blob: 2473b4970a448837f8b02909612bb90d2e4fdbd8 [file] [log] [blame]
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/gl/GrGLGpu.h"
#include "include/core/SkPixmap.h"
#include "include/core/SkTypes.h"
#include "include/gpu/GrBackendSemaphore.h"
#include "include/gpu/GrBackendSurface.h"
#include "include/gpu/GrDirectContext.h"
#include "include/gpu/GrTypes.h"
#include "include/private/SkHalf.h"
#include "include/private/SkTemplates.h"
#include "include/private/SkTo.h"
#include "src/core/SkAutoMalloc.h"
#include "src/core/SkCompressedDataUtils.h"
#include "src/core/SkMipmap.h"
#include "src/core/SkTraceEvent.h"
#include "src/gpu/GrBackendUtils.h"
#include "src/gpu/GrCpuBuffer.h"
#include "src/gpu/GrDataUtils.h"
#include "src/gpu/GrDirectContextPriv.h"
#include "src/gpu/GrGpuResourcePriv.h"
#include "src/gpu/GrPipeline.h"
#include "src/gpu/GrProgramInfo.h"
#include "src/gpu/GrRenderTarget.h"
#include "src/gpu/GrShaderCaps.h"
#include "src/gpu/GrSurfaceProxyPriv.h"
#include "src/gpu/GrTexture.h"
#include "src/gpu/gl/GrGLAttachment.h"
#include "src/gpu/gl/GrGLBuffer.h"
#include "src/gpu/gl/GrGLOpsRenderPass.h"
#include "src/gpu/gl/GrGLSemaphore.h"
#include "src/gpu/gl/GrGLTextureRenderTarget.h"
#include "src/gpu/gl/builders/GrGLShaderStringBuilder.h"
#include "src/sksl/SkSLCompiler.h"
#include <cmath>
#include <memory>
#define GL_CALL(X) GR_GL_CALL(this->glInterface(), X)
#define GL_CALL_RET(RET, X) GR_GL_CALL_RET(this->glInterface(), RET, X)
#define GL_ALLOC_CALL(call) \
[&] { \
if (this->glCaps().skipErrorChecks()) { \
GR_GL_CALL(this->glInterface(), call); \
return static_cast<GrGLenum>(GR_GL_NO_ERROR); \
} else { \
this->clearErrorsAndCheckForOOM(); \
GR_GL_CALL_NOERRCHECK(this->glInterface(), call); \
return this->getErrorAndCheckForOOM(); \
} \
}()
//#define USE_NSIGHT
///////////////////////////////////////////////////////////////////////////////
static const GrGLenum gXfermodeEquation2Blend[] = {
// Basic OpenGL blend equations.
GR_GL_FUNC_ADD,
GR_GL_FUNC_SUBTRACT,
GR_GL_FUNC_REVERSE_SUBTRACT,
// GL_KHR_blend_equation_advanced.
GR_GL_SCREEN,
GR_GL_OVERLAY,
GR_GL_DARKEN,
GR_GL_LIGHTEN,
GR_GL_COLORDODGE,
GR_GL_COLORBURN,
GR_GL_HARDLIGHT,
GR_GL_SOFTLIGHT,
GR_GL_DIFFERENCE,
GR_GL_EXCLUSION,
GR_GL_MULTIPLY,
GR_GL_HSL_HUE,
GR_GL_HSL_SATURATION,
GR_GL_HSL_COLOR,
GR_GL_HSL_LUMINOSITY,
// Illegal... needs to map to something.
GR_GL_FUNC_ADD,
};
static_assert(0 == kAdd_GrBlendEquation);
static_assert(1 == kSubtract_GrBlendEquation);
static_assert(2 == kReverseSubtract_GrBlendEquation);
static_assert(3 == kScreen_GrBlendEquation);
static_assert(4 == kOverlay_GrBlendEquation);
static_assert(5 == kDarken_GrBlendEquation);
static_assert(6 == kLighten_GrBlendEquation);
static_assert(7 == kColorDodge_GrBlendEquation);
static_assert(8 == kColorBurn_GrBlendEquation);
static_assert(9 == kHardLight_GrBlendEquation);
static_assert(10 == kSoftLight_GrBlendEquation);
static_assert(11 == kDifference_GrBlendEquation);
static_assert(12 == kExclusion_GrBlendEquation);
static_assert(13 == kMultiply_GrBlendEquation);
static_assert(14 == kHSLHue_GrBlendEquation);
static_assert(15 == kHSLSaturation_GrBlendEquation);
static_assert(16 == kHSLColor_GrBlendEquation);
static_assert(17 == kHSLLuminosity_GrBlendEquation);
static_assert(SK_ARRAY_COUNT(gXfermodeEquation2Blend) == kGrBlendEquationCnt);
static const GrGLenum gXfermodeCoeff2Blend[] = {
GR_GL_ZERO,
GR_GL_ONE,
GR_GL_SRC_COLOR,
GR_GL_ONE_MINUS_SRC_COLOR,
GR_GL_DST_COLOR,
GR_GL_ONE_MINUS_DST_COLOR,
GR_GL_SRC_ALPHA,
GR_GL_ONE_MINUS_SRC_ALPHA,
GR_GL_DST_ALPHA,
GR_GL_ONE_MINUS_DST_ALPHA,
GR_GL_CONSTANT_COLOR,
GR_GL_ONE_MINUS_CONSTANT_COLOR,
// extended blend coeffs
GR_GL_SRC1_COLOR,
GR_GL_ONE_MINUS_SRC1_COLOR,
GR_GL_SRC1_ALPHA,
GR_GL_ONE_MINUS_SRC1_ALPHA,
// Illegal... needs to map to something.
GR_GL_ZERO,
};
//////////////////////////////////////////////////////////////////////////////
static int gl_target_to_binding_index(GrGLenum target) {
switch (target) {
case GR_GL_TEXTURE_2D:
return 0;
case GR_GL_TEXTURE_RECTANGLE:
return 1;
case GR_GL_TEXTURE_EXTERNAL:
return 2;
}
SK_ABORT("Unexpected GL texture target.");
}
GrGpuResource::UniqueID GrGLGpu::TextureUnitBindings::boundID(GrGLenum target) const {
return fTargetBindings[gl_target_to_binding_index(target)].fBoundResourceID;
}
bool GrGLGpu::TextureUnitBindings::hasBeenModified(GrGLenum target) const {
return fTargetBindings[gl_target_to_binding_index(target)].fHasBeenModified;
}
void GrGLGpu::TextureUnitBindings::setBoundID(GrGLenum target, GrGpuResource::UniqueID resourceID) {
int targetIndex = gl_target_to_binding_index(target);
fTargetBindings[targetIndex].fBoundResourceID = resourceID;
fTargetBindings[targetIndex].fHasBeenModified = true;
}
void GrGLGpu::TextureUnitBindings::invalidateForScratchUse(GrGLenum target) {
this->setBoundID(target, GrGpuResource::UniqueID());
}
void GrGLGpu::TextureUnitBindings::invalidateAllTargets(bool markUnmodified) {
for (auto& targetBinding : fTargetBindings) {
targetBinding.fBoundResourceID.makeInvalid();
if (markUnmodified) {
targetBinding.fHasBeenModified = false;
}
}
}
//////////////////////////////////////////////////////////////////////////////
static GrGLenum filter_to_gl_mag_filter(GrSamplerState::Filter filter) {
switch (filter) {
case GrSamplerState::Filter::kNearest: return GR_GL_NEAREST;
case GrSamplerState::Filter::kLinear: return GR_GL_LINEAR;
}
SkUNREACHABLE;
}
static GrGLenum filter_to_gl_min_filter(GrSamplerState::Filter filter,
GrSamplerState::MipmapMode mm) {
switch (mm) {
case GrSamplerState::MipmapMode::kNone:
return filter_to_gl_mag_filter(filter);
case GrSamplerState::MipmapMode::kNearest:
switch (filter) {
case GrSamplerState::Filter::kNearest: return GR_GL_NEAREST_MIPMAP_NEAREST;
case GrSamplerState::Filter::kLinear: return GR_GL_LINEAR_MIPMAP_NEAREST;
}
SkUNREACHABLE;
case GrSamplerState::MipmapMode::kLinear:
switch (filter) {
case GrSamplerState::Filter::kNearest: return GR_GL_NEAREST_MIPMAP_LINEAR;
case GrSamplerState::Filter::kLinear: return GR_GL_LINEAR_MIPMAP_LINEAR;
}
SkUNREACHABLE;
}
SkUNREACHABLE;
}
static inline GrGLenum wrap_mode_to_gl_wrap(GrSamplerState::WrapMode wrapMode,
const GrCaps& caps) {
switch (wrapMode) {
case GrSamplerState::WrapMode::kClamp: return GR_GL_CLAMP_TO_EDGE;
case GrSamplerState::WrapMode::kRepeat: return GR_GL_REPEAT;
case GrSamplerState::WrapMode::kMirrorRepeat: return GR_GL_MIRRORED_REPEAT;
case GrSamplerState::WrapMode::kClampToBorder:
// May not be supported but should have been caught earlier
SkASSERT(caps.clampToBorderSupport());
return GR_GL_CLAMP_TO_BORDER;
}
SkUNREACHABLE;
}
///////////////////////////////////////////////////////////////////////////////
class GrGLGpu::SamplerObjectCache {
public:
SamplerObjectCache(GrGLGpu* gpu) : fGpu(gpu) {
fNumTextureUnits = fGpu->glCaps().shaderCaps()->maxFragmentSamplers();
fTextureUnitStates = std::make_unique<UnitState[]>(fNumTextureUnits);
std::fill_n(fSamplers, kNumSamplers, 0);
}
~SamplerObjectCache() {
if (!fNumTextureUnits) {
// We've already been abandoned.
return;
}
for (GrGLuint sampler : fSamplers) {
// The spec states that "zero" values should be silently ignored, however they still
// trigger GL errors on some NVIDIA platforms.
if (sampler) {
GR_GL_CALL(fGpu->glInterface(), DeleteSamplers(1, &sampler));
}
}
}
void bindSampler(int unitIdx, GrSamplerState state) {
int index = state.asIndex();
if (!fSamplers[index]) {
GrGLuint s;
GR_GL_CALL(fGpu->glInterface(), GenSamplers(1, &s));
if (!s) {
return;
}
fSamplers[index] = s;
GrGLenum minFilter = filter_to_gl_min_filter(state.filter(), state.mipmapMode());
GrGLenum magFilter = filter_to_gl_mag_filter(state.filter());
GrGLenum wrapX = wrap_mode_to_gl_wrap(state.wrapModeX(), fGpu->glCaps());
GrGLenum wrapY = wrap_mode_to_gl_wrap(state.wrapModeY(), fGpu->glCaps());
GR_GL_CALL(fGpu->glInterface(),
SamplerParameteri(s, GR_GL_TEXTURE_MIN_FILTER, minFilter));
GR_GL_CALL(fGpu->glInterface(),
SamplerParameteri(s, GR_GL_TEXTURE_MAG_FILTER, magFilter));
GR_GL_CALL(fGpu->glInterface(), SamplerParameteri(s, GR_GL_TEXTURE_WRAP_S, wrapX));
GR_GL_CALL(fGpu->glInterface(), SamplerParameteri(s, GR_GL_TEXTURE_WRAP_T, wrapY));
}
if (!fTextureUnitStates[unitIdx].fKnown ||
fTextureUnitStates[unitIdx].fSamplerIDIfKnown != fSamplers[index]) {
GR_GL_CALL(fGpu->glInterface(), BindSampler(unitIdx, fSamplers[index]));
fTextureUnitStates[unitIdx].fSamplerIDIfKnown = fSamplers[index];
fTextureUnitStates[unitIdx].fKnown = true;
}
}
void unbindSampler(int unitIdx) {
if (!fTextureUnitStates[unitIdx].fKnown ||
fTextureUnitStates[unitIdx].fSamplerIDIfKnown != 0) {
GR_GL_CALL(fGpu->glInterface(), BindSampler(unitIdx, 0));
fTextureUnitStates[unitIdx].fSamplerIDIfKnown = 0;
fTextureUnitStates[unitIdx].fKnown = true;
}
}
void invalidateBindings() {
std::fill_n(fTextureUnitStates.get(), fNumTextureUnits, UnitState{});
}
void abandon() {
fTextureUnitStates.reset();
fNumTextureUnits = 0;
}
void release() {
if (!fNumTextureUnits) {
// We've already been abandoned.
return;
}
GR_GL_CALL(fGpu->glInterface(), DeleteSamplers(kNumSamplers, fSamplers));
std::fill_n(fSamplers, kNumSamplers, 0);
// Deleting a bound sampler implicitly binds sampler 0. We just invalidate all of our
// knowledge.
std::fill_n(fTextureUnitStates.get(), fNumTextureUnits, UnitState{});
}
private:
static constexpr int kNumSamplers = GrSamplerState::kNumUniqueSamplers;
struct UnitState {
bool fKnown = false;
GrGLuint fSamplerIDIfKnown = 0;
};
GrGLGpu* fGpu;
std::unique_ptr<UnitState[]> fTextureUnitStates;
GrGLuint fSamplers[kNumSamplers];
int fNumTextureUnits;
};
///////////////////////////////////////////////////////////////////////////////
sk_sp<GrGpu> GrGLGpu::Make(sk_sp<const GrGLInterface> interface, const GrContextOptions& options,
GrDirectContext* direct) {
if (!interface) {
interface = GrGLMakeNativeInterface();
// For clients that have written their own GrGLCreateNativeInterface and haven't yet updated
// to GrGLMakeNativeInterface.
if (!interface) {
interface = sk_ref_sp(GrGLCreateNativeInterface());
}
if (!interface) {
return nullptr;
}
}
#ifdef USE_NSIGHT
const_cast<GrContextOptions&>(options).fSuppressPathRendering = true;
#endif
auto glContext = GrGLContext::Make(std::move(interface), options);
if (!glContext) {
return nullptr;
}
return sk_sp<GrGpu>(new GrGLGpu(std::move(glContext), direct));
}
GrGLGpu::GrGLGpu(std::unique_ptr<GrGLContext> ctx, GrDirectContext* dContext)
: GrGpu(dContext)
, fGLContext(std::move(ctx))
, fProgramCache(new ProgramCache(dContext->priv().options().fRuntimeProgramCacheSize))
, fHWProgramID(0)
, fTempSrcFBOID(0)
, fTempDstFBOID(0)
, fStencilClearFBOID(0)
, fFinishCallbacks(this) {
SkASSERT(fGLContext);
// Clear errors so we don't get confused whether we caused an error.
this->clearErrorsAndCheckForOOM();
// Toss out any pre-existing OOM that was hanging around before we got started.
this->checkAndResetOOMed();
this->initCapsAndCompiler(sk_ref_sp(fGLContext->caps()));
fHWTextureUnitBindings.reset(this->numTextureUnits());
this->hwBufferState(GrGpuBufferType::kVertex)->fGLTarget = GR_GL_ARRAY_BUFFER;
this->hwBufferState(GrGpuBufferType::kIndex)->fGLTarget = GR_GL_ELEMENT_ARRAY_BUFFER;
this->hwBufferState(GrGpuBufferType::kDrawIndirect)->fGLTarget = GR_GL_DRAW_INDIRECT_BUFFER;
if (GrGLCaps::TransferBufferType::kChromium == this->glCaps().transferBufferType()) {
this->hwBufferState(GrGpuBufferType::kXferCpuToGpu)->fGLTarget =
GR_GL_PIXEL_UNPACK_TRANSFER_BUFFER_CHROMIUM;
this->hwBufferState(GrGpuBufferType::kXferGpuToCpu)->fGLTarget =
GR_GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM;
} else {
this->hwBufferState(GrGpuBufferType::kXferCpuToGpu)->fGLTarget = GR_GL_PIXEL_UNPACK_BUFFER;
this->hwBufferState(GrGpuBufferType::kXferGpuToCpu)->fGLTarget = GR_GL_PIXEL_PACK_BUFFER;
}
for (int i = 0; i < kGrGpuBufferTypeCount; ++i) {
fHWBufferState[i].invalidate();
}
static_assert(kGrGpuBufferTypeCount == SK_ARRAY_COUNT(fHWBufferState));
if (this->glCaps().useSamplerObjects()) {
fSamplerObjectCache = std::make_unique<SamplerObjectCache>(this);
}
}
GrGLGpu::~GrGLGpu() {
// Ensure any GrGpuResource objects get deleted first, since they may require a working GrGLGpu
// to release the resources held by the objects themselves.
fCopyProgramArrayBuffer.reset();
fMipmapProgramArrayBuffer.reset();
if (fProgramCache) {
fProgramCache->reset();
}
fHWProgram.reset();
if (fHWProgramID) {
// detach the current program so there is no confusion on OpenGL's part
// that we want it to be deleted
GL_CALL(UseProgram(0));
}
if (fTempSrcFBOID) {
this->deleteFramebuffer(fTempSrcFBOID);
}
if (fTempDstFBOID) {
this->deleteFramebuffer(fTempDstFBOID);
}
if (fStencilClearFBOID) {
this->deleteFramebuffer(fStencilClearFBOID);
}
for (size_t i = 0; i < SK_ARRAY_COUNT(fCopyPrograms); ++i) {
if (0 != fCopyPrograms[i].fProgram) {
GL_CALL(DeleteProgram(fCopyPrograms[i].fProgram));
}
}
for (size_t i = 0; i < SK_ARRAY_COUNT(fMipmapPrograms); ++i) {
if (0 != fMipmapPrograms[i].fProgram) {
GL_CALL(DeleteProgram(fMipmapPrograms[i].fProgram));
}
}
fSamplerObjectCache.reset();
fFinishCallbacks.callAll(true);
}
void GrGLGpu::disconnect(DisconnectType type) {
INHERITED::disconnect(type);
if (DisconnectType::kCleanup == type) {
if (fHWProgramID) {
GL_CALL(UseProgram(0));
}
if (fTempSrcFBOID) {
this->deleteFramebuffer(fTempSrcFBOID);
}
if (fTempDstFBOID) {
this->deleteFramebuffer(fTempDstFBOID);
}
if (fStencilClearFBOID) {
this->deleteFramebuffer(fStencilClearFBOID);
}
for (size_t i = 0; i < SK_ARRAY_COUNT(fCopyPrograms); ++i) {
if (fCopyPrograms[i].fProgram) {
GL_CALL(DeleteProgram(fCopyPrograms[i].fProgram));
}
}
for (size_t i = 0; i < SK_ARRAY_COUNT(fMipmapPrograms); ++i) {
if (fMipmapPrograms[i].fProgram) {
GL_CALL(DeleteProgram(fMipmapPrograms[i].fProgram));
}
}
if (fSamplerObjectCache) {
fSamplerObjectCache->release();
}
} else {
if (fProgramCache) {
fProgramCache->abandon();
}
if (fSamplerObjectCache) {
fSamplerObjectCache->abandon();
}
}
fHWProgram.reset();
fProgramCache->reset();
fProgramCache.reset();
fHWProgramID = 0;
fTempSrcFBOID = 0;
fTempDstFBOID = 0;
fStencilClearFBOID = 0;
fCopyProgramArrayBuffer.reset();
for (size_t i = 0; i < SK_ARRAY_COUNT(fCopyPrograms); ++i) {
fCopyPrograms[i].fProgram = 0;
}
fMipmapProgramArrayBuffer.reset();
for (size_t i = 0; i < SK_ARRAY_COUNT(fMipmapPrograms); ++i) {
fMipmapPrograms[i].fProgram = 0;
}
fFinishCallbacks.callAll(/* doDelete */ DisconnectType::kCleanup == type);
}
GrThreadSafePipelineBuilder* GrGLGpu::pipelineBuilder() {
return fProgramCache.get();
}
sk_sp<GrThreadSafePipelineBuilder> GrGLGpu::refPipelineBuilder() {
return fProgramCache;
}
///////////////////////////////////////////////////////////////////////////////
void GrGLGpu::onResetContext(uint32_t resetBits) {
if (resetBits & kMisc_GrGLBackendState) {
// we don't use the zb at all
GL_CALL(Disable(GR_GL_DEPTH_TEST));
GL_CALL(DepthMask(GR_GL_FALSE));
// We don't use face culling.
GL_CALL(Disable(GR_GL_CULL_FACE));
// We do use separate stencil. Our algorithms don't care which face is front vs. back so
// just set this to the default for self-consistency.
GL_CALL(FrontFace(GR_GL_CCW));
this->hwBufferState(GrGpuBufferType::kXferCpuToGpu)->invalidate();
this->hwBufferState(GrGpuBufferType::kXferGpuToCpu)->invalidate();
if (GR_IS_GR_GL(this->glStandard())) {
#ifndef USE_NSIGHT
// Desktop-only state that we never change
if (!this->glCaps().isCoreProfile()) {
GL_CALL(Disable(GR_GL_POINT_SMOOTH));
GL_CALL(Disable(GR_GL_LINE_SMOOTH));
GL_CALL(Disable(GR_GL_POLYGON_SMOOTH));
GL_CALL(Disable(GR_GL_POLYGON_STIPPLE));
GL_CALL(Disable(GR_GL_COLOR_LOGIC_OP));
GL_CALL(Disable(GR_GL_INDEX_LOGIC_OP));
}
// The windows NVIDIA driver has GL_ARB_imaging in the extension string when using a
// core profile. This seems like a bug since the core spec removes any mention of
// GL_ARB_imaging.
if (this->glCaps().imagingSupport() && !this->glCaps().isCoreProfile()) {
GL_CALL(Disable(GR_GL_COLOR_TABLE));
}
GL_CALL(Disable(GR_GL_POLYGON_OFFSET_FILL));
fHWWireframeEnabled = kUnknown_TriState;
#endif
// Since ES doesn't support glPointSize at all we always use the VS to
// set the point size
GL_CALL(Enable(GR_GL_VERTEX_PROGRAM_POINT_SIZE));
}
if (GR_IS_GR_GL_ES(this->glStandard()) &&
this->glCaps().fbFetchRequiresEnablePerSample()) {
// The arm extension requires specifically enabling MSAA fetching per sample.
