blob: f71009ec72206d83c175361172c540f46ec970d2 [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/core/SkCanvas.h"
#include "include/core/SkImage.h"
#include "include/core/SkString.h"
#include "include/effects/SkImageFilters.h"
#include "src/core/SkImageFilter_Base.h"
#include "src/core/SkReadBuffer.h"
#include "src/core/SkSamplingPriv.h"
#include "src/core/SkSpecialImage.h"
#include "src/core/SkSpecialSurface.h"
#include "src/core/SkWriteBuffer.h"
namespace {
class SkImageImageFilter final : public SkImageFilter_Base {
public:
SkImageImageFilter(sk_sp<SkImage> image, const SkRect& srcRect, const SkRect& dstRect,
const SkSamplingOptions& sampling)
: INHERITED(nullptr, 0, nullptr)
, fImage(std::move(image))
, fSrcRect(srcRect)
, fDstRect(dstRect)
, fSampling(sampling) {}
SkRect computeFastBounds(const SkRect& src) const override;
protected:
void flatten(SkWriteBuffer&) const override;
sk_sp<SkSpecialImage> onFilterImage(const Context&, SkIPoint* offset) const override;
SkIRect onFilterNodeBounds(const SkIRect&, const SkMatrix& ctm,
MapDirection, const SkIRect* inputRect) const override;
MatrixCapability onGetCTMCapability() const override { return MatrixCapability::kComplex; }
private:
friend void ::SkRegisterImageImageFilterFlattenable();
SK_FLATTENABLE_HOOKS(SkImageImageFilter)
sk_sp<SkImage> fImage;
SkRect fSrcRect, fDstRect;
SkSamplingOptions fSampling;
using INHERITED = SkImageFilter_Base;
};
} // end namespace
sk_sp<SkImageFilter> SkImageFilters::Image(sk_sp<SkImage> image,
const SkRect& srcRect,
const SkRect& dstRect,
const SkSamplingOptions& sampling) {
if (!image || srcRect.width() <= 0.0f || srcRect.height() <= 0.0f) {
return nullptr;
}
return sk_sp<SkImageFilter>(new SkImageImageFilter(
std::move(image), srcRect, dstRect, sampling));
}
void SkRegisterImageImageFilterFlattenable() {
SK_REGISTER_FLATTENABLE(SkImageImageFilter);
// TODO (michaelludwig) - Remove after grace period for SKPs to stop using old name
SkFlattenable::Register("SkImageSourceImpl", SkImageImageFilter::CreateProc);
}
sk_sp<SkFlattenable> SkImageImageFilter::CreateProc(SkReadBuffer& buffer) {
SkSamplingOptions sampling;
if (buffer.isVersionLT(SkPicturePriv::kImageFilterImageSampling_Version)) {
sampling = SkSamplingPriv::FromFQ(buffer.checkFilterQuality(), kLinear_SkMediumAs);
} else {
sampling = buffer.readSampling();
}
SkRect src, dst;
buffer.readRect(&src);
buffer.readRect(&dst);
sk_sp<SkImage> image(buffer.readImage());
if (!image) {
return nullptr;
}
return SkImageFilters::Image(std::move(image), src, dst, sampling);
}
void SkImageImageFilter::flatten(SkWriteBuffer& buffer) const {
SkSamplingPriv::Write(buffer, fSampling);
buffer.writeRect(fSrcRect);
buffer.writeRect(fDstRect);
buffer.writeImage(fImage.get());
}
///////////////////////////////////////////////////////////////////////////////////////////////////
sk_sp<SkSpecialImage> SkImageImageFilter::onFilterImage(const Context& ctx,
SkIPoint* offset) const {
const SkRect dstBounds = ctx.ctm().mapRect(fDstRect);
const SkIRect dstIBounds = dstBounds.roundOut();
// Quick check to see if we can return the image directly, which can be done if the transform
// ends up being an integer translate and sampling would have no effect on the output.
// TODO: This currently means cubic sampling can be skipped, even though it would change results
// for integer translation draws.
// TODO: This is prone to false negatives due to the floating point math; we could probably
// get away with dimensions and translates being epsilon close to integers.
const bool passthroughTransform = ctx.ctm().isScaleTranslate() &&
ctx.ctm().getScaleX() > 0.f &&
ctx.ctm().getScaleY() > 0.f;
const bool passthroughSrcOffsets = SkScalarIsInt(fSrcRect.fLeft) &&
SkScalarIsInt(fSrcRect.fTop);
const bool passthroughDstOffsets = SkScalarIsInt(dstBounds.fLeft) &&
SkScalarIsInt(dstBounds.fTop);
const bool passthroughDims =
SkScalarIsInt(fSrcRect.width()) && fSrcRect.width() == dstBounds.width() &&
SkScalarIsInt(fSrcRect.height()) && fSrcRect.height() == dstBounds.height();
if (passthroughTransform && passthroughSrcOffsets && passthroughDstOffsets && passthroughDims) {
// Can pass through fImage directly, applying the dst's location to 'offset'. If fSrcRect
// extends outside of the image, we adjust dst to match since those areas would have been
// transparent black anyways.
SkIRect srcIBounds = fSrcRect.roundOut();
SkIPoint srcOffset = srcIBounds.topLeft();
if (!srcIBounds.intersect(SkIRect::MakeWH(fImage->width(), fImage->height()))) {
return nullptr;
}
*offset = dstIBounds.topLeft() + srcIBounds.topLeft() - srcOffset;
return SkSpecialImage::MakeFromImage(ctx.getContext(), srcIBounds, fImage,
ctx.surfaceProps());
}
sk_sp<SkSpecialSurface> surf(ctx.makeSurface(dstIBounds.size()));
if (!surf) {
return nullptr;
}
SkCanvas* canvas = surf->getCanvas();
// Subtract off the integer component of the translation (will be applied in offset, below).
canvas->translate(-dstIBounds.fLeft, -dstIBounds.fTop);
canvas->concat(ctx.ctm());
// TODO(skbug.com/5075): Canvases from GPU special surfaces come with unitialized content
canvas->clear(SK_ColorTRANSPARENT);
canvas->drawImageRect(fImage.get(), fSrcRect, fDstRect, fSampling, nullptr,
SkCanvas::kStrict_SrcRectConstraint);
*offset = dstIBounds.topLeft();
return surf->makeImageSnapshot();
}
SkRect SkImageImageFilter::computeFastBounds(const SkRect& src) const {
return fDstRect;
}
SkIRect SkImageImageFilter::onFilterNodeBounds(const SkIRect& src, const SkMatrix& ctm,
MapDirection direction,
const SkIRect* inputRect) const {
if (kReverse_MapDirection == direction) {
return INHERITED::onFilterNodeBounds(src, ctm, direction, inputRect);
}
SkRect dstRect = fDstRect;
ctm.mapRect(&dstRect);
return dstRect.roundOut();
}