blob: e248e6f52c7004e2e8797623efaeff350e36a549 [file] [log] [blame]
/*
* Copyright 2006 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkStrike.h"
#include "SkGraphics.h"
#include "SkMakeUnique.h"
#include "SkMutex.h"
#include "SkOnce.h"
#include "SkPath.h"
#include "SkTemplates.h"
#include "SkTypeface.h"
#include <cctype>
namespace {
size_t compute_path_size(const SkPath& path) {
return sizeof(SkPath) + path.countPoints() * sizeof(SkPoint);
}
} // namespace
SkStrike::SkStrike(
const SkDescriptor& desc,
std::unique_ptr<SkScalerContext> scaler,
const SkFontMetrics& fontMetrics)
: fDesc{desc}
, fScalerContext{std::move(scaler)}
, fFontMetrics{fontMetrics}
, fIsSubpixel{fScalerContext->isSubpixel()}
, fAxisAlignment{fScalerContext->computeAxisAlignmentForHText()}
{
SkASSERT(fScalerContext != nullptr);
fMemoryUsed = sizeof(*this);
}
const SkDescriptor& SkStrike::getDescriptor() const {
return *fDesc.getDesc();
}
#ifdef SK_DEBUG
#define VALIDATE() AutoValidate av(this)
#else
#define VALIDATE()
#endif
unsigned SkStrike::getGlyphCount() const {
return fScalerContext->getGlyphCount();
}
int SkStrike::countCachedGlyphs() const {
return fGlyphMap.count();
}
bool SkStrike::isGlyphCached(SkGlyphID glyphID, SkFixed x, SkFixed y) const {
SkPackedGlyphID packedGlyphID{glyphID, x, y};
return fGlyphMap.find(packedGlyphID) != nullptr;
}
SkGlyph* SkStrike::getRawGlyphByID(SkPackedGlyphID id) {
return lookupByPackedGlyphID(id, kNothing_MetricsType);
}
const SkGlyph& SkStrike::getGlyphIDAdvance(uint16_t glyphID) {
VALIDATE();
SkPackedGlyphID packedGlyphID(glyphID);
return *this->lookupByPackedGlyphID(packedGlyphID, kJustAdvance_MetricsType);
}
const SkGlyph& SkStrike::getGlyphIDMetrics(uint16_t glyphID) {
VALIDATE();
SkPackedGlyphID packedGlyphID(glyphID);
return *this->lookupByPackedGlyphID(packedGlyphID, kFull_MetricsType);
}
const SkGlyph& SkStrike::getGlyphIDMetrics(uint16_t glyphID, SkFixed x, SkFixed y) {
VALIDATE();
SkPackedGlyphID packedGlyphID(glyphID, x, y);
return *this->lookupByPackedGlyphID(packedGlyphID, kFull_MetricsType);
}
void SkStrike::getAdvances(SkSpan<const SkGlyphID> glyphIDs, SkPoint advances[]) {
for (auto glyphID : glyphIDs) {
auto glyph = this->getGlyphIDAdvance(glyphID);
*advances++ = SkPoint::Make(glyph.fAdvanceX, glyph.fAdvanceY);
}
}
SkGlyph* SkStrike::lookupByPackedGlyphID(SkPackedGlyphID packedGlyphID, MetricsType type) {
SkGlyph* glyphPtr = fGlyphMap.findOrNull(packedGlyphID);
if (glyphPtr == nullptr) {
// Glyph is not present in the stirke. Make a new glyph and fill it in.
fMemoryUsed += sizeof(SkGlyph);
glyphPtr = fAlloc.make<SkGlyph>(packedGlyphID);
fGlyphMap.set(glyphPtr);
switch (type) {
// * Nothing - is only used for raw glyphs. It is assumed that the advances, etc. are
// filled in by external code. This is used by the remote glyph cache to fill in glyphs.
case kNothing_MetricsType:
break;
case kJustAdvance_MetricsType:
fScalerContext->getAdvance(glyphPtr);
break;
case kFull_MetricsType:
fScalerContext->getMetrics(glyphPtr);
break;
}
} else {
// Glyph is present in strike. Make sure the glyph has the right data.