// On some devices this may have a perf hit. Also multiple render targets are disabled
GL_CALL(Enable(GR_GL_FETCH_PER_SAMPLE));
}
fHWWriteToColor = kUnknown_TriState;
// we only ever use lines in hairline mode
GL_CALL(LineWidth(1));
GL_CALL(Disable(GR_GL_DITHER));
fHWClearColor[0] = fHWClearColor[1] = fHWClearColor[2] = fHWClearColor[3] = SK_FloatNaN;
}
if (resetBits & kMSAAEnable_GrGLBackendState) {
if (this->caps()->multisampleDisableSupport()) {
fMSAAEnabled = kUnknown_TriState;
} else if (this->glCaps().clientCanDisableMultisample()) {
// Restore GL_MULTISAMPLE to its initial state. It being enabled has no effect on draws
// to non-MSAA targets.
GL_CALL(Enable(GR_GL_MULTISAMPLE));
}
fHWConservativeRasterEnabled = kUnknown_TriState;
}
fHWActiveTextureUnitIdx = -1; // invalid
fLastPrimitiveType = static_cast<GrPrimitiveType>(-1);
if (resetBits & kTextureBinding_GrGLBackendState) {
for (int s = 0; s < this->numTextureUnits(); ++s) {
fHWTextureUnitBindings[s].invalidateAllTargets(false);
}
if (fSamplerObjectCache) {
fSamplerObjectCache->invalidateBindings();
}
}
if (resetBits & kBlend_GrGLBackendState) {
fHWBlendState.invalidate();
}
if (resetBits & kView_GrGLBackendState) {
fHWScissorSettings.invalidate();
fHWWindowRectsState.invalidate();
fHWViewport.invalidate();
}
if (resetBits & kStencil_GrGLBackendState) {
fHWStencilSettings.invalidate();
fHWStencilTestEnabled = kUnknown_TriState;
}
// Vertex
if (resetBits & kVertex_GrGLBackendState) {
fHWVertexArrayState.invalidate();
this->hwBufferState(GrGpuBufferType::kVertex)->invalidate();
this->hwBufferState(GrGpuBufferType::kIndex)->invalidate();
this->hwBufferState(GrGpuBufferType::kDrawIndirect)->invalidate();
fHWPatchVertexCount = 0;
}
if (resetBits & kRenderTarget_GrGLBackendState) {
fHWBoundRenderTargetUniqueID.makeInvalid();
fHWSRGBFramebuffer = kUnknown_TriState;
fBoundDrawFramebuffer = 0;
}
// we assume these values
if (resetBits & kPixelStore_GrGLBackendState) {
if (this->caps()->writePixelsRowBytesSupport() ||
this->caps()->transferPixelsToRowBytesSupport()) {
GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, 0));
}
if (this->glCaps().readPixelsRowBytesSupport()) {
GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH, 0));
}
if (this->glCaps().packFlipYSupport()) {
GL_CALL(PixelStorei(GR_GL_PACK_REVERSE_ROW_ORDER, GR_GL_FALSE));
}
}
if (resetBits & kProgram_GrGLBackendState) {
fHWProgramID = 0;
fHWProgram.reset();
}
++fResetTimestampForTextureParameters;
}
static bool check_backend_texture(const GrBackendTexture& backendTex,
const GrGLCaps& caps,
GrGLTexture::Desc* desc,
bool skipRectTexSupportCheck = false) {
GrGLTextureInfo info;
if (!backendTex.getGLTextureInfo(&info) || !info.fID || !info.fFormat) {
return false;
}
desc->fSize = {backendTex.width(), backendTex.height()};
desc->fTarget = info.fTarget;
desc->fID = info.fID;
desc->fFormat = GrGLFormatFromGLEnum(info.fFormat);
if (desc->fFormat == GrGLFormat::kUnknown) {
return false;
}
if (GR_GL_TEXTURE_EXTERNAL == desc->fTarget) {
if (!caps.shaderCaps()->externalTextureSupport()) {
return false;
}
} else if (GR_GL_TEXTURE_RECTANGLE == desc->fTarget) {
if (!caps.rectangleTextureSupport() && !skipRectTexSupportCheck) {
return false;
}
} else if (GR_GL_TEXTURE_2D != desc->fTarget) {
return false;
}
if (backendTex.isProtected()) {
// Not supported in GL backend at this time.
return false;
}
return true;
}
sk_sp<GrTexture> GrGLGpu::onWrapBackendTexture(const GrBackendTexture& backendTex,
GrWrapOwnership ownership,
GrWrapCacheable cacheable,
GrIOType ioType) {
GrGLTexture::Desc desc;
if (!check_backend_texture(backendTex, this->glCaps(), &desc)) {
return nullptr;
}
if (kBorrow_GrWrapOwnership == ownership) {
desc.fOwnership = GrBackendObjectOwnership::kBorrowed;
} else {
desc.fOwnership = GrBackendObjectOwnership::kOwned;
}
GrMipmapStatus mipmapStatus = backendTex.hasMipmaps() ? GrMipmapStatus::kValid
: GrMipmapStatus::kNotAllocated;
auto texture = GrGLTexture::MakeWrapped(this, mipmapStatus, desc,
backendTex.getGLTextureParams(), cacheable, ioType);
if (this->glCaps().isFormatRenderable(backendTex.getBackendFormat(), 1)) {
// Pessimistically assume this external texture may have been bound to a FBO.
texture->baseLevelWasBoundToFBO();
}
return std::move(texture);
}
static bool check_compressed_backend_texture(const GrBackendTexture& backendTex,
const GrGLCaps& caps, GrGLTexture::Desc* desc,
bool skipRectTexSupportCheck = false) {
GrGLTextureInfo info;
if (!backendTex.getGLTextureInfo(&info) || !info.fID || !info.fFormat) {
return false;
}
desc->fSize = {backendTex.width(), backendTex.height()};
desc->fTarget = info.fTarget;
desc->fID = info.fID;
desc->fFormat = GrGLFormatFromGLEnum(info.fFormat);
if (desc->fFormat == GrGLFormat::kUnknown) {
return false;
}
if (GR_GL_TEXTURE_2D != desc->fTarget) {
return false;
}
if (backendTex.isProtected()) {
// Not supported in GL backend at this time.
return false;
}
return true;
}
sk_sp<GrTexture> GrGLGpu::onWrapCompressedBackendTexture(const GrBackendTexture& backendTex,
GrWrapOwnership ownership,
GrWrapCacheable cacheable) {
GrGLTexture::Desc desc;
if (!check_compressed_backend_texture(backendTex, this->glCaps(), &desc)) {
return nullptr;
}
if (kBorrow_GrWrapOwnership == ownership) {
desc.fOwnership = GrBackendObjectOwnership::kBorrowed;
} else {
desc.fOwnership = GrBackendObjectOwnership::kOwned;
}
GrMipmapStatus mipmapStatus = backendTex.hasMipmaps() ? GrMipmapStatus::kValid
: GrMipmapStatus::kNotAllocated;
auto texture = GrGLTexture::MakeWrapped(this, mipmapStatus, desc,
backendTex.getGLTextureParams(), cacheable,
kRead_GrIOType);
return std::move(texture);
}
sk_sp<GrTexture> GrGLGpu::onWrapRenderableBackendTexture(const GrBackendTexture& backendTex,
int sampleCnt,
GrWrapOwnership ownership,
GrWrapCacheable cacheable) {
const GrGLCaps& caps = this->glCaps();
GrGLTexture::Desc desc;
if (!check_backend_texture(backendTex, this->glCaps(), &desc)) {
return nullptr;
}
SkASSERT(caps.isFormatRenderable(desc.fFormat, sampleCnt));
SkASSERT(caps.isFormatTexturable(desc.fFormat));
// We don't support rendering to a EXTERNAL texture.
if (GR_GL_TEXTURE_EXTERNAL == desc.fTarget) {
return nullptr;
}
if (kBorrow_GrWrapOwnership == ownership) {
desc.fOwnership = GrBackendObjectOwnership::kBorrowed;
} else {
desc.fOwnership = GrBackendObjectOwnership::kOwned;
}
sampleCnt = caps.getRenderTargetSampleCount(sampleCnt, desc.fFormat);
SkASSERT(sampleCnt);
GrGLRenderTarget::IDs rtIDs;
if (!this->createRenderTargetObjects(desc, sampleCnt, &rtIDs)) {
return nullptr;
}
GrMipmapStatus mipmapStatus = backendTex.hasMipmaps() ? GrMipmapStatus::kDirty
: GrMipmapStatus::kNotAllocated;
sk_sp<GrGLTextureRenderTarget> texRT(GrGLTextureRenderTarget::MakeWrapped(
this, sampleCnt, desc, backendTex.getGLTextureParams(), rtIDs, cacheable,
mipmapStatus));
texRT->baseLevelWasBoundToFBO();
return std::move(texRT);
}
sk_sp<GrRenderTarget> GrGLGpu::onWrapBackendRenderTarget(const GrBackendRenderTarget& backendRT) {
GrGLFramebufferInfo info;
if (!backendRT.getGLFramebufferInfo(&info)) {
return nullptr;
}
if (backendRT.isProtected()) {
// Not supported in GL at this time.
return nullptr;
}
const auto format = backendRT.getBackendFormat().asGLFormat();
if (!this->glCaps().isFormatRenderable(format, backendRT.sampleCnt())) {
return nullptr;
}
int sampleCount = this->glCaps().getRenderTargetSampleCount(backendRT.sampleCnt(), format);
GrGLRenderTarget::IDs rtIDs;
if (sampleCount <= 1) {
rtIDs.fSingleSampleFBOID = info.fFBOID;
rtIDs.fMultisampleFBOID = GrGLRenderTarget::kUnresolvableFBOID;
} else {
rtIDs.fSingleSampleFBOID = GrGLRenderTarget::kUnresolvableFBOID;
rtIDs.fMultisampleFBOID = info.fFBOID;
}
rtIDs.fMSColorRenderbufferID = 0;
rtIDs.fRTFBOOwnership = GrBackendObjectOwnership::kBorrowed;
rtIDs.fTotalMemorySamplesPerPixel = sampleCount;
return GrGLRenderTarget::MakeWrapped(this, backendRT.dimensions(), format, sampleCount, rtIDs,
backendRT.stencilBits());
}
static bool check_write_and_transfer_input(GrGLTexture* glTex) {
if (!glTex) {
return false;
}
// Write or transfer of pixels is not implemented for TEXTURE_EXTERNAL textures
if (GR_GL_TEXTURE_EXTERNAL == glTex->target()) {
return false;
}
return true;
}
bool GrGLGpu::onWritePixels(GrSurface* surface,
SkIRect rect,
GrColorType surfaceColorType,
GrColorType srcColorType,
const GrMipLevel texels[],
int mipLevelCount,
bool prepForTexSampling) {
auto glTex = static_cast<GrGLTexture*>(surface->asTexture());
if (!check_write_and_transfer_input(glTex)) {
return false;
}
this->bindTextureToScratchUnit(glTex->target(), glTex->textureID());
// If we have mips make sure the base/max levels cover the full range so that the uploads go to
// the right levels. We've found some Radeons require this.
if (mipLevelCount && this->glCaps().mipmapLevelControlSupport()) {
auto params = glTex->parameters();
GrGLTextureParameters::NonsamplerState nonsamplerState = params->nonsamplerState();
int maxLevel = glTex->maxMipmapLevel();
if (params->nonsamplerState().fBaseMipMapLevel != 0) {
GL_CALL(TexParameteri(glTex->target(), GR_GL_TEXTURE_BASE_LEVEL, 0));
nonsamplerState.fBaseMipMapLevel = 0;
}
if (params->nonsamplerState().fMaxMipmapLevel != maxLevel) {
GL_CALL(TexParameteri(glTex->target(), GR_GL_TEXTURE_MAX_LEVEL, maxLevel));
nonsamplerState.fBaseMipMapLevel = maxLevel;
}
params->set(nullptr, nonsamplerState, fResetTimestampForTextureParameters);
}
SkASSERT(!GrGLFormatIsCompressed(glTex->format()));
return this->uploadColorTypeTexData(glTex->format(),
surfaceColorType,
glTex->dimensions(),
glTex->target(),
rect,
srcColorType,
texels,
mipLevelCount);
}
bool GrGLGpu::onTransferPixelsTo(GrTexture* texture,
SkIRect rect,
GrColorType textureColorType,
GrColorType bufferColorType,
sk_sp<GrGpuBuffer> transferBuffer,
size_t offset,
size_t rowBytes) {
GrGLTexture* glTex = static_cast<GrGLTexture*>(texture);
// Can't transfer compressed data
SkASSERT(!GrGLFormatIsCompressed(glTex->format()));
if (!check_write_and_transfer_input(glTex)) {
return false;
}
static_assert(sizeof(int) == sizeof(int32_t), "");
this->bindTextureToScratchUnit(glTex->target(), glTex->textureID());
SkASSERT(!transferBuffer->isMapped());
SkASSERT(!transferBuffer->isCpuBuffer());
const GrGLBuffer* glBuffer = static_cast<const GrGLBuffer*>(transferBuffer.get());
this->bindBuffer(GrGpuBufferType::kXferCpuToGpu, glBuffer);
SkASSERT(SkIRect::MakeSize(texture->dimensions()).contains(rect));
size_t bpp = GrColorTypeBytesPerPixel(bufferColorType);
const size_t trimRowBytes = rect.width() * bpp;
const void* pixels = (void*)offset;
bool restoreGLRowLength = false;
if (trimRowBytes != rowBytes) {
// we should have checked for this support already
SkASSERT(this->glCaps().transferPixelsToRowBytesSupport());
GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, rowBytes / bpp));
restoreGLRowLength = true;
}
GrGLFormat textureFormat = glTex->format();
// External format and type come from the upload data.
GrGLenum externalFormat = 0;
GrGLenum externalType = 0;
this->glCaps().getTexSubImageExternalFormatAndType(
textureFormat, textureColorType, bufferColorType, &externalFormat, &externalType);
if (!externalFormat || !externalType) {
return false;
}
GL_CALL(PixelStorei(GR_GL_UNPACK_ALIGNMENT, 1));
GL_CALL(TexSubImage2D(glTex->target(),
0,
rect.left(),
rect.top(),
rect.width(),
rect.height(),
externalFormat,
externalType,
pixels));
if (restoreGLRowLength) {
GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, 0));
}
return true;
}
bool GrGLGpu::onTransferPixelsFrom(GrSurface* surface,
SkIRect rect,
GrColorType surfaceColorType,
GrColorType dstColorType,
sk_sp<GrGpuBuffer> transferBuffer,
size_t offset) {
auto* glBuffer = static_cast<GrGLBuffer*>(transferBuffer.get());
this->bindBuffer(GrGpuBufferType::kXferGpuToCpu, glBuffer);
auto offsetAsPtr = reinterpret_cast<void*>(offset);
return this->readOrTransferPixelsFrom(surface,
rect,
surfaceColorType,
dstColorType,
offsetAsPtr,
rect.width());
}
void GrGLGpu::unbindXferBuffer(GrGpuBufferType type) {
SkASSERT(type == GrGpuBufferType::kXferCpuToGpu || type == GrGpuBufferType::kXferGpuToCpu);
auto* xferBufferState = this->hwBufferState(type);
if (!xferBufferState->fBufferZeroKnownBound) {
GL_CALL(BindBuffer(xferBufferState->fGLTarget, 0));
xferBufferState->fBoundBufferUniqueID.makeInvalid();
xferBufferState->fBufferZeroKnownBound = true;
}
}
bool GrGLGpu::uploadColorTypeTexData(GrGLFormat textureFormat,
GrColorType textureColorType,
SkISize texDims,
GrGLenum target,
SkIRect dstRect,
GrColorType srcColorType,
const GrMipLevel texels[],
int mipLevelCount) {
// If we're uploading compressed data then we should be using uploadCompressedTexData
SkASSERT(!GrGLFormatIsCompressed(textureFormat));
SkASSERT(this->glCaps().isFormatTexturable(textureFormat));
size_t bpp = GrColorTypeBytesPerPixel(srcColorType);
// External format and type come from the upload data.
GrGLenum externalFormat;
GrGLenum externalType;
this->glCaps().getTexSubImageExternalFormatAndType(
textureFormat, textureColorType, srcColorType, &externalFormat, &externalType);
if (!externalFormat || !externalType) {
return false;
}
this->uploadTexData(texDims, target, dstRect, externalFormat, externalType, bpp, texels,
mipLevelCount);
return true;
}
bool GrGLGpu::uploadColorToTex(GrGLFormat textureFormat,
SkISize texDims,
GrGLenum target,
std::array<float, 4> color,
uint32_t levelMask) {
GrColorType colorType;
GrGLenum externalFormat, externalType;
this->glCaps().getTexSubImageDefaultFormatTypeAndColorType(textureFormat, &externalFormat,
&externalType, &colorType);
if (colorType == GrColorType::kUnknown) {
return false;
}
std::unique_ptr<char[]> pixelStorage;
size_t bpp = 0;
int numLevels = SkMipmap::ComputeLevelCount(texDims) + 1;
SkSTArray<16, GrMipLevel> levels;
levels.resize(numLevels);
SkISize levelDims = texDims;
for (int i = 0; i < numLevels; ++i, levelDims = {std::max(levelDims.width() >> 1, 1),
std::max(levelDims.height() >> 1, 1)}) {
if (levelMask & (1 << i)) {
if (!pixelStorage) {
// Make one tight image at the first size and reuse it for smaller levels.
GrImageInfo ii(colorType, kUnpremul_SkAlphaType, nullptr, levelDims);
size_t rb = ii.minRowBytes();
pixelStorage.reset(new char[rb * levelDims.height()]);
if (!GrClearImage(ii, pixelStorage.get(), ii.minRowBytes(), color)) {
return false;
}
bpp = ii.bpp();
}
levels[i] = {pixelStorage.get(), levelDims.width()*bpp, nullptr};
}
}
this->uploadTexData(texDims, target, SkIRect::MakeSize(texDims), externalFormat, externalType,
bpp, levels.begin(), levels.count());
return true;
}
void GrGLGpu::uploadTexData(SkISize texDims,
GrGLenum target,
SkIRect dstRect,
GrGLenum externalFormat,
GrGLenum externalType,
size_t bpp,
const GrMipLevel texels[],
int mipLevelCount) {
SkASSERT(!texDims.isEmpty());
SkASSERT(!dstRect.isEmpty());
SkASSERT(SkIRect::MakeSize(texDims).contains(dstRect));
SkASSERT(mipLevelCount > 0 && mipLevelCount <= SkMipmap::ComputeLevelCount(texDims) + 1);
SkASSERT(mipLevelCount == 1 || dstRect == SkIRect::MakeSize(texDims));
const GrGLCaps& caps = this->glCaps();
bool restoreGLRowLength = false;
this->unbindXferBuffer(GrGpuBufferType::kXferCpuToGpu);
GL_CALL(PixelStorei(GR_GL_UNPACK_ALIGNMENT, 1));
SkISize dims = dstRect.size();
for (int level = 0; level < mipLevelCount; ++level, dims = {std::max(dims.width() >> 1, 1),
std::max(dims.height() >> 1, 1)}) {
if (!texels[level].fPixels) {
continue;
}
const size_t trimRowBytes = dims.width() * bpp;
const size_t rowBytes = texels[level].fRowBytes;
if (caps.writePixelsRowBytesSupport() && (rowBytes != trimRowBytes || restoreGLRowLength)) {
GrGLint rowLength = static_cast<GrGLint>(rowBytes / bpp);
GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, rowLength));
restoreGLRowLength = true;
} else {
SkASSERT(rowBytes == trimRowBytes);
}
GL_CALL(TexSubImage2D(target, level, dstRect.x(), dstRect.y(), dims.width(), dims.height(),
externalFormat, externalType, texels[level].fPixels));
}
if (restoreGLRowLength) {
SkASSERT(caps.writePixelsRowBytesSupport());
GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, 0));
}
}
bool GrGLGpu::uploadCompressedTexData(SkImage::CompressionType compressionType,
GrGLFormat format,
SkISize dimensions,
GrMipmapped mipMapped,
GrGLenum target,
const void* data, size_t dataSize) {
SkASSERT(format != GrGLFormat::kUnknown);
const GrGLCaps& caps = this->glCaps();
// We only need the internal format for compressed 2D textures.
GrGLenum internalFormat = caps.getTexImageOrStorageInternalFormat(format);
if (!internalFormat) {
return false;
}
SkASSERT(compressionType != SkImage::CompressionType::kNone);
bool useTexStorage = caps.formatSupportsTexStorage(format);
int numMipLevels = 1;
if (mipMapped == GrMipmapped::kYes) {
numMipLevels = SkMipmap::ComputeLevelCount(dimensions.width(), dimensions.height())+1;
}
// TODO: Make sure that the width and height that we pass to OpenGL
// is a multiple of the block size.
if (useTexStorage) {
// We never resize or change formats of textures.
