstBounds.height()),
dst, ctx.surfaceProps());
}
} // namespace
sk_sp<SkSpecialImage> SkBlurImageFilter::onFilterImage(const Context& ctx,
SkIPoint* offset) const {
SkIPoint inputOffset = SkIPoint::Make(0, 0);
sk_sp<SkSpecialImage> input(this->filterInput(0, ctx, &inputOffset));
if (!input) {
return nullptr;
}
SkIRect inputBounds = SkIRect::MakeXYWH(inputOffset.fX, inputOffset.fY,
input->width(), input->height());
// Calculate the destination bounds.
SkIRect dstBounds;
if (!this->applyCropRect(this->mapContext(ctx), inputBounds, &dstBounds)) {
return nullptr;
}
if (!inputBounds.intersect(dstBounds)) {
return nullptr;
}
// Save the offset in preparation to make all rectangles relative to the inputOffset.
SkIPoint resultOffset = SkIPoint::Make(dstBounds.fLeft, dstBounds.fTop);
// Make all bounds relative to the inputOffset.
inputBounds.offset(-inputOffset);
dstBounds.offset(-inputOffset);
SkVector sigma = map_sigma(fSigma, ctx.ctm());
SkASSERT(SkScalarIsFinite(sigma.x()) && sigma.x() >= 0.f && sigma.x() <= kMaxSigma &&
SkScalarIsFinite(sigma.y()) && sigma.y() >= 0.f && sigma.y() <= kMaxSigma);
sk_sp<SkSpecialImage> result;
#if SK_SUPPORT_GPU
if (ctx.gpuBacked()) {
// Ensure the input is in the destination's gamut. This saves us from having to do the
// xform during the filter itself.
input = ImageToColorSpace(input.get(), ctx.colorType(), ctx.colorSpace(),
ctx.surfaceProps());
result = this->gpuFilter(ctx, sigma, input, inputBounds, dstBounds, inputOffset,
&resultOffset);
} else
#endif
{
result = cpu_blur(ctx, sigma, input, inputBounds, dstBounds);
}
// Return the resultOffset if the blur succeeded.
if (result != nullptr) {
*offset = resultOffset;
}
return result;
}
#if SK_SUPPORT_GPU
sk_sp<SkSpecialImage> SkBlurImageFilter::gpuFilter(
const Context& ctx, SkVector sigma, const sk_sp<SkSpecialImage> &input, SkIRect inputBounds,
SkIRect dstBounds, SkIPoint inputOffset, SkIPoint* offset) const {
#if SK_GPU_V1
if (SkGpuBlurUtils::IsEffectivelyZeroSigma(sigma.x()) &&
SkGpuBlurUtils::IsEffectivelyZeroSigma(sigma.y())) {
offset->fX = inputBounds.x() + inputOffset.fX;
offset->fY = inputBounds.y() + inputOffset.fY;
return input->makeSubset(inputBounds);
}
auto context = ctx.getContext();
GrSurfaceProxyView inputView = input->view(context);
if (!inputView.proxy()) {
return nullptr;
}
SkASSERT(inputView.asTextureProxy());
// TODO (michaelludwig) - The color space choice is odd, should it just be ctx.refColorSpace()?
dstBounds.offset(input->subset().topLeft());
inputBounds.offset(input->subset().topLeft());
auto sdc = SkGpuBlurUtils::GaussianBlur(
context,
std::move(inputView),
SkColorTypeToGrColorType(input->colorType()),
input->alphaType(),
ctx.colorSpace() ? sk_ref_sp(input->getColorSpace()) : nullptr,
dstBounds,
inputBounds,
sigma.x(),
sigma.y(),
fTileMode);
if (!sdc) {
return nullptr;
}
return SkSpecialImage::MakeDeferredFromGpu(context,
SkIRect::MakeSize(dstBounds.size()),
kNeedNewImageUniqueID_SpecialImage,
sdc->readSurfaceView(),
sdc->colorInfo().colorType(),
sk_ref_sp(input->getColorSpace()),
ctx.surfaceProps());
#else // SK_GPU_V1
return nullptr;
#endif // SK_GPU_V1
}
#endif
SkRect SkBlurImageFilter::computeFastBounds(const SkRect& src) const {
SkRect bounds = this->getInput(0) ? this->getInput(0)->computeFastBounds(src) : src;
bounds.outset(fSigma.width() * 3, fSigma.height() * 3);
return bounds;
}
SkIRect SkBlurImageFilter::onFilterNodeBounds(const SkIRect& src, const SkMatrix& ctm,
MapDirection, const SkIRect* inputRect) const {
SkVector sigma = map_sigma(fSigma, ctm);
return src.makeOutset(SkScalarCeilToInt(sigma.x() * 3), SkScalarCeilToInt(sigma.y() * 3));
}