if (type == kFull_MetricsType && glyphPtr->isJustAdvance()) {
fScalerContext->getMetrics(glyphPtr);
}
}
return glyphPtr;
}
const void* SkStrike::findImage(const SkGlyph& glyph) {
if (glyph.fWidth > 0 && glyph.fWidth < kMaxGlyphWidth) {
if (nullptr == glyph.fImage) {
SkDEBUGCODE(SkMask::Format oldFormat = (SkMask::Format)glyph.fMaskFormat);
size_t size = const_cast<SkGlyph&>(glyph).allocImage(&fAlloc);
// check that alloc() actually succeeded
if (glyph.fImage) {
fScalerContext->getImage(glyph);
// TODO: the scaler may have changed the maskformat during
// getImage (e.g. from AA or LCD to BW) which means we may have
// overallocated the buffer. Check if the new computedImageSize
// is smaller, and if so, strink the alloc size in fImageAlloc.
fMemoryUsed += size;
}
SkASSERT(oldFormat == glyph.fMaskFormat);
}
}
return glyph.fImage;
}
void SkStrike::initializeImage(const volatile void* data, size_t size, SkGlyph* glyph) {
SkASSERT(!glyph->fImage);
if (glyph->fWidth > 0 && glyph->fWidth < kMaxGlyphWidth) {
size_t allocSize = glyph->allocImage(&fAlloc);
// check that alloc() actually succeeded
if (glyph->fImage) {
SkASSERT(size == allocSize);
memcpy(glyph->fImage, const_cast<const void*>(data), allocSize);
fMemoryUsed += size;
}
}
}
const SkPath* SkStrike::findPath(const SkGlyph& glyph) {
if (!glyph.isEmpty()) {
// If the path already exists, return it.
if (glyph.fPathData != nullptr) {
if (glyph.fPathData->fHasPath) {
return &glyph.fPathData->fPath;
}
return nullptr;
}
const_cast<SkGlyph&>(glyph).addPath(fScalerContext.get(), &fAlloc);
if (glyph.fPathData != nullptr) {
fMemoryUsed += compute_path_size(glyph.fPathData->fPath);
}
return glyph.path();
}
return nullptr;
}
bool SkStrike::initializePath(SkGlyph* glyph, const volatile void* data, size_t size) {
SkASSERT(!glyph->fPathData);
if (glyph->fWidth) {
SkGlyph::PathData* pathData = fAlloc.make<SkGlyph::PathData>();
glyph->fPathData = pathData;
auto path = skstd::make_unique<SkPath>();
if (!pathData->fPath.readFromMemory(const_cast<const void*>(data), size)) {
return false;
}
fMemoryUsed += compute_path_size(glyph->fPathData->fPath);
pathData->fHasPath = true;
}
return true;
}
bool SkStrike::belongsToCache(const SkGlyph* glyph) const {
return glyph && fGlyphMap.findOrNull(glyph->getPackedID()) == glyph;
}
const SkGlyph* SkStrike::getCachedGlyphAnySubPix(SkGlyphID glyphID,
SkPackedGlyphID vetoID) const {
for (SkFixed subY = 0; subY < SK_Fixed1; subY += SK_FixedQuarter) {
for (SkFixed subX = 0; subX < SK_Fixed1; subX += SK_FixedQuarter) {
SkPackedGlyphID packedGlyphID{glyphID, subX, subY};
if (packedGlyphID == vetoID) continue;
if (SkGlyph* glyphPtr = fGlyphMap.findOrNull(packedGlyphID)) {
return glyphPtr;
}
}
}
return nullptr;
}
void SkStrike::initializeGlyphFromFallback(SkGlyph* glyph, const SkGlyph& fallback) {
fMemoryUsed += glyph->copyImageData(fallback, &fAlloc);
}
SkVector SkStrike::rounding() const {
return SkStrikeCommon::PixelRounding(fIsSubpixel, fAxisAlignment);
}
const SkGlyph& SkStrike::getGlyphMetrics(SkGlyphID glyphID, SkPoint position) {
if (!fIsSubpixel) {
return this->getGlyphIDMetrics(glyphID);
} else {
SkIPoint lookupPosition = SkStrikeCommon::SubpixelLookup(fAxisAlignment, position);
return this->getGlyphIDMetrics(glyphID, lookupPosition.x(), lookupPosition.y());
}
}
// N.B. This glyphMetrics call culls all the glyphs which will not display based on a non-finite
// position or that there are no mask pixels.
SkSpan<const SkGlyphPos> SkStrike::prepareForDrawing(const SkGlyphID glyphIDs[],
const SkPoint positions[],
size_t n,
int maxDimension,
SkGlyphPos result[]) {
size_t drawableGlyphCount = 0;
for (size_t i = 0; i < n; i++) {
SkPoint position = positions[i];
if (SkScalarsAreFinite(position.x(), position.y())) {
// This assumes that the strike has no sub-pixel positioning for glyphs that are
// transformed from source space to device space.
const SkGlyph& glyph = this->getGlyphMetrics(glyphIDs[i], position);
if (!glyph.isEmpty()) {
result[drawableGlyphCount++] = {i, &glyph, position};
if (glyph.maxDimension() <= maxDimension) {
// Glyph fits in the atlas, good to go.
this->findImage(glyph);
} else if (glyph.fMaskFormat != SkMask::kARGB32_Format) {
// The out of atlas glyph is not color so we can draw it using paths.
this->findPath(glyph);
} else {
// This will be handled by the fallback strike.