GrGLenum error = GL_ALLOC_CALL(TexStorage2D(target, numMipLevels, internalFormat,
dimensions.width(), dimensions.height()));
if (error != GR_GL_NO_ERROR) {
return false;
}
size_t offset = 0;
for (int level = 0; level < numMipLevels; ++level) {
size_t levelDataSize = SkCompressedDataSize(compressionType, dimensions,
nullptr, false);
error = GL_ALLOC_CALL(CompressedTexSubImage2D(target,
level,
0, // left
0, // top
dimensions.width(),
dimensions.height(),
internalFormat,
SkToInt(levelDataSize),
&((char*)data)[offset]));
if (error != GR_GL_NO_ERROR) {
return false;
}
offset += levelDataSize;
dimensions = {std::max(1, dimensions.width()/2), std::max(1, dimensions.height()/2)};
}
} else {
size_t offset = 0;
for (int level = 0; level < numMipLevels; ++level) {
size_t levelDataSize = SkCompressedDataSize(compressionType, dimensions,
nullptr, false);
const char* rawLevelData = &((char*)data)[offset];
GrGLenum error = GL_ALLOC_CALL(CompressedTexImage2D(target,
level,
internalFormat,
dimensions.width(),
dimensions.height(),
0, // border
SkToInt(levelDataSize),
rawLevelData));
if (error != GR_GL_NO_ERROR) {
return false;
}
offset += levelDataSize;
dimensions = {std::max(1, dimensions.width()/2), std::max(1, dimensions.height()/2)};
}
}
return true;
}
bool GrGLGpu::renderbufferStorageMSAA(const GrGLContext& ctx, int sampleCount, GrGLenum format,
int width, int height) {
SkASSERT(GrGLCaps::kNone_MSFBOType != ctx.caps()->msFBOType());
GrGLenum error;
switch (ctx.caps()->msFBOType()) {
case GrGLCaps::kStandard_MSFBOType:
error = GL_ALLOC_CALL(RenderbufferStorageMultisample(GR_GL_RENDERBUFFER, sampleCount,
format, width, height));
break;
case GrGLCaps::kES_Apple_MSFBOType:
error = GL_ALLOC_CALL(RenderbufferStorageMultisampleES2APPLE(
GR_GL_RENDERBUFFER, sampleCount, format, width, height));
break;
case GrGLCaps::kES_EXT_MsToTexture_MSFBOType:
case GrGLCaps::kES_IMG_MsToTexture_MSFBOType:
error = GL_ALLOC_CALL(RenderbufferStorageMultisampleES2EXT(
GR_GL_RENDERBUFFER, sampleCount, format, width, height));
break;
case GrGLCaps::kNone_MSFBOType:
SkUNREACHABLE;
break;
}
return error == GR_GL_NO_ERROR;
}
bool GrGLGpu::createRenderTargetObjects(const GrGLTexture::Desc& desc,
int sampleCount,
GrGLRenderTarget::IDs* rtIDs) {
rtIDs->fMSColorRenderbufferID = 0;
rtIDs->fMultisampleFBOID = 0;
rtIDs->fRTFBOOwnership = GrBackendObjectOwnership::kOwned;
rtIDs->fSingleSampleFBOID = 0;
rtIDs->fTotalMemorySamplesPerPixel = 0;
GrGLenum colorRenderbufferFormat = 0; // suppress warning
if (desc.fFormat == GrGLFormat::kUnknown) {
goto FAILED;
}
if (sampleCount > 1 && GrGLCaps::kNone_MSFBOType == this->glCaps().msFBOType()) {
goto FAILED;
}
GL_CALL(GenFramebuffers(1, &rtIDs->fSingleSampleFBOID));
if (!rtIDs->fSingleSampleFBOID) {
goto FAILED;
}
// If we are using multisampling we will create two FBOS. We render to one and then resolve to
// the texture bound to the other. The exception is the IMG multisample extension. With this
// extension the texture is multisampled when rendered to and then auto-resolves it when it is
// rendered from.
if (sampleCount <= 1) {
rtIDs->fMultisampleFBOID = GrGLRenderTarget::kUnresolvableFBOID;
} else {
GL_CALL(GenFramebuffers(1, &rtIDs->fMultisampleFBOID));
if (!rtIDs->fMultisampleFBOID) {
goto FAILED;
}
if (!this->glCaps().usesImplicitMSAAResolve()) {
GL_CALL(GenRenderbuffers(1, &rtIDs->fMSColorRenderbufferID));
if (!rtIDs->fMSColorRenderbufferID) {
goto FAILED;
}
colorRenderbufferFormat = this->glCaps().getRenderbufferInternalFormat(desc.fFormat);
}
}
// below here we may bind the FBO
fHWBoundRenderTargetUniqueID.makeInvalid();
if (rtIDs->fMSColorRenderbufferID) {
SkASSERT(sampleCount > 1);
GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER, rtIDs->fMSColorRenderbufferID));
if (!this->renderbufferStorageMSAA(*fGLContext, sampleCount, colorRenderbufferFormat,
desc.fSize.width(), desc.fSize.height())) {
goto FAILED;
}
this->bindFramebuffer(GR_GL_FRAMEBUFFER, rtIDs->fMultisampleFBOID);
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_COLOR_ATTACHMENT0,
GR_GL_RENDERBUFFER,
rtIDs->fMSColorRenderbufferID));
rtIDs->fTotalMemorySamplesPerPixel += sampleCount;
} else if (sampleCount > 1) {
// multisampled_render_to_texture
SkASSERT(this->glCaps().usesImplicitMSAAResolve()); // Otherwise fMSColorRenderbufferID!=0.
this->bindFramebuffer(GR_GL_FRAMEBUFFER, rtIDs->fMultisampleFBOID);
GL_CALL(FramebufferTexture2DMultisample(GR_GL_FRAMEBUFFER,
GR_GL_COLOR_ATTACHMENT0,
desc.fTarget,
desc.fID,
0,
sampleCount));
}
this->bindFramebuffer(GR_GL_FRAMEBUFFER, rtIDs->fSingleSampleFBOID);
GL_CALL(FramebufferTexture2D(GR_GL_FRAMEBUFFER,
GR_GL_COLOR_ATTACHMENT0,
desc.fTarget,
desc.fID,
0));
++rtIDs->fTotalMemorySamplesPerPixel;
return true;
FAILED:
if (rtIDs->fMSColorRenderbufferID) {
GL_CALL(DeleteRenderbuffers(1, &rtIDs->fMSColorRenderbufferID));
}
if (rtIDs->fMultisampleFBOID != rtIDs->fSingleSampleFBOID) {
this->deleteFramebuffer(rtIDs->fMultisampleFBOID);
}
if (rtIDs->fSingleSampleFBOID) {
this->deleteFramebuffer(rtIDs->fSingleSampleFBOID);
}
return false;
}
// good to set a break-point here to know when createTexture fails
static sk_sp<GrTexture> return_null_texture() {
// SkDEBUGFAIL("null texture");
return nullptr;
}
static GrGLTextureParameters::SamplerOverriddenState set_initial_texture_params(
const GrGLInterface* interface, GrGLenum target) {
// Some drivers like to know filter/wrap before seeing glTexImage2D. Some
// drivers have a bug where an FBO won't be complete if it includes a
// texture that is not mipmap complete (considering the filter in use).
GrGLTextureParameters::SamplerOverriddenState state;
state.fMinFilter = GR_GL_NEAREST;
state.fMagFilter = GR_GL_NEAREST;
state.fWrapS = GR_GL_CLAMP_TO_EDGE;
state.fWrapT = GR_GL_CLAMP_TO_EDGE;
GR_GL_CALL(interface, TexParameteri(target, GR_GL_TEXTURE_MAG_FILTER, state.fMagFilter));
GR_GL_CALL(interface, TexParameteri(target, GR_GL_TEXTURE_MIN_FILTER, state.fMinFilter));
GR_GL_CALL(interface, TexParameteri(target, GR_GL_TEXTURE_WRAP_S, state.fWrapS));
GR_GL_CALL(interface, TexParameteri(target, GR_GL_TEXTURE_WRAP_T, state.fWrapT));
return state;
}
sk_sp<GrTexture> GrGLGpu::onCreateTexture(SkISize dimensions,
const GrBackendFormat& format,
GrRenderable renderable,
int renderTargetSampleCnt,
SkBudgeted budgeted,
GrProtected isProtected,
int mipLevelCount,
uint32_t levelClearMask) {
// We don't support protected textures in GL.
if (isProtected == GrProtected::kYes) {
return nullptr;
}
SkASSERT(GrGLCaps::kNone_MSFBOType != this->glCaps().msFBOType() || renderTargetSampleCnt == 1);
SkASSERT(mipLevelCount > 0);
GrMipmapStatus mipmapStatus =
mipLevelCount > 1 ? GrMipmapStatus::kDirty : GrMipmapStatus::kNotAllocated;
GrGLTextureParameters::SamplerOverriddenState initialState;
GrGLTexture::Desc texDesc;
texDesc.fSize = dimensions;
switch (format.textureType()) {
case GrTextureType::kExternal:
case GrTextureType::kNone:
return nullptr;
case GrTextureType::k2D:
texDesc.fTarget = GR_GL_TEXTURE_2D;
break;
case GrTextureType::kRectangle:
if (mipLevelCount > 1 || !this->glCaps().rectangleTextureSupport()) {
return nullptr;
}
texDesc.fTarget = GR_GL_TEXTURE_RECTANGLE;
break;
}
texDesc.fFormat = format.asGLFormat();
texDesc.fOwnership = GrBackendObjectOwnership::kOwned;
SkASSERT(texDesc.fFormat != GrGLFormat::kUnknown);
SkASSERT(!GrGLFormatIsCompressed(texDesc.fFormat));
texDesc.fID = this->createTexture(dimensions, texDesc.fFormat, texDesc.fTarget, renderable,
&initialState, mipLevelCount);
if (!texDesc.fID) {
return return_null_texture();
}
sk_sp<GrGLTexture> tex;
if (renderable == GrRenderable::kYes) {
// unbind the texture from the texture unit before binding it to the frame buffer
GL_CALL(BindTexture(texDesc.fTarget, 0));
GrGLRenderTarget::IDs rtIDDesc;
if (!this->createRenderTargetObjects(texDesc, renderTargetSampleCnt, &rtIDDesc)) {
GL_CALL(DeleteTextures(1, &texDesc.fID));
return return_null_texture();
}
tex = sk_make_sp<GrGLTextureRenderTarget>(
this, budgeted, renderTargetSampleCnt, texDesc, rtIDDesc, mipmapStatus);
tex->baseLevelWasBoundToFBO();
} else {
tex = sk_make_sp<GrGLTexture>(this, budgeted, texDesc, mipmapStatus);
}
// The non-sampler params are still at their default values.
tex->parameters()->set(&initialState, GrGLTextureParameters::NonsamplerState(),
fResetTimestampForTextureParameters);
if (levelClearMask) {
if (this->glCaps().clearTextureSupport()) {
GrGLenum externalFormat, externalType;
GrColorType colorType;
this->glCaps().getTexSubImageDefaultFormatTypeAndColorType(
texDesc.fFormat, &externalFormat, &externalType, &colorType);
for (int i = 0; i < mipLevelCount; ++i) {
if (levelClearMask & (1U << i)) {
GL_CALL(ClearTexImage(tex->textureID(), i, externalFormat, externalType,
nullptr));
}
}
} else if (this->glCaps().canFormatBeFBOColorAttachment(format.asGLFormat()) &&
!this->glCaps().performColorClearsAsDraws()) {
this->flushScissorTest(GrScissorTest::kDisabled);
this->disableWindowRectangles();
this->flushColorWrite(true);
this->flushClearColor({0, 0, 0, 0});
for (int i = 0; i < mipLevelCount; ++i) {
if (levelClearMask & (1U << i)) {
this->bindSurfaceFBOForPixelOps(tex.get(), i, GR_GL_FRAMEBUFFER,
kDst_TempFBOTarget);
GL_CALL(Clear(GR_GL_COLOR_BUFFER_BIT));
this->unbindSurfaceFBOForPixelOps(tex.get(), i, GR_GL_FRAMEBUFFER);
}
}
fHWBoundRenderTargetUniqueID.makeInvalid();
} else {
this->bindTextureToScratchUnit(texDesc.fTarget, tex->textureID());
std::array<float, 4> zeros = {};
this->uploadColorToTex(texDesc.fFormat,
texDesc.fSize,
texDesc.fTarget,
zeros,
levelClearMask);
}
}
return std::move(tex);
}
sk_sp<GrTexture> GrGLGpu::onCreateCompressedTexture(SkISize dimensions,
const GrBackendFormat& format,
SkBudgeted budgeted,
GrMipmapped mipMapped,
GrProtected isProtected,
const void* data, size_t dataSize) {
// We don't support protected textures in GL.
if (isProtected == GrProtected::kYes) {
return nullptr;
}
SkImage::CompressionType compression = GrBackendFormatToCompressionType(format);
GrGLTextureParameters::SamplerOverriddenState initialState;
GrGLTexture::Desc desc;
desc.fSize = dimensions;
desc.fTarget = GR_GL_TEXTURE_2D;
desc.fOwnership = GrBackendObjectOwnership::kOwned;
desc.fFormat = format.asGLFormat();
desc.fID = this->createCompressedTexture2D(desc.fSize, compression, desc.fFormat,
mipMapped, &initialState);
if (!desc.fID) {
return nullptr;
}
if (data) {
if (!this->uploadCompressedTexData(compression, desc.fFormat, dimensions, mipMapped,
GR_GL_TEXTURE_2D, data, dataSize)) {
GL_CALL(DeleteTextures(1, &desc.fID));
return nullptr;
}
}
// Unbind this texture from the scratch texture unit.
this->bindTextureToScratchUnit(GR_GL_TEXTURE_2D, 0);
GrMipmapStatus mipmapStatus = mipMapped == GrMipmapped::kYes
? GrMipmapStatus::kValid
: GrMipmapStatus::kNotAllocated;
auto tex = sk_make_sp<GrGLTexture>(this, budgeted, desc, mipmapStatus);
// The non-sampler params are still at their default values.
tex->parameters()->set(&initialState, GrGLTextureParameters::NonsamplerState(),
fResetTimestampForTextureParameters);
return std::move(tex);
}
GrBackendTexture GrGLGpu::onCreateCompressedBackendTexture(
SkISize dimensions, const GrBackendFormat& format, GrMipmapped mipMapped,
GrProtected isProtected) {
// We don't support protected textures in GL.
if (isProtected == GrProtected::kYes) {
return {};
}
this->handleDirtyContext();
GrGLFormat glFormat = format.asGLFormat();
if (glFormat == GrGLFormat::kUnknown) {
return {};
}
SkImage::CompressionType compression = GrBackendFormatToCompressionType(format);
GrGLTextureInfo info;
GrGLTextureParameters::SamplerOverriddenState initialState;
info.fTarget = GR_GL_TEXTURE_2D;
info.fFormat = GrGLFormatToEnum(glFormat);
info.fID = this->createCompressedTexture2D(dimensions, compression, glFormat,
mipMapped, &initialState);
if (!info.fID) {
return {};
}
// Unbind this texture from the scratch texture unit.
this->bindTextureToScratchUnit(GR_GL_TEXTURE_2D, 0);
auto parameters = sk_make_sp<GrGLTextureParameters>();
// The non-sampler params are still at their default values.
parameters->set(&initialState, GrGLTextureParameters::NonsamplerState(),
fResetTimestampForTextureParameters);
return GrBackendTexture(dimensions.width(), dimensions.height(), mipMapped, info,
std::move(parameters));
}
bool GrGLGpu::onUpdateCompressedBackendTexture(const GrBackendTexture& backendTexture,
sk_sp<GrRefCntedCallback> finishedCallback,
const void* data,
size_t length) {
GrGLTextureInfo info;
SkAssertResult(backendTexture.getGLTextureInfo(&info));
GrBackendFormat format = backendTexture.getBackendFormat();
GrGLFormat glFormat = format.asGLFormat();
if (glFormat == GrGLFormat::kUnknown) {
return false;
}
SkImage::CompressionType compression = GrBackendFormatToCompressionType(format);
GrMipmapped mipMapped = backendTexture.hasMipmaps() ? GrMipmapped::kYes : GrMipmapped::kNo;
this->bindTextureToScratchUnit(info.fTarget, info.fID);
// If we have mips make sure the base level is set to 0 and the max level set to numMipLevels-1
// so that the uploads go to the right levels.
if (backendTexture.hasMipMaps() && this->glCaps().mipmapLevelControlSupport()) {
auto params = backendTexture.getGLTextureParams();
GrGLTextureParameters::NonsamplerState nonsamplerState = params->nonsamplerState();
if (params->nonsamplerState().fBaseMipMapLevel != 0) {
GL_CALL(TexParameteri(info.fTarget, GR_GL_TEXTURE_BASE_LEVEL, 0));
nonsamplerState.fBaseMipMapLevel = 0;
}
int numMipLevels =
SkMipmap::ComputeLevelCount(backendTexture.width(), backendTexture.height()) + 1;
if (params->nonsamplerState().fMaxMipmapLevel != (numMipLevels - 1)) {
GL_CALL(TexParameteri(info.fTarget, GR_GL_TEXTURE_MAX_LEVEL, numMipLevels - 1));
nonsamplerState.fBaseMipMapLevel = numMipLevels - 1;
}
params->set(nullptr, nonsamplerState, fResetTimestampForTextureParameters);
}
bool result = this->uploadCompressedTexData(compression,
glFormat,
backendTexture.dimensions(),
mipMapped,
GR_GL_TEXTURE_2D,
data,
length);
// Unbind this texture from the scratch texture unit.
this->bindTextureToScratchUnit(info.fTarget, 0);
return result;
}
int GrGLGpu::getCompatibleStencilIndex(GrGLFormat format) {
static const int kSize = 16;
SkASSERT(this->glCaps().canFormatBeFBOColorAttachment(format));
if (!this->glCaps().hasStencilFormatBeenDeterminedForFormat(format)) {
// Default to unsupported, set this if we find a stencil format that works.
int firstWorkingStencilFormatIndex = -1;
GrGLuint colorID = this->createTexture({kSize, kSize}, format, GR_GL_TEXTURE_2D,
GrRenderable::kYes, nullptr, 1);
if (!colorID) {
return -1;
}
// unbind the texture from the texture unit before binding it to the frame buffer
GL_CALL(BindTexture(GR_GL_TEXTURE_2D, 0));
// Create Framebuffer
GrGLuint fb = 0;
GL_CALL(GenFramebuffers(1, &fb));
this->bindFramebuffer(GR_GL_FRAMEBUFFER, fb);
fHWBoundRenderTargetUniqueID.makeInvalid();
GL_CALL(FramebufferTexture2D(GR_GL_FRAMEBUFFER,
GR_GL_COLOR_ATTACHMENT0,
GR_GL_TEXTURE_2D,
colorID,
0));
GrGLuint sbRBID = 0;
GL_CALL(GenRenderbuffers(1, &sbRBID));
// look over formats till I find a compatible one
int stencilFmtCnt = this->glCaps().stencilFormats().count();
if (sbRBID) {
GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER, sbRBID));
for (int i = 0; i < stencilFmtCnt && sbRBID; ++i) {
GrGLFormat sFmt = this->glCaps().stencilFormats()[i];
GrGLenum error = GL_ALLOC_CALL(RenderbufferStorage(
GR_GL_RENDERBUFFER, GrGLFormatToEnum(sFmt), kSize, kSize));
if (error == GR_GL_NO_ERROR) {
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_STENCIL_ATTACHMENT,
GR_GL_RENDERBUFFER, sbRBID));
if (GrGLFormatIsPackedDepthStencil(sFmt)) {
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_DEPTH_ATTACHMENT,
GR_GL_RENDERBUFFER, sbRBID));
} else {
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_DEPTH_ATTACHMENT,
GR_GL_RENDERBUFFER, 0));
}
GrGLenum status;
GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER));
if (status == GR_GL_FRAMEBUFFER_COMPLETE) {
firstWorkingStencilFormatIndex = i;
break;
}
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_STENCIL_ATTACHMENT,
GR_GL_RENDERBUFFER, 0));
if (GrGLFormatIsPackedDepthStencil(sFmt)) {
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_DEPTH_ATTACHMENT,
GR_GL_RENDERBUFFER, 0));
}
}
}
GL_CALL(DeleteRenderbuffers(1, &sbRBID));
}
GL_CALL(DeleteTextures(1, &colorID));
this->bindFramebuffer(GR_GL_FRAMEBUFFER, 0);
this->deleteFramebuffer(fb);
fGLContext->caps()->setStencilFormatIndexForFormat(format, firstWorkingStencilFormatIndex);
}
return this->glCaps().getStencilFormatIndexForFormat(format);
}
GrGLuint GrGLGpu::createCompressedTexture2D(
SkISize dimensions,
SkImage::CompressionType compression,
GrGLFormat format,
GrMipmapped mipMapped,
GrGLTextureParameters::SamplerOverriddenState* initialState) {
if (format == GrGLFormat::kUnknown) {
return 0;
}
GrGLuint id = 0;
GL_CALL(GenTextures(1, &id));
if (!id) {
return 0;
}
this->bindTextureToScratchUnit(GR_GL_TEXTURE_2D, id);
*initialState = set_initial_texture_params(this->glInterface(), GR_GL_TEXTURE_2D);
return id;
}
GrGLuint GrGLGpu::createTexture(SkISize dimensions,
GrGLFormat format,
GrGLenum target,
GrRenderable renderable,
GrGLTextureParameters::SamplerOverriddenState* initialState,
int mipLevelCount) {
SkASSERT(format != GrGLFormat::kUnknown);
SkASSERT(!GrGLFormatIsCompressed(format));
GrGLuint id = 0;
GL_CALL(GenTextures(1, &id));
if (!id) {
return 0;
}
this->bindTextureToScratchUnit(target, id);
if (GrRenderable::kYes == renderable && this->glCaps().textureUsageSupport()) {
// provides a hint about how this texture will be used
GL_CALL(TexParameteri(target, GR_GL_TEXTURE_USAGE, GR_GL_FRAMEBUFFER_ATTACHMENT));
}
if (initialState) {
*initialState = set_initial_texture_params(this->glInterface(), target);
} else {
set_initial_texture_params(this->glInterface(), target);
}
GrGLenum internalFormat = this->glCaps().getTexImageOrStorageInternalFormat(format);
bool success = false;
if (internalFormat) {
if (this->glCaps().formatSupportsTexStorage(format)) {
auto levelCount = std::max(mipLevelCount, 1);
GrGLenum error = GL_ALLOC_CALL(TexStorage2D(target, levelCount, internalFormat,
dimensions.width(), dimensions.height()));
success = (error == GR_GL_NO_ERROR);
} else {
GrGLenum externalFormat, externalType;
this->glCaps().getTexImageExternalFormatAndType(format, &externalFormat, &externalType);
GrGLenum error = GR_GL_NO_ERROR;
if (externalFormat && externalType) {
for (int level = 0; level < mipLevelCount && error == GR_GL_NO_ERROR; level++) {
const int twoToTheMipLevel = 1 << level;
const int currentWidth = std::max(1, dimensions.width() / twoToTheMipLevel);
const int currentHeight = std::max(1, dimensions.height() / twoToTheMipLevel);
error = GL_ALLOC_CALL(TexImage2D(target, level, internalFormat, currentWidth,
currentHeight, 0, externalFormat, externalType,
nullptr));
}
success = (error == GR_GL_NO_ERROR);
}
}
}
if (success) {
return id;
}
GL_CALL(DeleteTextures(1, &id));
return 0;
}
sk_sp<GrAttachment> GrGLGpu::makeStencilAttachment(const GrBackendFormat& colorFormat,
SkISize dimensions, int numStencilSamples) {
int sIdx = this->getCompatibleStencilIndex(colorFormat.asGLFormat());
if (sIdx < 0) {
return nullptr;
}
GrGLFormat sFmt = this->glCaps().stencilFormats()[sIdx];
auto stencil = GrGLAttachment::MakeStencil(this, dimensions, numStencilSamples, sFmt);
if (stencil) {
fStats.incStencilAttachmentCreates();
}
return std::move(stencil);
}
sk_sp<GrAttachment> GrGLGpu::makeMSAAAttachment(SkISize dimensions, const GrBackendFormat& format,
int numSamples, GrProtected isProtected) {
return GrGLAttachment::MakeMSAA(this, dimensions, numSamples, format.asGLFormat());
}
////////////////////////////////////////////////////////////////////////////////
sk_sp<GrGpuBuffer> GrGLGpu::onCreateBuffer(size_t size, GrGpuBufferType intendedType,
GrAccessPattern accessPattern, const void* data) {
return GrGLBuffer::Make(this, size, intendedType, accessPattern, data);
}
void GrGLGpu::flushScissorTest(GrScissorTest scissorTest) {
if (GrScissorTest::kEnabled == scissorTest) {
if (kYes_TriState != fHWScissorSettings.fEnabled) {
GL_CALL(Enable(GR_GL_SCISSOR_TEST));
fHWScissorSettings.fEnabled = kYes_TriState;
}
} else {
if (kNo_TriState != fHWScissorSettings.fEnabled) {
GL_CALL(Disable(GR_GL_SCISSOR_TEST));
fHWScissorSettings.fEnabled = kNo_TriState;
}
}
}
void GrGLGpu::flushScissorRect(const SkIRect& scissor, int rtHeight, GrSurfaceOrigin rtOrigin) {
SkASSERT(fHWScissorSettings.fEnabled == TriState::kYes_TriState);
auto nativeScissor = GrNativeRect::MakeRelativeTo(rtOrigin, rtHeight, scissor);
if (fHWScissorSettings.fRect != nativeScissor) {
GL_CALL(Scissor(nativeScissor.fX, nativeScissor.fY, nativeScissor.fWidth,
nativeScissor.fHeight));
fHWScissorSettings.fRect = nativeScissor;
}
}
void GrGLGpu::flushViewport(const SkIRect& viewport, int rtHeight, GrSurfaceOrigin rtOrigin) {
auto nativeViewport = GrNativeRect::MakeRelativeTo(rtOrigin, rtHeight, viewport);
if (fHWViewport != nativeViewport) {
GL_CALL(Viewport(nativeViewport.fX, nativeViewport.fY,
nativeViewport.fWidth, nativeViewport.fHeight));
fHWViewport = nativeViewport;
}
}
void GrGLGpu::flushWindowRectangles(const GrWindowRectsState& windowState,
const GrGLRenderTarget* rt, GrSurfaceOrigin origin) {
#ifndef USE_NSIGHT
typedef GrWindowRectsState::Mode Mode;
// Window rects can't be used on-screen.
SkASSERT(!windowState.enabled() || !rt->glRTFBOIDis0());
SkASSERT(windowState.numWindows() <= this->caps()->maxWindowRectangles());
if (!this->caps()->maxWindowRectangles() ||
fHWWindowRectsState.knownEqualTo(origin, rt->width(), rt->height(), windowState)) {
return;
}
// This is purely a workaround for a spurious warning generated by gcc. Otherwise the above
// assert would be sufficient. https://gcc.gnu.org/bugzilla/show_bug.cgi?id=5912
int numWindows = std::min(windowState.numWindows(), int(GrWindowRectangles::kMaxWindows));
SkASSERT(windowState.numWindows() == numWindows);
GrNativeRect glwindows[GrWindowRectangles::kMaxWindows];
const SkIRect* skwindows = windowState.windows().data();
for (int i = 0; i < numWindows; ++i) {
glwindows[i].setRelativeTo(origin, rt->height(), skwindows[i]);
}
GrGLenum glmode = (Mode::kExclusive == windowState.mode()) ? GR_GL_EXCLUSIVE : GR_GL_INCLUSIVE;
GL_CALL(WindowRectangles(glmode, numWindows, glwindows->asInts()));
fHWWindowRectsState.set(origin, rt->width(), rt->height(), windowState);
#endif
}
void GrGLGpu::disableWindowRectangles() {
#ifndef USE_NSIGHT
if (!this->caps()->maxWindowRectangles() || fHWWindowRectsState.knownDisabled()) {
return;
}
GL_CALL(WindowRectangles(GR_GL_EXCLUSIVE, 0, nullptr));
fHWWindowRectsState.setDisabled();
#endif
}
bool GrGLGpu::flushGLState(GrRenderTarget* renderTarget, bool useMultisampleFBO,
const GrProgramInfo& programInfo) {
this->handleDirtyContext();
sk_sp<GrGLProgram> program = fProgramCache->findOrCreateProgram(this->getContext(),
programInfo);
if (!program) {
GrCapsDebugf(this->caps(), "Failed to create program!\n");
return false;
}
this->flushProgram(std::move(program));
if (GrPrimitiveType::kPatches == programInfo.primitiveType()) {
this->flushPatchVertexCount(programInfo.tessellationPatchVertexCount());
}
// Swizzle the blend to match what the shader will output.
this->flushBlendAndColorWrite(programInfo.pipeline().getXferProcessor().getBlendInfo(),
programInfo.pipeline().writeSwizzle());
fHWProgram->updateUniforms(renderTarget, programInfo);
GrGLRenderTarget* glRT = static_cast<GrGLRenderTarget*>(renderTarget);
GrStencilSettings stencil;
if (programInfo.isStencilEnabled()) {
SkASSERT(glRT->getStencilAttachment(useMultisampleFBO));
stencil.reset(*programInfo.userStencilSettings(),
programInfo.pipeline().hasStencilClip(),
glRT->numStencilBits(useMultisampleFBO));
}
this->flushStencil(stencil, programInfo.origin());
this->flushScissorTest(GrScissorTest(programInfo.pipeline().isScissorTestEnabled()));
this->flushWindowRectangles(programInfo.pipeline().getWindowRectsState(),
glRT, programInfo.origin());
this->flushHWAAState(glRT, programInfo.pipeline().isHWAntialiasState());
this->flushConservativeRasterState(programInfo.pipeline().usesConservativeRaster());
this->flushWireframeState(programInfo.pipeline().isWireframe());
// This must come after textures are flushed because a texture may need
// to be msaa-resolved (which will modify bound FBO state).
this->flushRenderTarget(glRT, useMultisampleFBO);
return true;
}
void GrGLGpu::flushProgram(sk_sp<GrGLProgram> program) {
if (!program) {
fHWProgram.reset();
fHWProgramID = 0;
return;
}
SkASSERT((program == fHWProgram) == (fHWProgramID == program->programID()));
if (program == fHWProgram) {
return;
}
auto id = program->programID();
SkASSERT(id);
GL_CALL(UseProgram(id));
fHWProgram = std::move(program);
fHWProgramID = id;
}
void GrGLGpu::flushProgram(GrGLuint id) {
SkASSERT(id);
if (fHWProgramID == id) {
SkASSERT(!fHWProgram);
return;
}
fHWProgram.reset();
GL_CALL(UseProgram(id));
fHWProgramID = id;
}
GrGLenum GrGLGpu::bindBuffer(GrGpuBufferType type, const GrBuffer* buffer) {
this->handleDirtyContext();
// Index buffer state is tied to the vertex array.
if (GrGpuBufferType::kIndex == type) {
this->bindVertexArray(0);
}
auto* bufferState = this->hwBufferState(type);
if (buffer->isCpuBuffer()) {
if (!bufferState->fBufferZeroKnownBound) {
GL_CALL(BindBuffer(bufferState->fGLTarget, 0));
bufferState->fBufferZeroKnownBound = true;
bufferState->fBoundBufferUniqueID.makeInvalid();
}
} else if (static_cast<const GrGpuBuffer*>(buffer)->uniqueID() !=
bufferState->fBoundBufferUniqueID) {
const GrGLBuffer* glBuffer = static_cast<const GrGLBuffer*>(buffer);
GL_CALL(BindBuffer(bufferState->fGLTarget, glBuffer->bufferID()));
bufferState->fBufferZeroKnownBound = false;
bufferState->fBoundBufferUniqueID = glBuffer->uniqueID();
}
return bufferState->fGLTarget;
}
void GrGLGpu::clear(const GrScissorState& scissor,
std::array<float, 4> color,
GrRenderTarget* target,
bool useMultisampleFBO,
GrSurfaceOrigin origin) {
// parent class should never let us get here with no RT
SkASSERT(target);
SkASSERT(!this->caps()->performColorClearsAsDraws());
SkASSERT(!scissor.enabled() || !this->caps()->performPartialClearsAsDraws());
this->handleDirtyContext();
GrGLRenderTarget* glRT = static_cast<GrGLRenderTarget*>(target);
if (scissor.enabled()) {
this->flushRenderTarget(glRT, useMultisampleFBO, origin, scissor.rect());
} else {
this->flushRenderTarget(glRT, useMultisampleFBO);
}
this->flushScissor(scissor, glRT->height(), origin);
this->disableWindowRectangles();
this->flushColorWrite(true);
this->flushClearColor(color);
GL_CALL(Clear(GR_GL_COLOR_BUFFER_BIT));
}
static bool use_tiled_rendering(const GrGLCaps& glCaps,
const GrOpsRenderPass::StencilLoadAndStoreInfo& stencilLoadStore) {
// Only use the tiled rendering extension if we can explicitly clear and discard the stencil.
// Otherwise it's faster to just not use it.
return glCaps.tiledRenderingSupport() && GrLoadOp::kClear == stencilLoadStore.fLoadOp &&
GrStoreOp::kDiscard == stencilLoadStore.fStoreOp;
}
void GrGLGpu::beginCommandBuffer(GrGLRenderTarget* rt, bool useMultisampleFBO,
const SkIRect& bounds, GrSurfaceOrigin origin,
const GrOpsRenderPass::LoadAndStoreInfo& colorLoadStore,
const GrOpsRenderPass::StencilLoadAndStoreInfo& stencilLoadStore) {
SkASSERT(!fIsExecutingCommandBuffer_DebugOnly);
this->handleDirtyContext();
this->flushRenderTarget(rt, useMultisampleFBO);
SkDEBUGCODE(fIsExecutingCommandBuffer_DebugOnly = true);
if (use_tiled_rendering(this->glCaps(), stencilLoadStore)) {
auto nativeBounds = GrNativeRect::MakeRelativeTo(origin, rt->height(), bounds);
GrGLbitfield preserveMask = (GrLoadOp::kLoad == colorLoadStore.fLoadOp)
? GR_GL_COLOR_BUFFER_BIT0 : GR_GL_NONE;
SkASSERT(GrLoadOp::kLoad != stencilLoadStore.fLoadOp); // Handled by use_tiled_rendering().
GL_CALL(StartTiling(nativeBounds.fX, nativeBounds.fY, nativeBounds.fWidth,
nativeBounds.fHeight, preserveMask));
}
GrGLbitfield clearMask = 0;
if (GrLoadOp::kClear == colorLoadStore.fLoadOp) {
SkASSERT(!this->caps()->performColorClearsAsDraws());
this->flushClearColor(colorLoadStore.fClearColor);
this->flushColorWrite(true);
clearMask |= GR_GL_COLOR_BUFFER_BIT;
}
if (GrLoadOp::kClear == stencilLoadStore.fLoadOp) {
SkASSERT(!this->caps()->performStencilClearsAsDraws());
GL_CALL(StencilMask(0xffffffff));
GL_CALL(ClearStencil(0));
clearMask |= GR_GL_STENCIL_BUFFER_BIT;
}
if (clearMask) {
this->flushScissorTest(GrScissorTest::kDisabled);
this->disableWindowRectangles();
GL_CALL(Clear(clearMask));
}
}
void GrGLGpu::endCommandBuffer(GrGLRenderTarget* rt, bool useMultisampleFBO,
const GrOpsRenderPass::LoadAndStoreInfo& colorLoadStore,
const GrOpsRenderPass::StencilLoadAndStoreInfo& stencilLoadStore) {
SkASSERT(fIsExecutingCommandBuffer_DebugOnly);
this->handleDirtyContext();
if (rt->uniqueID() != fHWBoundRenderTargetUniqueID ||
useMultisampleFBO != fHWBoundFramebufferIsMSAA) {
// The framebuffer binding changed in the middle of a command buffer. We should have already
// printed a warning during onFBOChanged.
return;
}
if (GrGLCaps::kNone_InvalidateFBType != this->glCaps().invalidateFBType()) {
SkSTArray<2, GrGLenum> discardAttachments;
if (GrStoreOp::kDiscard == colorLoadStore.fStoreOp) {
GrGLuint renderFBOID = (useMultisampleFBO) ? rt->multisampleFBOID()
: rt->singleSampleFBOID();
discardAttachments.push_back((!renderFBOID) ? GR_GL_COLOR : GR_GL_COLOR_ATTACHMENT0);
}
if (GrStoreOp::kDiscard == stencilLoadStore.fStoreOp) {
GrGLuint renderFBOID = (useMultisampleFBO) ? rt->multisampleFBOID()
: rt->singleSampleFBOID();
discardAttachments.push_back((!renderFBOID) ? GR_GL_STENCIL : GR_GL_STENCIL_ATTACHMENT);
}
if (!discardAttachments.empty()) {
if (GrGLCaps::kInvalidate_InvalidateFBType == this->glCaps().invalidateFBType()) {
GL_CALL(InvalidateFramebuffer(GR_GL_FRAMEBUFFER, discardAttachments.count(),
discardAttachments.begin()));
} else {
SkASSERT(GrGLCaps::kDiscard_InvalidateFBType == this->glCaps().invalidateFBType());
GL_CALL(DiscardFramebuffer(GR_GL_FRAMEBUFFER, discardAttachments.count(),
discardAttachments.begin()));
}
}
}
if (use_tiled_rendering(this->glCaps(), stencilLoadStore)) {
GrGLbitfield preserveMask = (GrStoreOp::kStore == colorLoadStore.fStoreOp)
? GR_GL_COLOR_BUFFER_BIT0 : GR_GL_NONE;
// Handled by use_tiled_rendering().
SkASSERT(GrStoreOp::kStore != stencilLoadStore.fStoreOp);
GL_CALL(EndTiling(preserveMask));
}
SkDEBUGCODE(fIsExecutingCommandBuffer_DebugOnly = false);
}
void GrGLGpu::clearStencilClip(const GrScissorState& scissor, bool insideStencilMask,
GrRenderTarget* target, bool useMultisampleFBO,
GrSurfaceOrigin origin) {
SkASSERT(target);
SkASSERT(!this->caps()->performStencilClearsAsDraws());
SkASSERT(!scissor.enabled() || !this->caps()->performPartialClearsAsDraws());
this->handleDirtyContext();
GrAttachment* sb = target->getStencilAttachment(useMultisampleFBO);
if (!sb) {
// We should only get here if we marked a proxy as requiring a SB. However,
// the SB creation could later fail. Likely clipping is going to go awry now.
return;
}
GrGLint stencilBitCount = GrBackendFormatStencilBits(sb->backendFormat());
#if 0
SkASSERT(stencilBitCount > 0);
GrGLint clipStencilMask = (1 << (stencilBitCount - 1));
#else
// we could just clear the clip bit but when we go through
// ANGLE a partial stencil mask will cause clears to be
// turned into draws. Our contract on GrOpsTask says that
// changing the clip between stencil passes may or may not
// zero the client's clip bits. So we just clear the whole thing.
static const GrGLint clipStencilMask = ~0;
#endif
GrGLint value;
if (insideStencilMask) {
value = (1 << (stencilBitCount - 1));
} else {
value = 0;
}
GrGLRenderTarget* glRT = static_cast<GrGLRenderTarget*>(target);
this->flushRenderTargetNoColorWrites(glRT, useMultisampleFBO);
this->flushScissor(scissor, glRT->height(), origin);
this->disableWindowRectangles();
GL_CALL(StencilMask((uint32_t) clipStencilMask));
GL_CALL(ClearStencil(value));
GL_CALL(Clear(GR_GL_STENCIL_BUFFER_BIT));
fHWStencilSettings.invalidate();
}
bool GrGLGpu::readOrTransferPixelsFrom(GrSurface* surface,
SkIRect rect,
GrColorType surfaceColorType,
GrColorType dstColorType,
void* offsetOrPtr,
int rowWidthInPixels) {
SkASSERT(surface);
auto format = surface->backendFormat().asGLFormat();
GrGLRenderTarget* renderTarget = static_cast<GrGLRenderTarget*>(surface->asRenderTarget());
if (!renderTarget && !this->glCaps().isFormatRenderable(format, 1)) {
return false;
}
GrGLenum externalFormat = 0;
GrGLenum externalType = 0;
this->glCaps().getReadPixelsFormat(surface->backendFormat().asGLFormat(),
surfaceColorType,
dstColorType,
&externalFormat,
&externalType);
if (!externalFormat || !externalType) {
return false;
}
if (renderTarget) {
// Always bind the single sample FBO since we can't read pixels from an MSAA framebuffer.
if (renderTarget->numSamples() > 1 &&
renderTarget->singleSampleFBOID() == GrGLRenderTarget::kUnresolvableFBOID) {
return false;
}
this->flushRenderTargetNoColorWrites(renderTarget, false/*useMultisampleFBO*/);
} else {
// Use a temporary FBO.
this->bindSurfaceFBOForPixelOps(surface, 0, GR_GL_FRAMEBUFFER, kSrc_TempFBOTarget);
fHWBoundRenderTargetUniqueID.makeInvalid();
}
// determine if GL can read using the passed rowBytes or if we need a scratch buffer.
if (rowWidthInPixels != rect.width()) {
SkASSERT(this->glCaps().readPixelsRowBytesSupport());
GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH, rowWidthInPixels));
}
GL_CALL(PixelStorei(GR_GL_PACK_ALIGNMENT, 1));
GL_CALL(ReadPixels(rect.left(),
rect.top(),
rect.width(),
rect.height(),
externalFormat,
externalType,
offsetOrPtr));
if (rowWidthInPixels != rect.width()) {
SkASSERT(this->glCaps().readPixelsRowBytesSupport());
GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH, 0));
}
if (!renderTarget) {
this->unbindSurfaceFBOForPixelOps(surface, 0, GR_GL_FRAMEBUFFER);
}
return true;
}
bool GrGLGpu::onReadPixels(GrSurface* surface,
SkIRect rect,
GrColorType surfaceColorType,
GrColorType dstColorType,
void* buffer,
size_t rowBytes) {
SkASSERT(surface);
size_t bytesPerPixel = GrColorTypeBytesPerPixel(dstColorType);
// GL_PACK_ROW_LENGTH is in terms of pixels not bytes.
int rowPixelWidth;
if (rowBytes == SkToSizeT(rect.width()*bytesPerPixel)) {
rowPixelWidth = rect.width();
} else {
SkASSERT(!(rowBytes % bytesPerPixel));
rowPixelWidth = rowBytes / bytesPerPixel;
}
this->unbindXferBuffer(GrGpuBufferType::kXferGpuToCpu);
return this->readOrTransferPixelsFrom(surface,
rect,
surfaceColorType,
dstColorType,
buffer,
rowPixelWidth);
}
GrOpsRenderPass* GrGLGpu::onGetOpsRenderPass(
GrRenderTarget* rt,
bool useMultisampleFBO,
GrAttachment*,
GrSurfaceOrigin origin,
const SkIRect& bounds,
const GrOpsRenderPass::LoadAndStoreInfo& colorInfo,
const GrOpsRenderPass::StencilLoadAndStoreInfo& stencilInfo,
const SkTArray<GrSurfaceProxy*, true>& sampledProxies,
GrXferBarrierFlags renderPassXferBarriers) {
if (!fCachedOpsRenderPass) {
fCachedOpsRenderPass = std::make_unique<GrGLOpsRenderPass>(this);
}
if (useMultisampleFBO && rt->numSamples() == 1) {
// We will be using dynamic msaa. Ensure there is an attachment.