SkASSERT(glyph.maxDimension() > maxDimension
&& glyph.fMaskFormat == SkMask::kARGB32_Format);
}
}
}
}
return SkSpan<const SkGlyphPos>{result, drawableGlyphCount};
}
#include "../pathops/SkPathOpsCubic.h"
#include "../pathops/SkPathOpsQuad.h"
static bool quad_in_bounds(const SkScalar* pts, const SkScalar bounds[2]) {
SkScalar min = SkTMin(SkTMin(pts[0], pts[2]), pts[4]);
if (bounds[1] < min) {
return false;
}
SkScalar max = SkTMax(SkTMax(pts[0], pts[2]), pts[4]);
return bounds[0] < max;
}
static bool cubic_in_bounds(const SkScalar* pts, const SkScalar bounds[2]) {
SkScalar min = SkTMin(SkTMin(SkTMin(pts[0], pts[2]), pts[4]), pts[6]);
if (bounds[1] < min) {
return false;
}
SkScalar max = SkTMax(SkTMax(SkTMax(pts[0], pts[2]), pts[4]), pts[6]);
return bounds[0] < max;
}
void SkStrike::OffsetResults(const SkGlyph::Intercept* intercept, SkScalar scale,
SkScalar xPos, SkScalar* array, int* count) {
if (array) {
array += *count;
for (int index = 0; index < 2; index++) {
*array++ = intercept->fInterval[index] * scale + xPos;
}
}
*count += 2;
}
void SkStrike::AddInterval(SkScalar val, SkGlyph::Intercept* intercept) {
intercept->fInterval[0] = SkTMin(intercept->fInterval[0], val);
intercept->fInterval[1] = SkTMax(intercept->fInterval[1], val);
}
void SkStrike::AddPoints(const SkPoint* pts, int ptCount, const SkScalar bounds[2],
bool yAxis, SkGlyph::Intercept* intercept) {
for (int i = 0; i < ptCount; ++i) {
SkScalar val = *(&pts[i].fY - yAxis);
if (bounds[0] < val && val < bounds[1]) {
AddInterval(*(&pts[i].fX + yAxis), intercept);
}
}
}
void SkStrike::AddLine(const SkPoint pts[2], SkScalar axis, bool yAxis,
SkGlyph::Intercept* intercept) {
SkScalar t = yAxis ? sk_ieee_float_divide(axis - pts[0].fX, pts[1].fX - pts[0].fX)
: sk_ieee_float_divide(axis - pts[0].fY, pts[1].fY - pts[0].fY);
if (0 <= t && t < 1) { // this handles divide by zero above
AddInterval(yAxis ? pts[0].fY + t * (pts[1].fY - pts[0].fY)
: pts[0].fX + t * (pts[1].fX - pts[0].fX), intercept);
}
}
void SkStrike::AddQuad(const SkPoint pts[3], SkScalar axis, bool yAxis,
SkGlyph::Intercept* intercept) {
SkDQuad quad;
quad.set(pts);
double roots[2];
int count = yAxis ? quad.verticalIntersect(axis, roots)
: quad.horizontalIntersect(axis, roots);
while (--count >= 0) {
SkPoint pt = quad.ptAtT(roots[count]).asSkPoint();
AddInterval(*(&pt.fX + yAxis), intercept);
}
}
void SkStrike::AddCubic(const SkPoint pts[4], SkScalar axis, bool yAxis,
SkGlyph::Intercept* intercept) {
SkDCubic cubic;
cubic.set(pts);
double roots[3];
int count = yAxis ? cubic.verticalIntersect(axis, roots)
: cubic.horizontalIntersect(axis, roots);
while (--count >= 0) {
SkPoint pt = cubic.ptAtT(roots[count]).asSkPoint();
AddInterval(*(&pt.fX + yAxis), intercept);
}
}
const SkGlyph::Intercept* SkStrike::MatchBounds(const SkGlyph* glyph,
const SkScalar bounds[2]) {
if (!glyph->fPathData) {
return nullptr;
}
const SkGlyph::Intercept* intercept = glyph->fPathData->fIntercept;
while (intercept) {
if (bounds[0] == intercept->fBounds[0] && bounds[1] == intercept->fBounds[1]) {
return intercept;
}
intercept = intercept->fNext;
}
return nullptr;
}