auto glRT = static_cast<GrGLRenderTarget*>(rt);
if (!glRT->ensureDynamicMSAAAttachment()) {
SkDebugf("WARNING: Failed to make dmsaa attachment. Render pass will be dropped.");
return nullptr;
}
}
fCachedOpsRenderPass->set(rt, useMultisampleFBO, bounds, origin, colorInfo, stencilInfo);
return fCachedOpsRenderPass.get();
}
void GrGLGpu::flushRenderTarget(GrGLRenderTarget* target, bool useMultisampleFBO,
GrSurfaceOrigin origin, const SkIRect& bounds) {
this->flushRenderTargetNoColorWrites(target, useMultisampleFBO);
this->didWriteToSurface(target, origin, &bounds);
}
void GrGLGpu::flushRenderTarget(GrGLRenderTarget* target, bool useMultisampleFBO) {
this->flushRenderTargetNoColorWrites(target, useMultisampleFBO);
this->didWriteToSurface(target, kTopLeft_GrSurfaceOrigin, nullptr);
}
void GrGLGpu::flushRenderTargetNoColorWrites(GrGLRenderTarget* target, bool useMultisampleFBO) {
SkASSERT(target);
GrGpuResource::UniqueID rtID = target->uniqueID();
if (fHWBoundRenderTargetUniqueID != rtID || fHWBoundFramebufferIsMSAA != useMultisampleFBO) {
this->bindFramebuffer(GR_GL_FRAMEBUFFER, (useMultisampleFBO) ? target->multisampleFBOID()
: target->singleSampleFBOID());
#ifdef SK_DEBUG
// don't do this check in Chromium -- this is causing
// lots of repeated command buffer flushes when the compositor is
// rendering with Ganesh, which is really slow; even too slow for
// Debug mode.
if (!this->glCaps().skipErrorChecks()) {
GrGLenum status;
GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER));
if (status != GR_GL_FRAMEBUFFER_COMPLETE) {
SkDebugf("GrGLGpu::flushRenderTargetNoColorWrites glCheckFramebufferStatus %x\n",
status);
}
}
#endif
fHWBoundRenderTargetUniqueID = rtID;
fHWBoundFramebufferIsMSAA = useMultisampleFBO;
this->flushViewport(SkIRect::MakeSize(target->dimensions()),
target->height(),
kTopLeft_GrSurfaceOrigin); // the origin is irrelevant in this case
}
if (this->caps()->workarounds().force_update_scissor_state_when_binding_fbo0) {
// The driver forgets the correct scissor state when using FBO 0.
if (!fHWScissorSettings.fRect.isInvalid()) {
const GrNativeRect& r = fHWScissorSettings.fRect;
GL_CALL(Scissor(r.fX, r.fY, r.fWidth, r.fHeight));
}
if (fHWScissorSettings.fEnabled == kYes_TriState) {
GL_CALL(Disable(GR_GL_SCISSOR_TEST));
GL_CALL(Enable(GR_GL_SCISSOR_TEST));
} else if (fHWScissorSettings.fEnabled == kNo_TriState) {
GL_CALL(Enable(GR_GL_SCISSOR_TEST));
GL_CALL(Disable(GR_GL_SCISSOR_TEST));
}
}
if (this->glCaps().srgbWriteControl()) {
this->flushFramebufferSRGB(this->caps()->isFormatSRGB(target->backendFormat()));
}
if (this->glCaps().shouldQueryImplementationReadSupport(target->format())) {
GrGLint format;
GrGLint type;
GR_GL_GetIntegerv(this->glInterface(), GR_GL_IMPLEMENTATION_COLOR_READ_FORMAT, &format);
GR_GL_GetIntegerv(this->glInterface(), GR_GL_IMPLEMENTATION_COLOR_READ_TYPE, &type);
this->glCaps().didQueryImplementationReadSupport(target->format(), format, type);
}
}
void GrGLGpu::flushFramebufferSRGB(bool enable) {
if (enable && kYes_TriState != fHWSRGBFramebuffer) {
GL_CALL(Enable(GR_GL_FRAMEBUFFER_SRGB));
fHWSRGBFramebuffer = kYes_TriState;
} else if (!enable && kNo_TriState != fHWSRGBFramebuffer) {
GL_CALL(Disable(GR_GL_FRAMEBUFFER_SRGB));
fHWSRGBFramebuffer = kNo_TriState;
}
}
GrGLenum GrGLGpu::prepareToDraw(GrPrimitiveType primitiveType) {
fStats.incNumDraws();
if (this->glCaps().requiresCullFaceEnableDisableWhenDrawingLinesAfterNonLines() &&
GrIsPrimTypeLines(primitiveType) && !GrIsPrimTypeLines(fLastPrimitiveType)) {
GL_CALL(Enable(GR_GL_CULL_FACE));
GL_CALL(Disable(GR_GL_CULL_FACE));
}
fLastPrimitiveType = primitiveType;
switch (primitiveType) {
case GrPrimitiveType::kTriangles:
return GR_GL_TRIANGLES;
case GrPrimitiveType::kTriangleStrip:
return GR_GL_TRIANGLE_STRIP;
case GrPrimitiveType::kPoints:
return GR_GL_POINTS;
case GrPrimitiveType::kLines:
return GR_GL_LINES;
case GrPrimitiveType::kLineStrip:
return GR_GL_LINE_STRIP;
case GrPrimitiveType::kPatches:
return GR_GL_PATCHES;
case GrPrimitiveType::kPath:
SK_ABORT("non-mesh-based GrPrimitiveType");
return 0;
}
SK_ABORT("invalid GrPrimitiveType");
}
void GrGLGpu::onResolveRenderTarget(GrRenderTarget* target, const SkIRect& resolveRect) {
auto glRT = static_cast<GrGLRenderTarget*>(target);
if (this->glCaps().framebufferResolvesMustBeFullSize()) {
this->resolveRenderFBOs(glRT, SkIRect::MakeSize(glRT->dimensions()),
ResolveDirection::kMSAAToSingle);
} else {
this->resolveRenderFBOs(glRT, resolveRect, ResolveDirection::kMSAAToSingle);
}
}
void GrGLGpu::resolveRenderFBOs(GrGLRenderTarget* rt, const SkIRect& resolveRect,
ResolveDirection resolveDirection,
bool invalidateReadBufferAfterBlit) {
this->handleDirtyContext();
// If the multisample FBO is nonzero, it means we always have something to resolve (even if the
// single sample buffer is FBO 0). If it's zero, then there's nothing to resolve.
SkASSERT(rt->multisampleFBOID() != 0);
const GrGLCaps& caps = this->glCaps();
if (resolveDirection == ResolveDirection::kMSAAToSingle) {
this->bindFramebuffer(GR_GL_READ_FRAMEBUFFER, rt->multisampleFBOID());
this->bindFramebuffer(GR_GL_DRAW_FRAMEBUFFER, rt->singleSampleFBOID());
} else {
SkASSERT(resolveDirection == ResolveDirection::kSingleToMSAA);
SkASSERT(this->glCaps().canResolveSingleToMSAA());
this->bindFramebuffer(GR_GL_READ_FRAMEBUFFER, rt->singleSampleFBOID());
this->bindFramebuffer(GR_GL_DRAW_FRAMEBUFFER, rt->multisampleFBOID());
}
// make sure we go through flushRenderTarget() since we've modified
// the bound DRAW FBO ID.
fHWBoundRenderTargetUniqueID.makeInvalid();
if (GrGLCaps::kES_Apple_MSFBOType == caps.msFBOType()) {
// The Apple extension doesn't support blitting from single to multisample.
SkASSERT(resolveDirection != ResolveDirection::kSingleToMSAA);
SkASSERT(resolveRect == SkIRect::MakeSize(rt->dimensions()));
// Apple's extension uses the scissor as the blit bounds.
// Passing in kTopLeft_GrSurfaceOrigin will make sure no transformation of the rect
// happens inside flushScissor since resolveRect is already in native device coordinates.
GrScissorState scissor(rt->dimensions());
SkAssertResult(scissor.set(resolveRect));
this->flushScissor(scissor, rt->height(), kTopLeft_GrSurfaceOrigin);
this->disableWindowRectangles();
GL_CALL(ResolveMultisampleFramebuffer());
} else {
SkASSERT(!caps.framebufferResolvesMustBeFullSize() ||
resolveRect == SkIRect::MakeSize(rt->dimensions()));
int l = resolveRect.x();
int b = resolveRect.y();
int r = resolveRect.x() + resolveRect.width();
int t = resolveRect.y() + resolveRect.height();
// BlitFrameBuffer respects the scissor, so disable it.
this->flushScissorTest(GrScissorTest::kDisabled);
this->disableWindowRectangles();
GL_CALL(BlitFramebuffer(l, b, r, t, l, b, r, t, GR_GL_COLOR_BUFFER_BIT, GR_GL_NEAREST));
}
if (caps.invalidateFBType() != GrGLCaps::kNone_InvalidateFBType &&
invalidateReadBufferAfterBlit) {
// Invalidate the read FBO attachment after the blit, in hopes that this allows the driver
// to perform tiling optimizations.
GrGLenum colorDiscardAttachment = (rt->multisampleFBOID() == 0) ? GR_GL_COLOR
: GR_GL_COLOR_ATTACHMENT0;
if (caps.invalidateFBType() == GrGLCaps::kInvalidate_InvalidateFBType) {
GL_CALL(InvalidateFramebuffer(GR_GL_READ_FRAMEBUFFER, 1, &colorDiscardAttachment));
} else {
SkASSERT(caps.invalidateFBType() == GrGLCaps::kDiscard_InvalidateFBType);
// glDiscardFramebuffer only accepts GL_FRAMEBUFFER.
GrGLuint discardFBO = (resolveDirection == ResolveDirection::kMSAAToSingle)
? rt->multisampleFBOID() : rt->singleSampleFBOID();
this->bindFramebuffer(GR_GL_FRAMEBUFFER, discardFBO);
GL_CALL(DiscardFramebuffer(GR_GL_FRAMEBUFFER, 1, &colorDiscardAttachment));
}
}
}
namespace {
GrGLenum gr_to_gl_stencil_op(GrStencilOp op) {
static const GrGLenum gTable[kGrStencilOpCount] = {
GR_GL_KEEP, // kKeep
GR_GL_ZERO, // kZero
GR_GL_REPLACE, // kReplace
GR_GL_INVERT, // kInvert
GR_GL_INCR_WRAP, // kIncWrap
GR_GL_DECR_WRAP, // kDecWrap
GR_GL_INCR, // kIncClamp
GR_GL_DECR, // kDecClamp
};
static_assert(0 == (int)GrStencilOp::kKeep);
static_assert(1 == (int)GrStencilOp::kZero);
static_assert(2 == (int)GrStencilOp::kReplace);
static_assert(3 == (int)GrStencilOp::kInvert);
static_assert(4 == (int)GrStencilOp::kIncWrap);
static_assert(5 == (int)GrStencilOp::kDecWrap);
static_assert(6 == (int)GrStencilOp::kIncClamp);
static_assert(7 == (int)GrStencilOp::kDecClamp);
SkASSERT(op < (GrStencilOp)kGrStencilOpCount);
return gTable[(int)op];
}
void set_gl_stencil(const GrGLInterface* gl,
const GrStencilSettings::Face& face,
GrGLenum glFace) {
GrGLenum glFunc = GrToGLStencilFunc(face.fTest);
GrGLenum glFailOp = gr_to_gl_stencil_op(face.fFailOp);
GrGLenum glPassOp = gr_to_gl_stencil_op(face.fPassOp);
GrGLint ref = face.fRef;
GrGLint mask = face.fTestMask;
GrGLint writeMask = face.fWriteMask;
if (GR_GL_FRONT_AND_BACK == glFace) {
// we call the combined func just in case separate stencil is not
// supported.
GR_GL_CALL(gl, StencilFunc(glFunc, ref, mask));
GR_GL_CALL(gl, StencilMask(writeMask));
GR_GL_CALL(gl, StencilOp(glFailOp, GR_GL_KEEP, glPassOp));
} else {
GR_GL_CALL(gl, StencilFuncSeparate(glFace, glFunc, ref, mask));
GR_GL_CALL(gl, StencilMaskSeparate(glFace, writeMask));
GR_GL_CALL(gl, StencilOpSeparate(glFace, glFailOp, GR_GL_KEEP, glPassOp));
}
}
} // namespace
void GrGLGpu::flushStencil(const GrStencilSettings& stencilSettings, GrSurfaceOrigin origin) {
if (stencilSettings.isDisabled()) {
this->disableStencil();
} else if (fHWStencilSettings != stencilSettings ||
(stencilSettings.isTwoSided() && fHWStencilOrigin != origin)) {
if (kYes_TriState != fHWStencilTestEnabled) {
GL_CALL(Enable(GR_GL_STENCIL_TEST));
fHWStencilTestEnabled = kYes_TriState;
}
if (!stencilSettings.isTwoSided()) {
set_gl_stencil(this->glInterface(), stencilSettings.singleSidedFace(),
GR_GL_FRONT_AND_BACK);
} else {
set_gl_stencil(this->glInterface(), stencilSettings.postOriginCWFace(origin),
GR_GL_FRONT);
set_gl_stencil(this->glInterface(), stencilSettings.postOriginCCWFace(origin),
GR_GL_BACK);
}
fHWStencilSettings = stencilSettings;
fHWStencilOrigin = origin;
}
}
void GrGLGpu::disableStencil() {
if (kNo_TriState != fHWStencilTestEnabled) {
GL_CALL(Disable(GR_GL_STENCIL_TEST));
fHWStencilTestEnabled = kNo_TriState;
fHWStencilSettings.invalidate();
}
}
void GrGLGpu::flushHWAAState(GrRenderTarget* rt, bool useHWAA) {
// rt is only optional if useHWAA is false.
SkASSERT(rt || !useHWAA);
SkASSERT(!useHWAA || rt->numSamples() > 1 ||
static_cast<GrGLRenderTarget*>(rt)->multisampleFBOID());
if (this->caps()->multisampleDisableSupport()) {
if (useHWAA) {
if (kYes_TriState != fMSAAEnabled) {
GL_CALL(Enable(GR_GL_MULTISAMPLE));
fMSAAEnabled = kYes_TriState;
}
} else {
if (kNo_TriState != fMSAAEnabled) {
GL_CALL(Disable(GR_GL_MULTISAMPLE));
fMSAAEnabled = kNo_TriState;
}
}
}
}
void GrGLGpu::flushConservativeRasterState(bool enabled) {
if (this->caps()->conservativeRasterSupport()) {
if (enabled) {
if (kYes_TriState != fHWConservativeRasterEnabled) {
GL_CALL(Enable(GR_GL_CONSERVATIVE_RASTERIZATION));
fHWConservativeRasterEnabled = kYes_TriState;
}
} else {
if (kNo_TriState != fHWConservativeRasterEnabled) {
GL_CALL(Disable(GR_GL_CONSERVATIVE_RASTERIZATION));
fHWConservativeRasterEnabled = kNo_TriState;
}
}
}
}
void GrGLGpu::flushWireframeState(bool enabled) {
if (this->caps()->wireframeSupport()) {
if (this->caps()->wireframeMode() || enabled) {
if (kYes_TriState != fHWWireframeEnabled) {
GL_CALL(PolygonMode(GR_GL_FRONT_AND_BACK, GR_GL_LINE));
fHWWireframeEnabled = kYes_TriState;
}
} else {
if (kNo_TriState != fHWWireframeEnabled) {
GL_CALL(PolygonMode(GR_GL_FRONT_AND_BACK, GR_GL_FILL));
fHWWireframeEnabled = kNo_TriState;
}
}
}
}
void GrGLGpu::flushBlendAndColorWrite(
const GrXferProcessor::BlendInfo& blendInfo, const GrSwizzle& swizzle) {
if (this->glCaps().neverDisableColorWrites() && !blendInfo.fWriteColor) {
// We need to work around a driver bug by using a blend state that preserves the dst color,
// rather than disabling color writes.
GrXferProcessor::BlendInfo preserveDstBlend;
preserveDstBlend.fSrcBlend = kZero_GrBlendCoeff;
preserveDstBlend.fDstBlend = kOne_GrBlendCoeff;
this->flushBlendAndColorWrite(preserveDstBlend, swizzle);
return;
}
GrBlendEquation equation = blendInfo.fEquation;
GrBlendCoeff srcCoeff = blendInfo.fSrcBlend;
GrBlendCoeff dstCoeff = blendInfo.fDstBlend;
// Any optimization to disable blending should have already been applied and
// tweaked the equation to "add" or "subtract", and the coeffs to (1, 0).
bool blendOff = GrBlendShouldDisable(equation, srcCoeff, dstCoeff) ||
!blendInfo.fWriteColor;
if (blendOff) {
if (kNo_TriState != fHWBlendState.fEnabled) {
GL_CALL(Disable(GR_GL_BLEND));
// Workaround for the ARM KHR_blend_equation_advanced disable flags issue
// https://code.google.com/p/skia/issues/detail?id=3943
if (this->ctxInfo().vendor() == GrGLVendor::kARM &&
GrBlendEquationIsAdvanced(fHWBlendState.fEquation)) {
SkASSERT(this->caps()->advancedBlendEquationSupport());
// Set to any basic blending equation.
GrBlendEquation blend_equation = kAdd_GrBlendEquation;
GL_CALL(BlendEquation(gXfermodeEquation2Blend[blend_equation]));
fHWBlendState.fEquation = blend_equation;
}
fHWBlendState.fEnabled = kNo_TriState;
}
} else {
if (kYes_TriState != fHWBlendState.fEnabled) {
GL_CALL(Enable(GR_GL_BLEND));
fHWBlendState.fEnabled = kYes_TriState;
}
if (fHWBlendState.fEquation != equation) {
GL_CALL(BlendEquation(gXfermodeEquation2Blend[equation]));
fHWBlendState.fEquation = equation;
}
if (GrBlendEquationIsAdvanced(equation)) {
SkASSERT(this->caps()->advancedBlendEquationSupport());
// Advanced equations have no other blend state.
return;
}
if (fHWBlendState.fSrcCoeff != srcCoeff || fHWBlendState.fDstCoeff != dstCoeff) {
GL_CALL(BlendFunc(gXfermodeCoeff2Blend[srcCoeff],
gXfermodeCoeff2Blend[dstCoeff]));
fHWBlendState.fSrcCoeff = srcCoeff;
fHWBlendState.fDstCoeff = dstCoeff;
}
if ((GrBlendCoeffRefsConstant(srcCoeff) || GrBlendCoeffRefsConstant(dstCoeff))) {
SkPMColor4f blendConst = swizzle.applyTo(blendInfo.fBlendConstant);
if (!fHWBlendState.fConstColorValid || fHWBlendState.fConstColor != blendConst) {
GL_CALL(BlendColor(blendConst.fR, blendConst.fG, blendConst.fB, blendConst.fA));
fHWBlendState.fConstColor = blendConst;
fHWBlendState.fConstColorValid = true;
}
}
}
this->flushColorWrite(blendInfo.fWriteColor);
}
void GrGLGpu::bindTexture(int unitIdx, GrSamplerState samplerState, const GrSwizzle& swizzle,
GrGLTexture* texture) {
SkASSERT(texture);
#ifdef SK_DEBUG
if (!this->caps()->npotTextureTileSupport()) {
if (samplerState.isRepeatedX()) {
const int w = texture->width();
SkASSERT(SkIsPow2(w));
}
if (samplerState.isRepeatedY()) {
const int h = texture->height();
SkASSERT(SkIsPow2(h));
}
}
#endif
GrGpuResource::UniqueID textureID = texture->uniqueID();
GrGLenum target = texture->target();
if (fHWTextureUnitBindings[unitIdx].boundID(target) != textureID) {
this->setTextureUnit(unitIdx);
GL_CALL(BindTexture(target, texture->textureID()));
fHWTextureUnitBindings[unitIdx].setBoundID(target, textureID);
}
if (samplerState.mipmapped() == GrMipmapped::kYes) {
if (!this->caps()->mipmapSupport() || texture->mipmapped() == GrMipmapped::kNo) {
samplerState.setMipmapMode(GrSamplerState::MipmapMode::kNone);
} else {
SkASSERT(!texture->mipmapsAreDirty());
}
}
auto timestamp = texture->parameters()->resetTimestamp();
bool setAll = timestamp < fResetTimestampForTextureParameters;
const GrGLTextureParameters::SamplerOverriddenState* samplerStateToRecord = nullptr;
GrGLTextureParameters::SamplerOverriddenState newSamplerState;
if (this->glCaps().useSamplerObjects()) {
fSamplerObjectCache->bindSampler(unitIdx, samplerState);
if (this->glCaps().mustSetAnyTexParameterToEnableMipmapping()) {
if (samplerState.mipmapped() == GrMipmapped::kYes) {
GrGLenum minFilter = filter_to_gl_min_filter(samplerState.filter(),
samplerState.mipmapMode());
const GrGLTextureParameters::SamplerOverriddenState& oldSamplerState =
texture->parameters()->samplerOverriddenState();
this->setTextureUnit(unitIdx);
GL_CALL(TexParameteri(target, GR_GL_TEXTURE_MIN_FILTER, minFilter));
newSamplerState = oldSamplerState;
newSamplerState.fMinFilter = minFilter;
samplerStateToRecord = &newSamplerState;
}
}
} else {
if (fSamplerObjectCache) {
fSamplerObjectCache->unbindSampler(unitIdx);
}
const GrGLTextureParameters::SamplerOverriddenState& oldSamplerState =
texture->parameters()->samplerOverriddenState();
samplerStateToRecord = &newSamplerState;
newSamplerState.fMinFilter = filter_to_gl_min_filter(samplerState.filter(),
samplerState.mipmapMode());
newSamplerState.fMagFilter = filter_to_gl_mag_filter(samplerState.filter());
newSamplerState.fWrapS = wrap_mode_to_gl_wrap(samplerState.wrapModeX(), this->glCaps());
newSamplerState.fWrapT = wrap_mode_to_gl_wrap(samplerState.wrapModeY(), this->glCaps());
// These are the OpenGL default values.
newSamplerState.fMinLOD = -1000.f;
newSamplerState.fMaxLOD = 1000.f;
if (setAll || newSamplerState.fMagFilter != oldSamplerState.fMagFilter) {
this->setTextureUnit(unitIdx);
GL_CALL(TexParameteri(target, GR_GL_TEXTURE_MAG_FILTER, newSamplerState.fMagFilter));
}
if (setAll || newSamplerState.fMinFilter != oldSamplerState.fMinFilter) {
this->setTextureUnit(unitIdx);
GL_CALL(TexParameteri(target, GR_GL_TEXTURE_MIN_FILTER, newSamplerState.fMinFilter));
}
if (this->glCaps().mipmapLodControlSupport()) {
if (setAll || newSamplerState.fMinLOD != oldSamplerState.fMinLOD) {
this->setTextureUnit(unitIdx);
GL_CALL(TexParameterf(target, GR_GL_TEXTURE_MIN_LOD, newSamplerState.fMinLOD));
}
if (setAll || newSamplerState.fMaxLOD != oldSamplerState.fMaxLOD) {
this->setTextureUnit(unitIdx);
GL_CALL(TexParameterf(target, GR_GL_TEXTURE_MAX_LOD, newSamplerState.fMaxLOD));
}
}
if (setAll || newSamplerState.fWrapS != oldSamplerState.fWrapS) {
this->setTextureUnit(unitIdx);
GL_CALL(TexParameteri(target, GR_GL_TEXTURE_WRAP_S, newSamplerState.fWrapS));
}
if (setAll || newSamplerState.fWrapT != oldSamplerState.fWrapT) {
this->setTextureUnit(unitIdx);
GL_CALL(TexParameteri(target, GR_GL_TEXTURE_WRAP_T, newSamplerState.fWrapT));
}
if (this->glCaps().clampToBorderSupport()) {
// Make sure the border color is transparent black (the default)
if (setAll || oldSamplerState.fBorderColorInvalid) {
this->setTextureUnit(unitIdx);
static const GrGLfloat kTransparentBlack[4] = {0.f, 0.f, 0.f, 0.f};
GL_CALL(TexParameterfv(target, GR_GL_TEXTURE_BORDER_COLOR, kTransparentBlack));
}
}
}
GrGLTextureParameters::NonsamplerState newNonsamplerState;
newNonsamplerState.fBaseMipMapLevel = 0;
newNonsamplerState.fMaxMipmapLevel = texture->maxMipmapLevel();
newNonsamplerState.fSwizzleIsRGBA = true;
const GrGLTextureParameters::NonsamplerState& oldNonsamplerState =
texture->parameters()->nonsamplerState();
if (this->glCaps().textureSwizzleSupport()) {
if (setAll || !oldNonsamplerState.fSwizzleIsRGBA) {
static constexpr GrGLenum kRGBA[4] {
GR_GL_RED,
GR_GL_GREEN,
GR_GL_BLUE,
GR_GL_ALPHA
};
this->setTextureUnit(unitIdx);
if (GR_IS_GR_GL(this->glStandard())) {
static_assert(sizeof(kRGBA[0]) == sizeof(GrGLint));
GL_CALL(TexParameteriv(target, GR_GL_TEXTURE_SWIZZLE_RGBA,
reinterpret_cast<const GrGLint*>(kRGBA)));
} else if (GR_IS_GR_GL_ES(this->glStandard())) {
// ES3 added swizzle support but not GL_TEXTURE_SWIZZLE_RGBA.
GL_CALL(TexParameteri(target, GR_GL_TEXTURE_SWIZZLE_R, kRGBA[0]));
GL_CALL(TexParameteri(target, GR_GL_TEXTURE_SWIZZLE_G, kRGBA[1]));
GL_CALL(TexParameteri(target, GR_GL_TEXTURE_SWIZZLE_B, kRGBA[2]));
GL_CALL(TexParameteri(target, GR_GL_TEXTURE_SWIZZLE_A, kRGBA[3]));
}
}
}
// These are not supported in ES2 contexts
if (this->glCaps().mipmapLevelControlSupport() &&
(texture->textureType() != GrTextureType::kExternal ||
!this->glCaps().dontSetBaseOrMaxLevelForExternalTextures())) {
if (newNonsamplerState.fBaseMipMapLevel != oldNonsamplerState.fBaseMipMapLevel) {
this->setTextureUnit(unitIdx);
GL_CALL(TexParameteri(target, GR_GL_TEXTURE_BASE_LEVEL,
newNonsamplerState.fBaseMipMapLevel));
}
if (newNonsamplerState.fMaxMipmapLevel != oldNonsamplerState.fMaxMipmapLevel) {
this->setTextureUnit(unitIdx);
GL_CALL(TexParameteri(target, GR_GL_TEXTURE_MAX_LEVEL,
newNonsamplerState.fMaxMipmapLevel));
}
}
texture->parameters()->set(samplerStateToRecord, newNonsamplerState,
fResetTimestampForTextureParameters);
}
void GrGLGpu::onResetTextureBindings() {
static constexpr GrGLenum kTargets[] = {GR_GL_TEXTURE_2D, GR_GL_TEXTURE_RECTANGLE,
GR_GL_TEXTURE_EXTERNAL};
for (int i = 0; i < this->numTextureUnits(); ++i) {
this->setTextureUnit(i);
for (auto target : kTargets) {
if (fHWTextureUnitBindings[i].hasBeenModified(target)) {
GL_CALL(BindTexture(target, 0));
}
}
fHWTextureUnitBindings[i].invalidateAllTargets(true);
}
}
void GrGLGpu::flushPatchVertexCount(uint8_t count) {
SkASSERT(this->caps()->shaderCaps()->tessellationSupport());
if (fHWPatchVertexCount != count) {
GL_CALL(PatchParameteri(GR_GL_PATCH_VERTICES, count));
fHWPatchVertexCount = count;
}
}
void GrGLGpu::flushColorWrite(bool writeColor) {
if (!writeColor) {
if (kNo_TriState != fHWWriteToColor) {
GL_CALL(ColorMask(GR_GL_FALSE, GR_GL_FALSE,
GR_GL_FALSE, GR_GL_FALSE));
fHWWriteToColor = kNo_TriState;
}
} else {
if (kYes_TriState != fHWWriteToColor) {
GL_CALL(ColorMask(GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE));
fHWWriteToColor = kYes_TriState;
}
}
}
void GrGLGpu::flushClearColor(std::array<float, 4> color) {
GrGLfloat r = color[0], g = color[1], b = color[2], a = color[3];
if (this->glCaps().clearToBoundaryValuesIsBroken() &&
(1 == r || 0 == r) && (1 == g || 0 == g) && (1 == b || 0 == b) && (1 == a || 0 == a)) {
static const GrGLfloat safeAlpha1 = nextafter(1.f, 2.f);
static const GrGLfloat safeAlpha0 = nextafter(0.f, -1.f);
a = (1 == a) ? safeAlpha1 : safeAlpha0;
}
if (r != fHWClearColor[0] || g != fHWClearColor[1] ||
b != fHWClearColor[2] || a != fHWClearColor[3]) {
GL_CALL(ClearColor(r, g, b, a));
fHWClearColor[0] = r;
fHWClearColor[1] = g;
fHWClearColor[2] = b;
fHWClearColor[3] = a;
}
}
void GrGLGpu::setTextureUnit(int unit) {
SkASSERT(unit >= 0 && unit < this->numTextureUnits());
if (unit != fHWActiveTextureUnitIdx) {
GL_CALL(ActiveTexture(GR_GL_TEXTURE0 + unit));
fHWActiveTextureUnitIdx = unit;
}
}
void GrGLGpu::bindTextureToScratchUnit(GrGLenum target, GrGLint textureID) {
// Bind the last texture unit since it is the least likely to be used by GrGLProgram.
int lastUnitIdx = this->numTextureUnits() - 1;
if (lastUnitIdx != fHWActiveTextureUnitIdx) {
GL_CALL(ActiveTexture(GR_GL_TEXTURE0 + lastUnitIdx));
fHWActiveTextureUnitIdx = lastUnitIdx;
}
// Clear out the this field so that if a GrGLProgram does use this unit it will rebind the
// correct texture.
fHWTextureUnitBindings[lastUnitIdx].invalidateForScratchUse(target);
GL_CALL(BindTexture(target, textureID));
}
// Determines whether glBlitFramebuffer could be used between src and dst by onCopySurface.
static inline bool can_blit_framebuffer_for_copy_surface(const GrSurface* dst,
const GrSurface* src,
const SkIRect& srcRect,
const SkIPoint& dstPoint,
const GrGLCaps& caps) {
int dstSampleCnt = 0;
int srcSampleCnt = 0;
if (const GrRenderTarget* rt = dst->asRenderTarget()) {
dstSampleCnt = rt->numSamples();
}
if (const GrRenderTarget* rt = src->asRenderTarget()) {
srcSampleCnt = rt->numSamples();
}
SkASSERT((dstSampleCnt > 0) == SkToBool(dst->asRenderTarget()));
SkASSERT((srcSampleCnt > 0) == SkToBool(src->asRenderTarget()));
GrGLFormat dstFormat = dst->backendFormat().asGLFormat();
GrGLFormat srcFormat = src->backendFormat().asGLFormat();
const GrGLTexture* dstTex = static_cast<const GrGLTexture*>(dst->asTexture());
const GrGLTexture* srcTex = static_cast<const GrGLTexture*>(src->asTexture());
GrTextureType dstTexType;
GrTextureType* dstTexTypePtr = nullptr;
GrTextureType srcTexType;
GrTextureType* srcTexTypePtr = nullptr;
if (dstTex) {
dstTexType = dstTex->textureType();
dstTexTypePtr = &dstTexType;
}
if (srcTex) {
srcTexType = srcTex->textureType();
srcTexTypePtr = &srcTexType;
}
return caps.canCopyAsBlit(dstFormat, dstSampleCnt, dstTexTypePtr,
srcFormat, srcSampleCnt, srcTexTypePtr,
src->getBoundsRect(), true, srcRect, dstPoint);
}
static bool rt_has_msaa_render_buffer(const GrGLRenderTarget* rt, const GrGLCaps& glCaps) {
// A RT has a separate MSAA renderbuffer if:
// 1) It's multisampled
// 2) We're using an extension with separate MSAA renderbuffers
// 3) It's not FBO 0, which is special and always auto-resolves
return rt->numSamples() > 1 && glCaps.usesMSAARenderBuffers() && rt->multisampleFBOID() != 0;
}
static inline bool can_copy_texsubimage(const GrSurface* dst, const GrSurface* src,
const GrGLCaps& caps) {
const GrGLRenderTarget* dstRT = static_cast<const GrGLRenderTarget*>(dst->asRenderTarget());
const GrGLRenderTarget* srcRT = static_cast<const GrGLRenderTarget*>(src->asRenderTarget());
const GrGLTexture* dstTex = static_cast<const GrGLTexture*>(dst->asTexture());
const GrGLTexture* srcTex = static_cast<const GrGLTexture*>(src->asTexture());
bool dstHasMSAARenderBuffer = dstRT ? rt_has_msaa_render_buffer(dstRT, caps) : false;
bool srcHasMSAARenderBuffer = srcRT ? rt_has_msaa_render_buffer(srcRT, caps) : false;
GrGLFormat dstFormat = dst->backendFormat().asGLFormat();
GrGLFormat srcFormat = src->backendFormat().asGLFormat();
GrTextureType dstTexType;
GrTextureType* dstTexTypePtr = nullptr;
GrTextureType srcTexType;
GrTextureType* srcTexTypePtr = nullptr;
if (dstTex) {
dstTexType = dstTex->textureType();
dstTexTypePtr = &dstTexType;
}
if (srcTex) {
srcTexType = srcTex->textureType();
srcTexTypePtr = &srcTexType;
}
return caps.canCopyTexSubImage(dstFormat, dstHasMSAARenderBuffer, dstTexTypePtr,
srcFormat, srcHasMSAARenderBuffer, srcTexTypePtr);
}
void GrGLGpu::bindSurfaceFBOForPixelOps(GrSurface* surface, int mipLevel, GrGLenum fboTarget,
TempFBOTarget tempFBOTarget) {
GrGLRenderTarget* rt = static_cast<GrGLRenderTarget*>(surface->asRenderTarget());
if (!rt || mipLevel > 0) {
SkASSERT(surface->asTexture());
GrGLTexture* texture = static_cast<GrGLTexture*>(surface->asTexture());
GrGLuint texID = texture->textureID();
GrGLenum target = texture->target();
GrGLuint* tempFBOID;
tempFBOID = kSrc_TempFBOTarget == tempFBOTarget ? &fTempSrcFBOID : &fTempDstFBOID;
if (0 == *tempFBOID) {
GR_GL_CALL(this->glInterface(), GenFramebuffers(1, tempFBOID));
}
this->bindFramebuffer(fboTarget, *tempFBOID);
GR_GL_CALL(
this->glInterface(),
FramebufferTexture2D(fboTarget, GR_GL_COLOR_ATTACHMENT0, target, texID, mipLevel));
if (mipLevel == 0) {
texture->baseLevelWasBoundToFBO();
}
} else if (rt->numSamples() > 1) {
this->bindFramebuffer(fboTarget, rt->multisampleFBOID());
} else {
this->bindFramebuffer(fboTarget, rt->singleSampleFBOID());
}
}
void GrGLGpu::unbindSurfaceFBOForPixelOps(GrSurface* surface, int mipLevel, GrGLenum fboTarget) {
// bindSurfaceFBOForPixelOps temporarily binds textures that are not render targets to
if (mipLevel > 0 || !surface->asRenderTarget()) {
SkASSERT(surface->asTexture());
GrGLenum textureTarget = static_cast<GrGLTexture*>(surface->asTexture())->target();
GR_GL_CALL(this->glInterface(), FramebufferTexture2D(fboTarget,
GR_GL_COLOR_ATTACHMENT0,
textureTarget,
0,
0));
}
}
void GrGLGpu::onFBOChanged() {
if (this->caps()->workarounds().flush_on_framebuffer_change) {
this->flush(FlushType::kForce);
}
#ifdef SK_DEBUG
if (fIsExecutingCommandBuffer_DebugOnly) {
SkDebugf("WARNING: GL FBO binding changed while executing a command buffer. "
"This will severely hurt performance.\n");
}
#endif
}
void GrGLGpu::bindFramebuffer(GrGLenum target, GrGLuint fboid) {
GL_CALL(BindFramebuffer(target, fboid));
if (target == GR_GL_FRAMEBUFFER || target == GR_GL_DRAW_FRAMEBUFFER) {
fBoundDrawFramebuffer = fboid;
}
this->onFBOChanged();
}
void GrGLGpu::deleteFramebuffer(GrGLuint fboid) {
// We're relying on the GL state shadowing being correct in the workaround code below so we
// need to handle a dirty context.
this->handleDirtyContext();
if (fboid == fBoundDrawFramebuffer &&
this->caps()->workarounds().unbind_attachments_on_bound_render_fbo_delete) {
// This workaround only applies to deleting currently bound framebuffers
// on Adreno 420. Because this is a somewhat rare case, instead of
// tracking all the attachments of every framebuffer instead just always
// unbind all attachments.
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_COLOR_ATTACHMENT0,
GR_GL_RENDERBUFFER, 0));
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_STENCIL_ATTACHMENT,
GR_GL_RENDERBUFFER, 0));
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_DEPTH_ATTACHMENT,
GR_GL_RENDERBUFFER, 0));
}
GL_CALL(DeleteFramebuffers(1, &fboid));
// Deleting the currently bound framebuffer rebinds to 0.
if (fboid == fBoundDrawFramebuffer) {
this->onFBOChanged();
}
}
bool GrGLGpu::onCopySurface(GrSurface* dst, GrSurface* src, const SkIRect& srcRect,
const SkIPoint& dstPoint) {
// Don't prefer copying as a draw if the dst doesn't already have a FBO object.
// This implicitly handles this->glCaps().useDrawInsteadOfAllRenderTargetWrites().