void SkStrike::findIntercepts(const SkScalar bounds[2], SkScalar scale, SkScalar xPos,
bool yAxis, SkGlyph* glyph, SkScalar* array, int* count) {
const SkGlyph::Intercept* match = MatchBounds(glyph, bounds);
if (match) {
if (match->fInterval[0] < match->fInterval[1]) {
OffsetResults(match, scale, xPos, array, count);
}
return;
}
SkGlyph::Intercept* intercept = fAlloc.make<SkGlyph::Intercept>();
intercept->fNext = glyph->fPathData->fIntercept;
intercept->fBounds[0] = bounds[0];
intercept->fBounds[1] = bounds[1];
intercept->fInterval[0] = SK_ScalarMax;
intercept->fInterval[1] = SK_ScalarMin;
glyph->fPathData->fIntercept = intercept;
const SkPath* path = &(glyph->fPathData->fPath);
const SkRect& pathBounds = path->getBounds();
if (*(&pathBounds.fBottom - yAxis) < bounds[0] || bounds[1] < *(&pathBounds.fTop - yAxis)) {
return;
}
SkPath::Iter iter(*path, false);
SkPoint pts[4];
SkPath::Verb verb;
while (SkPath::kDone_Verb != (verb = iter.next(pts))) {
switch (verb) {
case SkPath::kMove_Verb:
break;
case SkPath::kLine_Verb:
AddLine(pts, bounds[0], yAxis, intercept);
AddLine(pts, bounds[1], yAxis, intercept);
AddPoints(pts, 2, bounds, yAxis, intercept);
break;
case SkPath::kQuad_Verb:
if (!quad_in_bounds(&pts[0].fY - yAxis, bounds)) {
break;
}
AddQuad(pts, bounds[0], yAxis, intercept);
AddQuad(pts, bounds[1], yAxis, intercept);
AddPoints(pts, 3, bounds, yAxis, intercept);
break;
case SkPath::kConic_Verb:
SkASSERT(0); // no support for text composed of conics
break;
case SkPath::kCubic_Verb:
if (!cubic_in_bounds(&pts[0].fY - yAxis, bounds)) {
break;
}
AddCubic(pts, bounds[0], yAxis, intercept);
AddCubic(pts, bounds[1], yAxis, intercept);
AddPoints(pts, 4, bounds, yAxis, intercept);
break;
case SkPath::kClose_Verb:
break;
default:
SkASSERT(0);
break;
}
}
if (intercept->fInterval[0] >= intercept->fInterval[1]) {
intercept->fInterval[0] = SK_ScalarMax;
intercept->fInterval[1] = SK_ScalarMin;
return;
}
OffsetResults(intercept, scale, xPos, array, count);
}
void SkStrike::dump() const {
const SkTypeface* face = fScalerContext->getTypeface();
const SkScalerContextRec& rec = fScalerContext->getRec();
SkMatrix matrix;
rec.getSingleMatrix(&matrix);
matrix.preScale(SkScalarInvert(rec.fTextSize), SkScalarInvert(rec.fTextSize));
SkString name;
face->getFamilyName(&name);
SkString msg;
SkFontStyle style = face->fontStyle();
msg.printf("cache typeface:%x %25s:(%d,%d,%d)\n %s glyphs:%3d",
face->uniqueID(), name.c_str(), style.weight(), style.width(), style.slant(),
rec.dump().c_str(), fGlyphMap.count());
SkDebugf("%s\n", msg.c_str());
}
void SkStrike::generatePath(const SkGlyph& glyph) {
if (!glyph.isEmpty()) { this->findPath(glyph); }
}
void SkStrike::onAboutToExitScope() { }
#ifdef SK_DEBUG
void SkStrike::forceValidate() const {
size_t memoryUsed = sizeof(*this);
fGlyphMap.foreach ([&memoryUsed](const SkGlyph* glyphPtr) {
memoryUsed += sizeof(SkGlyph);
if (glyphPtr->fImage) {
memoryUsed += glyphPtr->computeImageSize();
}
if (glyphPtr->fPathData) {
memoryUsed += compute_path_size(glyphPtr->fPathData->fPath);
}
});
SkASSERT(fMemoryUsed == memoryUsed);
}
void SkStrike::validate() const {
#ifdef SK_DEBUG_GLYPH_CACHE
forceValidate();
#endif
}
#endif // SK_DEBUG