bool preferCopy = SkToBool(dst->asRenderTarget());
auto dstFormat = dst->backendFormat().asGLFormat();
if (preferCopy && this->glCaps().canCopyAsDraw(dstFormat, SkToBool(src->asTexture()))) {
GrRenderTarget* dstRT = dst->asRenderTarget();
bool drawToMultisampleFBO = dstRT && dstRT->numSamples() > 1;
if (this->copySurfaceAsDraw(dst, drawToMultisampleFBO, src, srcRect, dstPoint)) {
return true;
}
}
if (can_copy_texsubimage(dst, src, this->glCaps())) {
this->copySurfaceAsCopyTexSubImage(dst, src, srcRect, dstPoint);
return true;
}
if (can_blit_framebuffer_for_copy_surface(dst, src, srcRect, dstPoint, this->glCaps())) {
return this->copySurfaceAsBlitFramebuffer(dst, src, srcRect, dstPoint);
}
if (!preferCopy && this->glCaps().canCopyAsDraw(dstFormat, SkToBool(src->asTexture()))) {
GrRenderTarget* dstRT = dst->asRenderTarget();
bool drawToMultisampleFBO = dstRT && dstRT->numSamples() > 1;
if (this->copySurfaceAsDraw(dst, drawToMultisampleFBO, src, srcRect, dstPoint)) {
return true;
}
}
return false;
}
bool GrGLGpu::createCopyProgram(GrTexture* srcTex) {
TRACE_EVENT0("skia.gpu", TRACE_FUNC);
int progIdx = TextureToCopyProgramIdx(srcTex);
const GrShaderCaps* shaderCaps = this->caps()->shaderCaps();
GrSLType samplerType = GrSLCombinedSamplerTypeForTextureType(srcTex->textureType());
if (!fCopyProgramArrayBuffer) {
static const GrGLfloat vdata[] = {
0, 0,
0, 1,
1, 0,
1, 1
};
fCopyProgramArrayBuffer = GrGLBuffer::Make(this, sizeof(vdata), GrGpuBufferType::kVertex,
kStatic_GrAccessPattern, vdata);
}
if (!fCopyProgramArrayBuffer) {
return false;
}
SkASSERT(!fCopyPrograms[progIdx].fProgram);
GL_CALL_RET(fCopyPrograms[progIdx].fProgram, CreateProgram());
if (!fCopyPrograms[progIdx].fProgram) {
return false;
}
GrShaderVar aVertex("a_vertex", kHalf2_GrSLType, GrShaderVar::TypeModifier::In);
GrShaderVar uTexCoordXform("u_texCoordXform", kHalf4_GrSLType,
GrShaderVar::TypeModifier::Uniform);
GrShaderVar uPosXform("u_posXform", kHalf4_GrSLType, GrShaderVar::TypeModifier::Uniform);
GrShaderVar uTexture("u_texture", samplerType, GrShaderVar::TypeModifier::Uniform);
GrShaderVar vTexCoord("v_texCoord", kHalf2_GrSLType, GrShaderVar::TypeModifier::Out);
GrShaderVar oFragColor("o_FragColor", kHalf4_GrSLType, GrShaderVar::TypeModifier::Out);
SkString vshaderTxt;
if (shaderCaps->noperspectiveInterpolationSupport()) {
if (const char* extension = shaderCaps->noperspectiveInterpolationExtensionString()) {
vshaderTxt.appendf("#extension %s : require\n", extension);
}
vTexCoord.addModifier("noperspective");
}
aVertex.appendDecl(shaderCaps, &vshaderTxt);
vshaderTxt.append(";");
uTexCoordXform.appendDecl(shaderCaps, &vshaderTxt);
vshaderTxt.append(";");
uPosXform.appendDecl(shaderCaps, &vshaderTxt);
vshaderTxt.append(";");
vTexCoord.appendDecl(shaderCaps, &vshaderTxt);
vshaderTxt.append(";");
vshaderTxt.append(
"// Copy Program VS\n"
"void main() {"
" v_texCoord = half2(a_vertex.xy * u_texCoordXform.xy + u_texCoordXform.zw);"
" sk_Position.xy = a_vertex * u_posXform.xy + u_posXform.zw;"
" sk_Position.zw = half2(0, 1);"
"}"
);
SkString fshaderTxt;
if (shaderCaps->noperspectiveInterpolationSupport()) {
if (const char* extension = shaderCaps->noperspectiveInterpolationExtensionString()) {
fshaderTxt.appendf("#extension %s : require\n", extension);
}
}
vTexCoord.setTypeModifier(GrShaderVar::TypeModifier::In);
vTexCoord.appendDecl(shaderCaps, &fshaderTxt);
fshaderTxt.append(";");
uTexture.appendDecl(shaderCaps, &fshaderTxt);
fshaderTxt.append(";");
fshaderTxt.appendf(
"// Copy Program FS\n"
"void main() {"
" sk_FragColor = sample(u_texture, v_texCoord);"
"}"
);
auto errorHandler = this->getContext()->priv().getShaderErrorHandler();
SkSL::String sksl(vshaderTxt.c_str(), vshaderTxt.size());
SkSL::Program::Settings settings;
SkSL::String glsl;
std::unique_ptr<SkSL::Program> program = GrSkSLtoGLSL(this, SkSL::ProgramKind::kVertex,
sksl, settings, &glsl, errorHandler);
GrGLuint vshader = GrGLCompileAndAttachShader(*fGLContext, fCopyPrograms[progIdx].fProgram,
GR_GL_VERTEX_SHADER, glsl, fProgramCache->stats(),
errorHandler);
SkASSERT(program->fInputs == SkSL::Program::Inputs());
sksl.assign(fshaderTxt.c_str(), fshaderTxt.size());
program = GrSkSLtoGLSL(this, SkSL::ProgramKind::kFragment, sksl, settings, &glsl,
errorHandler);
GrGLuint fshader = GrGLCompileAndAttachShader(*fGLContext, fCopyPrograms[progIdx].fProgram,
GR_GL_FRAGMENT_SHADER, glsl,
fProgramCache->stats(), errorHandler);
SkASSERT(program->fInputs == SkSL::Program::Inputs());
GL_CALL(LinkProgram(fCopyPrograms[progIdx].fProgram));
GL_CALL_RET(fCopyPrograms[progIdx].fTextureUniform,
GetUniformLocation(fCopyPrograms[progIdx].fProgram, "u_texture"));
GL_CALL_RET(fCopyPrograms[progIdx].fPosXformUniform,
GetUniformLocation(fCopyPrograms[progIdx].fProgram, "u_posXform"));
GL_CALL_RET(fCopyPrograms[progIdx].fTexCoordXformUniform,
GetUniformLocation(fCopyPrograms[progIdx].fProgram, "u_texCoordXform"));
GL_CALL(BindAttribLocation(fCopyPrograms[progIdx].fProgram, 0, "a_vertex"));
GL_CALL(DeleteShader(vshader));
GL_CALL(DeleteShader(fshader));
return true;
}
bool GrGLGpu::createMipmapProgram(int progIdx) {
const bool oddWidth = SkToBool(progIdx & 0x2);
const bool oddHeight = SkToBool(progIdx & 0x1);
const int numTaps = (oddWidth ? 2 : 1) * (oddHeight ? 2 : 1);
const GrShaderCaps* shaderCaps = this->caps()->shaderCaps();
SkASSERT(!fMipmapPrograms[progIdx].fProgram);
GL_CALL_RET(fMipmapPrograms[progIdx].fProgram, CreateProgram());
if (!fMipmapPrograms[progIdx].fProgram) {
return false;
}
GrShaderVar aVertex("a_vertex", kHalf2_GrSLType, GrShaderVar::TypeModifier::In);
GrShaderVar uTexCoordXform("u_texCoordXform", kHalf4_GrSLType,
GrShaderVar::TypeModifier::Uniform);
GrShaderVar uTexture("u_texture", kTexture2DSampler_GrSLType,
GrShaderVar::TypeModifier::Uniform);
// We need 1, 2, or 4 texture coordinates (depending on parity of each dimension):
GrShaderVar vTexCoords[] = {
GrShaderVar("v_texCoord0", kHalf2_GrSLType, GrShaderVar::TypeModifier::Out),
GrShaderVar("v_texCoord1", kHalf2_GrSLType, GrShaderVar::TypeModifier::Out),
GrShaderVar("v_texCoord2", kHalf2_GrSLType, GrShaderVar::TypeModifier::Out),
GrShaderVar("v_texCoord3", kHalf2_GrSLType, GrShaderVar::TypeModifier::Out),
};
GrShaderVar oFragColor("o_FragColor", kHalf4_GrSLType,GrShaderVar::TypeModifier::Out);
SkString vshaderTxt;
if (shaderCaps->noperspectiveInterpolationSupport()) {
if (const char* extension = shaderCaps->noperspectiveInterpolationExtensionString()) {
vshaderTxt.appendf("#extension %s : require\n", extension);
}
vTexCoords[0].addModifier("noperspective");
vTexCoords[1].addModifier("noperspective");
vTexCoords[2].addModifier("noperspective");
vTexCoords[3].addModifier("noperspective");
}
aVertex.appendDecl(shaderCaps, &vshaderTxt);
vshaderTxt.append(";");
uTexCoordXform.appendDecl(shaderCaps, &vshaderTxt);
vshaderTxt.append(";");
for (int i = 0; i < numTaps; ++i) {
vTexCoords[i].appendDecl(shaderCaps, &vshaderTxt);
vshaderTxt.append(";");
}
vshaderTxt.append(
"// Mipmap Program VS\n"
"void main() {"
" sk_Position.xy = a_vertex * half2(2) - half2(1);"
" sk_Position.zw = half2(0, 1);"
);
// Insert texture coordinate computation:
if (oddWidth && oddHeight) {
vshaderTxt.append(
" v_texCoord0 = a_vertex.xy * u_texCoordXform.yw;"
" v_texCoord1 = a_vertex.xy * u_texCoordXform.yw + half2(u_texCoordXform.x, 0);"
" v_texCoord2 = a_vertex.xy * u_texCoordXform.yw + half2(0, u_texCoordXform.z);"
" v_texCoord3 = a_vertex.xy * u_texCoordXform.yw + u_texCoordXform.xz;"
);
} else if (oddWidth) {
vshaderTxt.append(
" v_texCoord0 = a_vertex.xy * half2(u_texCoordXform.y, 1);"
" v_texCoord1 = a_vertex.xy * half2(u_texCoordXform.y, 1) + half2(u_texCoordXform.x, 0);"
);
} else if (oddHeight) {
vshaderTxt.append(
" v_texCoord0 = a_vertex.xy * half2(1, u_texCoordXform.w);"
" v_texCoord1 = a_vertex.xy * half2(1, u_texCoordXform.w) + half2(0, u_texCoordXform.z);"
);
} else {
vshaderTxt.append(
" v_texCoord0 = a_vertex.xy;"
);
}
vshaderTxt.append("}");
SkString fshaderTxt;
if (shaderCaps->noperspectiveInterpolationSupport()) {
if (const char* extension = shaderCaps->noperspectiveInterpolationExtensionString()) {
fshaderTxt.appendf("#extension %s : require\n", extension);
}
}
for (int i = 0; i < numTaps; ++i) {
vTexCoords[i].setTypeModifier(GrShaderVar::TypeModifier::In);
vTexCoords[i].appendDecl(shaderCaps, &fshaderTxt);
fshaderTxt.append(";");
}
uTexture.appendDecl(shaderCaps, &fshaderTxt);
fshaderTxt.append(";");
fshaderTxt.append(
"// Mipmap Program FS\n"
"void main() {"
);
if (oddWidth && oddHeight) {
fshaderTxt.append(
" sk_FragColor = (sample(u_texture, v_texCoord0) + "
" sample(u_texture, v_texCoord1) + "
" sample(u_texture, v_texCoord2) + "
" sample(u_texture, v_texCoord3)) * 0.25;"
);
} else if (oddWidth || oddHeight) {
fshaderTxt.append(
" sk_FragColor = (sample(u_texture, v_texCoord0) + "
" sample(u_texture, v_texCoord1)) * 0.5;"
);
} else {
fshaderTxt.append(
" sk_FragColor = sample(u_texture, v_texCoord0);"
);
}
fshaderTxt.append("}");
auto errorHandler = this->getContext()->priv().getShaderErrorHandler();
SkSL::String sksl(vshaderTxt.c_str(), vshaderTxt.size());
SkSL::Program::Settings settings;
SkSL::String glsl;
std::unique_ptr<SkSL::Program> program = GrSkSLtoGLSL(this, SkSL::ProgramKind::kVertex,
sksl, settings, &glsl, errorHandler);
GrGLuint vshader = GrGLCompileAndAttachShader(*fGLContext, fMipmapPrograms[progIdx].fProgram,
GR_GL_VERTEX_SHADER, glsl,
fProgramCache->stats(), errorHandler);
SkASSERT(program->fInputs == SkSL::Program::Inputs());
sksl.assign(fshaderTxt.c_str(), fshaderTxt.size());
program = GrSkSLtoGLSL(this, SkSL::ProgramKind::kFragment, sksl, settings, &glsl,
errorHandler);
GrGLuint fshader = GrGLCompileAndAttachShader(*fGLContext, fMipmapPrograms[progIdx].fProgram,
GR_GL_FRAGMENT_SHADER, glsl,
fProgramCache->stats(), errorHandler);
SkASSERT(program->fInputs == SkSL::Program::Inputs());
GL_CALL(LinkProgram(fMipmapPrograms[progIdx].fProgram));
GL_CALL_RET(fMipmapPrograms[progIdx].fTextureUniform,
GetUniformLocation(fMipmapPrograms[progIdx].fProgram, "u_texture"));
GL_CALL_RET(fMipmapPrograms[progIdx].fTexCoordXformUniform,
GetUniformLocation(fMipmapPrograms[progIdx].fProgram, "u_texCoordXform"));
GL_CALL(BindAttribLocation(fMipmapPrograms[progIdx].fProgram, 0, "a_vertex"));
GL_CALL(DeleteShader(vshader));
GL_CALL(DeleteShader(fshader));
return true;
}
bool GrGLGpu::copySurfaceAsDraw(GrSurface* dst, bool drawToMultisampleFBO, GrSurface* src,
const SkIRect& srcRect, const SkIPoint& dstPoint) {
auto* srcTex = static_cast<GrGLTexture*>(src->asTexture());
if (!srcTex) {
return false;
}
// We don't swizzle at all in our copies.
this->bindTexture(0, GrSamplerState::Filter::kNearest, GrSwizzle::RGBA(), srcTex);
if (auto* dstRT = static_cast<GrGLRenderTarget*>(dst->asRenderTarget())) {
this->flushRenderTargetNoColorWrites(dstRT, drawToMultisampleFBO);
} else {
auto* dstTex = static_cast<GrGLTexture*>(src->asTexture());
SkASSERT(dstTex);
SkASSERT(!drawToMultisampleFBO);
if (!this->glCaps().isFormatRenderable(dstTex->format(), 1)) {
return false;
}
this->bindSurfaceFBOForPixelOps(dst, 0, GR_GL_FRAMEBUFFER, kDst_TempFBOTarget);
fHWBoundRenderTargetUniqueID.makeInvalid();
}
int progIdx = TextureToCopyProgramIdx(srcTex);
if (!fCopyPrograms[progIdx].fProgram) {
if (!this->createCopyProgram(srcTex)) {
SkDebugf("Failed to create copy program.\n");
return false;
}
}
this->flushViewport(SkIRect::MakeSize(dst->dimensions()),
dst->height(),
kTopLeft_GrSurfaceOrigin); // the origin is irrelevant in this case
int w = srcRect.width();
int h = srcRect.height();
SkIRect dstRect = SkIRect::MakeXYWH(dstPoint.fX, dstPoint.fY, w, h);
this->flushProgram(fCopyPrograms[progIdx].fProgram);
fHWVertexArrayState.setVertexArrayID(this, 0);
GrGLAttribArrayState* attribs = fHWVertexArrayState.bindInternalVertexArray(this);
attribs->enableVertexArrays(this, 1);
attribs->set(this, 0, fCopyProgramArrayBuffer.get(), kFloat2_GrVertexAttribType,
kFloat2_GrSLType, 2 * sizeof(GrGLfloat), 0);
// dst rect edges in NDC (-1 to 1)
int dw = dst->width();
int dh = dst->height();
GrGLfloat dx0 = 2.f * dstPoint.fX / dw - 1.f;
GrGLfloat dx1 = 2.f * (dstPoint.fX + w) / dw - 1.f;
GrGLfloat dy0 = 2.f * dstPoint.fY / dh - 1.f;
GrGLfloat dy1 = 2.f * (dstPoint.fY + h) / dh - 1.f;
GrGLfloat sx0 = (GrGLfloat)srcRect.fLeft;
GrGLfloat sx1 = (GrGLfloat)(srcRect.fLeft + w);
GrGLfloat sy0 = (GrGLfloat)srcRect.fTop;
GrGLfloat sy1 = (GrGLfloat)(srcRect.fTop + h);
int sw = src->width();
int sh = src->height();
if (srcTex->textureType() != GrTextureType::kRectangle) {
// src rect edges in normalized texture space (0 to 1)
sx0 /= sw;
sx1 /= sw;
sy0 /= sh;
sy1 /= sh;
}
GL_CALL(Uniform4f(fCopyPrograms[progIdx].fPosXformUniform, dx1 - dx0, dy1 - dy0, dx0, dy0));
GL_CALL(Uniform4f(fCopyPrograms[progIdx].fTexCoordXformUniform,
sx1 - sx0, sy1 - sy0, sx0, sy0));
GL_CALL(Uniform1i(fCopyPrograms[progIdx].fTextureUniform, 0));
this->flushBlendAndColorWrite(GrXferProcessor::BlendInfo(), GrSwizzle::RGBA());
this->flushHWAAState(nullptr, false);
this->flushConservativeRasterState(false);
this->flushWireframeState(false);
this->flushScissorTest(GrScissorTest::kDisabled);
this->disableWindowRectangles();
this->disableStencil();
if (this->glCaps().srgbWriteControl()) {
this->flushFramebufferSRGB(true);
}
GL_CALL(DrawArrays(GR_GL_TRIANGLE_STRIP, 0, 4));
this->unbindSurfaceFBOForPixelOps(dst, 0, GR_GL_FRAMEBUFFER);
// The rect is already in device space so we pass in kTopLeft so no flip is done.
this->didWriteToSurface(dst, kTopLeft_GrSurfaceOrigin, &dstRect);
return true;
}
void GrGLGpu::copySurfaceAsCopyTexSubImage(GrSurface* dst, GrSurface* src, const SkIRect& srcRect,
const SkIPoint& dstPoint) {
SkASSERT(can_copy_texsubimage(dst, src, this->glCaps()));
this->bindSurfaceFBOForPixelOps(src, 0, GR_GL_FRAMEBUFFER, kSrc_TempFBOTarget);
GrGLTexture* dstTex = static_cast<GrGLTexture *>(dst->asTexture());
SkASSERT(dstTex);
// We modified the bound FBO
fHWBoundRenderTargetUniqueID.makeInvalid();
this->bindTextureToScratchUnit(dstTex->target(), dstTex->textureID());
GL_CALL(CopyTexSubImage2D(dstTex->target(), 0,
dstPoint.fX, dstPoint.fY,
srcRect.fLeft, srcRect.fTop,
srcRect.width(), srcRect.height()));
this->unbindSurfaceFBOForPixelOps(src, 0, GR_GL_FRAMEBUFFER);
SkIRect dstRect = SkIRect::MakeXYWH(dstPoint.fX, dstPoint.fY,
srcRect.width(), srcRect.height());
// The rect is already in device space so we pass in kTopLeft so no flip is done.
this->didWriteToSurface(dst, kTopLeft_GrSurfaceOrigin, &dstRect);
}
bool GrGLGpu::copySurfaceAsBlitFramebuffer(GrSurface* dst, GrSurface* src, const SkIRect& srcRect,
const SkIPoint& dstPoint) {
SkASSERT(can_blit_framebuffer_for_copy_surface(dst, src, srcRect, dstPoint, this->glCaps()));
SkIRect dstRect = SkIRect::MakeXYWH(dstPoint.fX, dstPoint.fY,
srcRect.width(), srcRect.height());
if (dst == src) {
if (SkIRect::Intersects(dstRect, srcRect)) {
return false;
}
}
this->bindSurfaceFBOForPixelOps(dst, 0, GR_GL_DRAW_FRAMEBUFFER, kDst_TempFBOTarget);
this->bindSurfaceFBOForPixelOps(src, 0, GR_GL_READ_FRAMEBUFFER, kSrc_TempFBOTarget);
// We modified the bound FBO
fHWBoundRenderTargetUniqueID.makeInvalid();
// BlitFrameBuffer respects the scissor, so disable it.
this->flushScissorTest(GrScissorTest::kDisabled);
this->disableWindowRectangles();
GL_CALL(BlitFramebuffer(srcRect.fLeft,
srcRect.fTop,
srcRect.fRight,
srcRect.fBottom,
dstRect.fLeft,
dstRect.fTop,
dstRect.fRight,
dstRect.fBottom,
GR_GL_COLOR_BUFFER_BIT, GR_GL_NEAREST));
this->unbindSurfaceFBOForPixelOps(dst, 0, GR_GL_DRAW_FRAMEBUFFER);
this->unbindSurfaceFBOForPixelOps(src, 0, GR_GL_READ_FRAMEBUFFER);
// The rect is already in device space so we pass in kTopLeft so no flip is done.
this->didWriteToSurface(dst, kTopLeft_GrSurfaceOrigin, &dstRect);
return true;
}
bool GrGLGpu::onRegenerateMipMapLevels(GrTexture* texture) {
auto glTex = static_cast<GrGLTexture*>(texture);
// Mipmaps are only supported on 2D textures:
if (GR_GL_TEXTURE_2D != glTex->target()) {
return false;
}
GrGLFormat format = glTex->format();
// Manual implementation of mipmap generation, to work around driver bugs w/sRGB.
// Uses draw calls to do a series of downsample operations to successive mips.
// The manual approach requires the ability to limit which level we're sampling and that the
// destination can be bound to a FBO:
if (!this->glCaps().doManualMipmapping() || !this->glCaps().isFormatRenderable(format, 1)) {
GrGLenum target = glTex->target();
this->bindTextureToScratchUnit(target, glTex->textureID());
GL_CALL(GenerateMipmap(glTex->target()));
return true;
}
int width = texture->width();
int height = texture->height();
int levelCount = SkMipmap::ComputeLevelCount(width, height) + 1;
SkASSERT(levelCount == texture->maxMipmapLevel() + 1);
// Create (if necessary), then bind temporary FBO:
if (0 == fTempDstFBOID) {
GL_CALL(GenFramebuffers(1, &fTempDstFBOID));
}
this->bindFramebuffer(GR_GL_FRAMEBUFFER, fTempDstFBOID);
fHWBoundRenderTargetUniqueID.makeInvalid();
// Bind the texture, to get things configured for filtering.
// We'll be changing our base level further below:
this->setTextureUnit(0);
// The mipmap program does not do any swizzling.
this->bindTexture(0, GrSamplerState::Filter::kLinear, GrSwizzle::RGBA(), glTex);
// Vertex data:
if (!fMipmapProgramArrayBuffer) {
static const GrGLfloat vdata[] = {
0, 0,
0, 1,
1, 0,
1, 1
};
fMipmapProgramArrayBuffer = GrGLBuffer::Make(this, sizeof(vdata), GrGpuBufferType::kVertex,
kStatic_GrAccessPattern, vdata);
}
if (!fMipmapProgramArrayBuffer) {
return false;
}
fHWVertexArrayState.setVertexArrayID(this, 0);
GrGLAttribArrayState* attribs = fHWVertexArrayState.bindInternalVertexArray(this);
attribs->enableVertexArrays(this, 1);
attribs->set(this, 0, fMipmapProgramArrayBuffer.get(), kFloat2_GrVertexAttribType,
kFloat2_GrSLType, 2 * sizeof(GrGLfloat), 0);
// Set "simple" state once:
this->flushBlendAndColorWrite(GrXferProcessor::BlendInfo(), GrSwizzle::RGBA());
this->flushHWAAState(nullptr, false);
this->flushScissorTest(GrScissorTest::kDisabled);
this->disableWindowRectangles();
this->disableStencil();
// Do all the blits:
width = texture->width();
height = texture->height();
for (GrGLint level = 1; level < levelCount; ++level) {
// Get and bind the program for this particular downsample (filter shape can vary):
int progIdx = TextureSizeToMipmapProgramIdx(width, height);
if (!fMipmapPrograms[progIdx].fProgram) {
if (!this->createMipmapProgram(progIdx)) {
SkDebugf("Failed to create mipmap program.\n");
// Invalidate all params to cover base level change in a previous iteration.
glTex->textureParamsModified();
return false;
}
}
this->flushProgram(fMipmapPrograms[progIdx].fProgram);
// Texcoord uniform is expected to contain (1/w, (w-1)/w, 1/h, (h-1)/h)
const float invWidth = 1.0f / width;
const float invHeight = 1.0f / height;
GL_CALL(Uniform4f(fMipmapPrograms[progIdx].fTexCoordXformUniform,
invWidth, (width - 1) * invWidth, invHeight, (height - 1) * invHeight));
GL_CALL(Uniform1i(fMipmapPrograms[progIdx].fTextureUniform, 0));
// Only sample from previous mip
SkASSERT(this->glCaps().mipmapLevelControlSupport());
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_BASE_LEVEL, level - 1));
GL_CALL(FramebufferTexture2D(GR_GL_FRAMEBUFFER, GR_GL_COLOR_ATTACHMENT0, GR_GL_TEXTURE_2D,
glTex->textureID(), level));
width = std::max(1, width / 2);
height = std::max(1, height / 2);
this->flushViewport(SkIRect::MakeWH(width, height), height, kTopLeft_GrSurfaceOrigin);
GL_CALL(DrawArrays(GR_GL_TRIANGLE_STRIP, 0, 4));
}
// Unbind:
GL_CALL(FramebufferTexture2D(GR_GL_FRAMEBUFFER, GR_GL_COLOR_ATTACHMENT0,
GR_GL_TEXTURE_2D, 0, 0));
// We modified the base level param.
GrGLTextureParameters::NonsamplerState nonsamplerState = glTex->parameters()->nonsamplerState();
// We drew the 2nd to last level into the last level.
nonsamplerState.fBaseMipMapLevel = levelCount - 2;
glTex->parameters()->set(nullptr, nonsamplerState, fResetTimestampForTextureParameters);
return true;
}
void GrGLGpu::xferBarrier(GrRenderTarget* rt, GrXferBarrierType type) {
SkASSERT(type);
switch (type) {
case kTexture_GrXferBarrierType: {
GrGLRenderTarget* glrt = static_cast<GrGLRenderTarget*>(rt);
SkASSERT(glrt->asTexture());
SkASSERT(glrt->singleSampleFBOID() != 0);
if (glrt->requiresManualMSAAResolve()) {
// The render target uses separate storage so no need for glTextureBarrier.
// FIXME: The render target will resolve automatically when its texture is bound,
// but we could resolve only the bounds that will be read if we do it here instead.
return;
}
SkASSERT(this->caps()->textureBarrierSupport());
GL_CALL(TextureBarrier());
return;
}
case kBlend_GrXferBarrierType:
SkASSERT(GrCaps::kAdvanced_BlendEquationSupport ==
this->caps()->blendEquationSupport());
GL_CALL(BlendBarrier());
return;
default: break; // placate compiler warnings that kNone not handled
}
}
void GrGLGpu::insertManualFramebufferBarrier() {
SkASSERT(this->caps()->requiresManualFBBarrierAfterTessellatedStencilDraw());
GL_CALL(MemoryBarrier(GR_GL_FRAMEBUFFER_BARRIER_BIT));
}
GrBackendTexture GrGLGpu::onCreateBackendTexture(SkISize dimensions,
const GrBackendFormat& format,
GrRenderable renderable,
GrMipmapped mipMapped,
GrProtected isProtected) {
// We don't support protected textures in GL.
if (isProtected == GrProtected::kYes) {
return {};
}
this->handleDirtyContext();
GrGLFormat glFormat = format.asGLFormat();
if (glFormat == GrGLFormat::kUnknown) {
return {};
}
int numMipLevels = 1;
if (mipMapped == GrMipmapped::kYes) {
numMipLevels = SkMipmap::ComputeLevelCount(dimensions.width(), dimensions.height()) + 1;
}
// Compressed formats go through onCreateCompressedBackendTexture
SkASSERT(!GrGLFormatIsCompressed(glFormat));
GrGLTextureInfo info;
GrGLTextureParameters::SamplerOverriddenState initialState;
if (glFormat == GrGLFormat::kUnknown) {
return {};
}
switch (format.textureType()) {
case GrTextureType::kNone:
case GrTextureType::kExternal:
return {};
case GrTextureType::k2D:
info.fTarget = GR_GL_TEXTURE_2D;
break;
case GrTextureType::kRectangle:
if (!this->glCaps().rectangleTextureSupport() || mipMapped == GrMipmapped::kYes) {
return {};
}
info.fTarget = GR_GL_TEXTURE_RECTANGLE;
break;
}
info.fFormat = GrGLFormatToEnum(glFormat);
info.fID = this->createTexture(dimensions, glFormat, info.fTarget, renderable, &initialState,
numMipLevels);
if (!info.fID) {
return {};
}
// Unbind this texture from the scratch texture unit.
this->bindTextureToScratchUnit(info.fTarget, 0);
auto parameters = sk_make_sp<GrGLTextureParameters>();
// The non-sampler params are still at their default values.
parameters->set(&initialState, GrGLTextureParameters::NonsamplerState(),
fResetTimestampForTextureParameters);
return GrBackendTexture(dimensions.width(), dimensions.height(), mipMapped, info,
std::move(parameters));
}
bool GrGLGpu::onClearBackendTexture(const GrBackendTexture& backendTexture,
sk_sp<GrRefCntedCallback> finishedCallback,
std::array<float, 4> color) {
this->handleDirtyContext();
GrGLTextureInfo info;
SkAssertResult(backendTexture.getGLTextureInfo(&info));
int numMipLevels = 1;
if (backendTexture.hasMipmaps()) {
numMipLevels =
SkMipmap::ComputeLevelCount(backendTexture.width(), backendTexture.height()) + 1;
}
GrGLFormat glFormat = GrGLFormatFromGLEnum(info.fFormat);
this->bindTextureToScratchUnit(info.fTarget, info.fID);
// If we have mips make sure the base level is set to 0 and the max level set to numMipLevels-1
// so that the uploads go to the right levels.
if (numMipLevels && this->glCaps().mipmapLevelControlSupport()) {
auto params = backendTexture.getGLTextureParams();
GrGLTextureParameters::NonsamplerState nonsamplerState = params->nonsamplerState();
if (params->nonsamplerState().fBaseMipMapLevel != 0) {
GL_CALL(TexParameteri(info.fTarget, GR_GL_TEXTURE_BASE_LEVEL, 0));
nonsamplerState.fBaseMipMapLevel = 0;
}
if (params->nonsamplerState().fMaxMipmapLevel != (numMipLevels - 1)) {
GL_CALL(TexParameteri(info.fTarget, GR_GL_TEXTURE_MAX_LEVEL, numMipLevels - 1));
nonsamplerState.fBaseMipMapLevel = numMipLevels - 1;
}
params->set(nullptr, nonsamplerState, fResetTimestampForTextureParameters);
}
uint32_t levelMask = (1 << numMipLevels) - 1;
bool result = this->uploadColorToTex(glFormat,
backendTexture.dimensions(),
info.fTarget,
color,
levelMask);
// Unbind this texture from the scratch texture unit.
this->bindTextureToScratchUnit(info.fTarget, 0);
return result;
}
void GrGLGpu::deleteBackendTexture(const GrBackendTexture& tex) {
SkASSERT(GrBackendApi::kOpenGL == tex.backend());
GrGLTextureInfo info;
if (tex.getGLTextureInfo(&info)) {
GL_CALL(DeleteTextures(1, &info.fID));
}
}
bool GrGLGpu::compile(const GrProgramDesc& desc, const GrProgramInfo& programInfo) {
GrThreadSafePipelineBuilder::Stats::ProgramCacheResult stat;
sk_sp<GrGLProgram> tmp = fProgramCache->findOrCreateProgram(this->getContext(),
desc, programInfo, &stat);
if (!tmp) {
return false;
}
return stat != GrThreadSafePipelineBuilder::Stats::ProgramCacheResult::kHit;
}
#if GR_TEST_UTILS
bool GrGLGpu::isTestingOnlyBackendTexture(const GrBackendTexture& tex) const {
SkASSERT(GrBackendApi::kOpenGL == tex.backend());
GrGLTextureInfo info;
if (!tex.getGLTextureInfo(&info)) {
return false;
}
GrGLboolean result;
GL_CALL_RET(result, IsTexture(info.fID));
return (GR_GL_TRUE == result);
}
GrBackendRenderTarget GrGLGpu::createTestingOnlyBackendRenderTarget(SkISize dimensions,
GrColorType colorType,
int sampleCnt,
GrProtected isProtected) {
if (dimensions.width() > this->caps()->maxRenderTargetSize() ||
dimensions.height() > this->caps()->maxRenderTargetSize()) {
return {};
}
if (isProtected == GrProtected::kYes) {
return {};
}
this->handleDirtyContext();
auto format = this->glCaps().getFormatFromColorType(colorType);
sampleCnt = this->glCaps().getRenderTargetSampleCount(sampleCnt, format);
if (!sampleCnt) {
return {};
}
// We make a texture instead of a render target if we're using a
// "multisampled_render_to_texture" style extension or have a BGRA format that
// is allowed for textures but not render buffer internal formats.
bool useTexture = false;
if (sampleCnt > 1 && !this->glCaps().usesMSAARenderBuffers()) {
useTexture = true;
} else if (format == GrGLFormat::kBGRA8 &&
this->glCaps().getRenderbufferInternalFormat(GrGLFormat::kBGRA8) != GR_GL_BGRA8) {
// We have a BGRA extension that doesn't support BGRA render buffers. We can use a texture
// unless we've been asked for MSAA. Note we already checked above for render-to-
// multisampled-texture style extensions.
if (sampleCnt > 1) {
return {};
}
useTexture = true;
}
int sFormatIdx = this->getCompatibleStencilIndex(format);
if (sFormatIdx < 0) {
return {};
}
GrGLuint colorID = 0;
GrGLuint stencilID = 0;
GrGLFramebufferInfo info;
info.fFBOID = 0;
info.fFormat = GrGLFormatToEnum(format);
auto deleteIDs = [&](bool saveFBO = false) {
if (colorID) {
if (useTexture) {
GL_CALL(DeleteTextures(1, &colorID));
} else {
GL_CALL(DeleteRenderbuffers(1, &colorID));
}
}
if (stencilID) {
GL_CALL(DeleteRenderbuffers(1, &stencilID));
}
if (!saveFBO && info.fFBOID) {
this->deleteFramebuffer(info.fFBOID);
}
};
if (useTexture) {
GL_CALL(GenTextures(1, &colorID));
} else {
GL_CALL(GenRenderbuffers(1, &colorID));
}
GL_CALL(GenRenderbuffers(1, &stencilID));
if (!stencilID || !colorID) {
deleteIDs();
return {};
}
GL_CALL(GenFramebuffers(1, &info.fFBOID));
if (!info.fFBOID) {
deleteIDs();
return {};
}
this->invalidateBoundRenderTarget();
this->bindFramebuffer(GR_GL_FRAMEBUFFER, info.fFBOID);
if (useTexture) {
GrGLTextureParameters::SamplerOverriddenState initialState;
colorID = this->createTexture(dimensions, format, GR_GL_TEXTURE_2D, GrRenderable::kYes,
&initialState, 1);
if (!colorID) {
deleteIDs();
return {};
}
if (sampleCnt == 1) {
GL_CALL(FramebufferTexture2D(GR_GL_FRAMEBUFFER, GR_GL_COLOR_ATTACHMENT0,
GR_GL_TEXTURE_2D, colorID, 0));
} else {
GL_CALL(FramebufferTexture2DMultisample(GR_GL_FRAMEBUFFER, GR_GL_COLOR_ATTACHMENT0,
GR_GL_TEXTURE_2D, colorID, 0, sampleCnt));
}
} else {
GrGLenum renderBufferFormat = this->glCaps().getRenderbufferInternalFormat(format);
GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER, colorID));
if (sampleCnt == 1) {
GL_CALL(RenderbufferStorage(GR_GL_RENDERBUFFER, renderBufferFormat, dimensions.width(),
dimensions.height()));
} else {
if (!this->renderbufferStorageMSAA(this->glContext(), sampleCnt, renderBufferFormat,
dimensions.width(), dimensions.height())) {
deleteIDs();
return {};
}
}
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_COLOR_ATTACHMENT0,
GR_GL_RENDERBUFFER, colorID));
}
GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER, stencilID));
auto stencilBufferFormat = this->glCaps().stencilFormats()[sFormatIdx];
if (sampleCnt == 1) {
GL_CALL(RenderbufferStorage(GR_GL_RENDERBUFFER, GrGLFormatToEnum(stencilBufferFormat),
dimensions.width(), dimensions.height()));
} else {
if (!this->renderbufferStorageMSAA(this->glContext(), sampleCnt,
GrGLFormatToEnum(stencilBufferFormat),
dimensions.width(), dimensions.height())) {
deleteIDs();
return {};
}
}
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_STENCIL_ATTACHMENT, GR_GL_RENDERBUFFER,
stencilID));
if (GrGLFormatIsPackedDepthStencil(this->glCaps().stencilFormats()[sFormatIdx])) {
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_DEPTH_ATTACHMENT,
GR_GL_RENDERBUFFER, stencilID));
}
// We don't want to have to recover the renderbuffer/texture IDs later to delete them. OpenGL
// has this rule that if a renderbuffer/texture is deleted and a FBO other than the current FBO
// has the RB attached then deletion is delayed. So we unbind the FBO here and delete the
// renderbuffers/texture.
this->bindFramebuffer(GR_GL_FRAMEBUFFER, 0);
deleteIDs(/* saveFBO = */ true);
this->bindFramebuffer(GR_GL_FRAMEBUFFER, info.fFBOID);
GrGLenum status;
GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER));
if (GR_GL_FRAMEBUFFER_COMPLETE != status) {
this->deleteFramebuffer(info.fFBOID);
return {};
}
auto stencilBits = SkToInt(GrGLFormatStencilBits(this->glCaps().stencilFormats()[sFormatIdx]));
GrBackendRenderTarget beRT = GrBackendRenderTarget(dimensions.width(), dimensions.height(),
sampleCnt, stencilBits, info);
SkASSERT(this->caps()->areColorTypeAndFormatCompatible(colorType, beRT.getBackendFormat()));
return beRT;
}
void GrGLGpu::deleteTestingOnlyBackendRenderTarget(const GrBackendRenderTarget& backendRT) {
SkASSERT(GrBackendApi::kOpenGL == backendRT.backend());
GrGLFramebufferInfo info;
if (backendRT.getGLFramebufferInfo(&info)) {
if (info.fFBOID) {
this->deleteFramebuffer(info.fFBOID);
}
}
}
#endif
///////////////////////////////////////////////////////////////////////////////
GrGLAttribArrayState* GrGLGpu::HWVertexArrayState::bindInternalVertexArray(GrGLGpu* gpu,
const GrBuffer* ibuf) {
SkASSERT(!ibuf || ibuf->isCpuBuffer() || !static_cast<const GrGpuBuffer*>(ibuf)->isMapped());
GrGLAttribArrayState* attribState;
if (gpu->glCaps().isCoreProfile()) {
if (!fCoreProfileVertexArray) {
GrGLuint arrayID;
GR_GL_CALL(gpu->glInterface(), GenVertexArrays(1, &arrayID));
int attrCount = gpu->glCaps().maxVertexAttributes();
fCoreProfileVertexArray = new GrGLVertexArray(arrayID, attrCount);
}
if (ibuf) {
attribState = fCoreProfileVertexArray->bindWithIndexBuffer(gpu, ibuf);
} else {
attribState = fCoreProfileVertexArray->bind(gpu);
}
} else {
if (ibuf) {
// bindBuffer implicitly binds VAO 0 when binding an index buffer.
gpu->bindBuffer(GrGpuBufferType::kIndex, ibuf);
} else {
this->setVertexArrayID(gpu, 0);
}
int attrCount = gpu->glCaps().maxVertexAttributes();
if (fDefaultVertexArrayAttribState.count() != attrCount) {
fDefaultVertexArrayAttribState.resize(attrCount);
}
attribState = &fDefaultVertexArrayAttribState;
}
return attribState;
}
void GrGLGpu::addFinishedProc(GrGpuFinishedProc finishedProc,
GrGpuFinishedContext finishedContext) {
fFinishCallbacks.add(finishedProc, finishedContext);
}
void GrGLGpu::flush(FlushType flushType) {
if (fNeedsGLFlush || flushType == FlushType::kForce) {
GL_CALL(Flush());
fNeedsGLFlush = false;
}
}
bool GrGLGpu::onSubmitToGpu(bool syncCpu) {
if (syncCpu || (!fFinishCallbacks.empty() && !this->caps()->fenceSyncSupport())) {
this->finishOutstandingGpuWork();
fFinishCallbacks.callAll(true);
} else {
this->flush();
// See if any previously inserted finish procs are good to go.
fFinishCallbacks.check();
}
if (!this->glCaps().skipErrorChecks()) {
this->clearErrorsAndCheckForOOM();
}
return true;
}
void GrGLGpu::submit(GrOpsRenderPass* renderPass) {
// The GrGLOpsRenderPass doesn't buffer ops so there is nothing to do here
SkASSERT(fCachedOpsRenderPass.get() == renderPass);
fCachedOpsRenderPass->reset();
}
GrFence SK_WARN_UNUSED_RESULT GrGLGpu::insertFence() {
if (!this->caps()->fenceSyncSupport()) {
return 0;
}
GrGLsync sync;
if (this->glCaps().fenceType() == GrGLCaps::FenceType::kNVFence) {
static_assert(sizeof(GrGLsync) >= sizeof(GrGLuint));
GrGLuint fence = 0;
GL_CALL(GenFences(1, &fence));
GL_CALL(SetFence(fence, GR_GL_ALL_COMPLETED));
sync = reinterpret_cast<GrGLsync>(static_cast<intptr_t>(fence));
} else {
GL_CALL_RET(sync, FenceSync(GR_GL_SYNC_GPU_COMMANDS_COMPLETE, 0));
}
this->setNeedsFlush();
static_assert(sizeof(GrFence) >= sizeof(GrGLsync));
return (GrFence)sync;
}
bool GrGLGpu::waitSync(GrGLsync sync, uint64_t timeout, bool flush) {
if (this->glCaps().fenceType() == GrGLCaps::FenceType::kNVFence) {
GrGLuint nvFence = static_cast<GrGLuint>(reinterpret_cast<intptr_t>(sync));
if (!timeout) {
if (flush) {
this->flush(FlushType::kForce);
}
GrGLboolean result;
GL_CALL_RET(result, TestFence(nvFence));
return result == GR_GL_TRUE;
}
// Ignore non-zero timeouts. GL_NV_fence has no timeout functionality.
// If this really becomes necessary we could poll TestFence().
// FinishFence always flushes so no need to check flush param.
GL_CALL(FinishFence(nvFence));
return true;
} else {
GrGLbitfield flags = flush ? GR_GL_SYNC_FLUSH_COMMANDS_BIT : 0;
GrGLenum result;
GL_CALL_RET(result, ClientWaitSync(sync, flags, timeout));
return (GR_GL_CONDITION_SATISFIED == result || GR_GL_ALREADY_SIGNALED == result);
}
}
bool GrGLGpu::waitFence(GrFence fence) {
if (!this->caps()->fenceSyncSupport()) {
return true;
}
return this->waitSync(reinterpret_cast<GrGLsync>(fence), 0, false);
}
void GrGLGpu::deleteFence(GrFence fence) const {
if (this->caps()->fenceSyncSupport()) {
this->deleteSync(reinterpret_cast<GrGLsync>(fence));
}
}
std::unique_ptr<GrSemaphore> SK_WARN_UNUSED_RESULT GrGLGpu::makeSemaphore(bool isOwned) {
SkASSERT(this->caps()->semaphoreSupport());
return GrGLSemaphore::Make(this, isOwned);
}
std::unique_ptr<GrSemaphore> GrGLGpu::wrapBackendSemaphore(const GrBackendSemaphore& semaphore,
GrSemaphoreWrapType /* wrapType */,
GrWrapOwnership ownership) {
SkASSERT(this->caps()->semaphoreSupport());
return GrGLSemaphore::MakeWrapped(this, semaphore.glSync(), ownership);
}
void GrGLGpu::insertSemaphore(GrSemaphore* semaphore) {
SkASSERT(semaphore);
GrGLSemaphore* glSem = static_cast<GrGLSemaphore*>(semaphore);
GrGLsync sync;
GL_CALL_RET(sync, FenceSync(GR_GL_SYNC_GPU_COMMANDS_COMPLETE, 0));
glSem->setSync(sync);
this->setNeedsFlush();
}
void GrGLGpu::waitSemaphore(GrSemaphore* semaphore) {
SkASSERT(semaphore);
GrGLSemaphore* glSem = static_cast<GrGLSemaphore*>(semaphore);
GL_CALL(WaitSync(glSem->sync(), 0, GR_GL_TIMEOUT_IGNORED));
}
void GrGLGpu::checkFinishProcs() {
fFinishCallbacks.check();
}
void GrGLGpu::finishOutstandingGpuWork() {
GL_CALL(Finish());
}
void GrGLGpu::clearErrorsAndCheckForOOM() {
while (this->getErrorAndCheckForOOM() != GR_GL_NO_ERROR) {}
}
GrGLenum GrGLGpu::getErrorAndCheckForOOM() {
#if GR_GL_CHECK_ERROR
if (this->glInterface()->checkAndResetOOMed()) {
this->setOOMed();
}
#endif
GrGLenum error = this->fGLContext->glInterface()->fFunctions.fGetError();
if (error == GR_GL_OUT_OF_MEMORY) {
this->setOOMed();
}
return error;
}
void GrGLGpu::deleteSync(GrGLsync sync) const {
if (this->glCaps().fenceType() == GrGLCaps::FenceType::kNVFence) {
GrGLuint nvFence = SkToUInt(reinterpret_cast<intptr_t>(sync));
GL_CALL(DeleteFences(1, &nvFence));
} else {
GL_CALL(DeleteSync(sync));
}
}
std::unique_ptr<GrSemaphore> GrGLGpu::prepareTextureForCrossContextUsage(GrTexture* texture) {
// Set up a semaphore to be signaled once the data is ready, and flush GL
std::unique_ptr<GrSemaphore> semaphore = this->makeSemaphore(true);
SkASSERT(semaphore);
this->insertSemaphore(semaphore.get());
// We must call flush here to make sure the GrGLSync object gets created and sent to the gpu.
this->flush(FlushType::kForce);
return semaphore;
}
int GrGLGpu::TextureToCopyProgramIdx(GrTexture* texture) {
switch (GrSLCombinedSamplerTypeForTextureType(texture->textureType())) {
case kTexture2DSampler_GrSLType:
return 0;
case kTexture2DRectSampler_GrSLType:
return 1;
case kTextureExternalSampler_GrSLType:
return 2;
default:
SK_ABORT("Unexpected samper type");
}
}
#ifdef SK_ENABLE_DUMP_GPU
#include "src/utils/SkJSONWriter.h"
void GrGLGpu::onDumpJSON(SkJSONWriter* writer) const {
// We are called by the base class, which has already called beginObject(). We choose to nest
// all of our caps information in a named sub-object.
writer->beginObject("GL GPU");
const GrGLubyte* str;
GL_CALL_RET(str, GetString(GR_GL_VERSION));
writer->appendString("GL_VERSION", (const char*)(str));
GL_CALL_RET(str, GetString(GR_GL_RENDERER));
writer->appendString("GL_RENDERER", (const char*)(str));
GL_CALL_RET(str, GetString(GR_GL_VENDOR));
writer->appendString("GL_VENDOR", (const char*)(str));
GL_CALL_RET(str, GetString(GR_GL_SHADING_LANGUAGE_VERSION));
writer->appendString("GL_SHADING_LANGUAGE_VERSION", (const char*)(str));
writer->appendName("extensions");
glInterface()->fExtensions.dumpJSON(writer);
writer->endObject();
}
#endif