blob: e465af9368aac3dd9e42187f08641e923dd171f1 [file] [log] [blame]
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkColorSpace.h"
#include "SkColorSpacePriv.h"
#include "SkData.h"
#include "SkOpts.h"
#include "../../third_party/skcms/skcms.h"
// TODO: this is kind of ridiculous
static_assert(sizeof(SkColorSpace) == 45*4, "");
bool SkColorSpacePrimaries::toXYZD50(SkMatrix44* toXYZ_D50) const {
skcms_Matrix3x3 toXYZ;
if (!skcms_PrimariesToXYZD50(fRX, fRY, fGX, fGY, fBX, fBY, fWX, fWY, &toXYZ)) {
return false;
}
toXYZ_D50->set3x3RowMajorf(&toXYZ.vals[0][0]);
return true;
}
///////////////////////////////////////////////////////////////////////////////////////////////////
SkColorSpace::SkColorSpace(SkGammaNamed gammaNamed,
const SkColorSpaceTransferFn* transferFn,
const SkMatrix44& toXYZD50)
: fGammaNamed(gammaNamed)
, fToXYZD50(toXYZD50)
, fToXYZD50Hash(SkOpts::hash_fn(toXYZD50.values(), 16 * sizeof(SkMScalar), 0))
, fFromXYZD50(SkMatrix44::kUninitialized_Constructor) {
SkASSERT(fGammaNamed != kNonStandard_SkGammaNamed || transferFn);
if (transferFn) {
fTransferFn = *transferFn;
}
}
/**
* Checks if our toXYZ matrix is a close match to a known color gamut.
*
* @param toXYZD50 transformation matrix deduced from profile data
* @param standard 3x3 canonical transformation matrix
*/
static bool xyz_almost_equal(const SkMatrix44& toXYZD50, const float* standard) {
return color_space_almost_equal(toXYZD50.getFloat(0, 0), standard[0]) &&
color_space_almost_equal(toXYZD50.getFloat(0, 1), standard[1]) &&
color_space_almost_equal(toXYZD50.getFloat(0, 2), standard[2]) &&
color_space_almost_equal(toXYZD50.getFloat(1, 0), standard[3]) &&
color_space_almost_equal(toXYZD50.getFloat(1, 1), standard[4]) &&
color_space_almost_equal(toXYZD50.getFloat(1, 2), standard[5]) &&
color_space_almost_equal(toXYZD50.getFloat(2, 0), standard[6]) &&
color_space_almost_equal(toXYZD50.getFloat(2, 1), standard[7]) &&
color_space_almost_equal(toXYZD50.getFloat(2, 2), standard[8]) &&
color_space_almost_equal(toXYZD50.getFloat(0, 3), 0.0f) &&
color_space_almost_equal(toXYZD50.getFloat(1, 3), 0.0f) &&
color_space_almost_equal(toXYZD50.getFloat(2, 3), 0.0f) &&
color_space_almost_equal(toXYZD50.getFloat(3, 0), 0.0f) &&
color_space_almost_equal(toXYZD50.getFloat(3, 1), 0.0f) &&
color_space_almost_equal(toXYZD50.getFloat(3, 2), 0.0f) &&
color_space_almost_equal(toXYZD50.getFloat(3, 3), 1.0f);
}
sk_sp<SkColorSpace> SkColorSpace::MakeRGB(SkGammaNamed gammaNamed, const SkMatrix44& toXYZD50)
{
switch (gammaNamed) {
case kSRGB_SkGammaNamed:
if (xyz_almost_equal(toXYZD50, gSRGB_toXYZD50)) {
return SkColorSpace::MakeSRGB();
}
break;
case kLinear_SkGammaNamed:
if (xyz_almost_equal(toXYZD50, gSRGB_toXYZD50)) {
return SkColorSpace::MakeSRGBLinear();
}
break;
case kNonStandard_SkGammaNamed:
// This is not allowed.
return nullptr;
default:
break;
}
return sk_sp<SkColorSpace>(new SkColorSpace(gammaNamed, nullptr, toXYZD50));
}
sk_sp<SkColorSpace> SkColorSpace::MakeRGB(RenderTargetGamma gamma, const SkMatrix44& toXYZD50) {
switch (gamma) {
case kLinear_RenderTargetGamma:
return SkColorSpace::MakeRGB(kLinear_SkGammaNamed, toXYZD50);
case kSRGB_RenderTargetGamma:
return SkColorSpace::MakeRGB(kSRGB_SkGammaNamed, toXYZD50);
default:
return nullptr;
}
}
sk_sp<SkColorSpace> SkColorSpace::MakeRGB(const SkColorSpaceTransferFn& coeffs,
const SkMatrix44& toXYZD50) {
if (!is_valid_transfer_fn(coeffs)) {
return nullptr;
}
if (is_almost_srgb(coeffs)) {
return SkColorSpace::MakeRGB(kSRGB_SkGammaNamed, toXYZD50);
}
if (is_almost_2dot2(coeffs)) {
return SkColorSpace::MakeRGB(k2Dot2Curve_SkGammaNamed, toXYZD50);
}
if (is_almost_linear(coeffs)) {
return SkColorSpace::MakeRGB(kLinear_SkGammaNamed, toXYZD50);
}
return sk_sp<SkColorSpace>(new SkColorSpace(kNonStandard_SkGammaNamed, &coeffs, toXYZD50));
}
sk_sp<SkColorSpace> SkColorSpace::MakeRGB(RenderTargetGamma gamma, Gamut gamut) {
SkMatrix44 toXYZD50(SkMatrix44::kUninitialized_Constructor);
to_xyz_d50(&toXYZD50, gamut);
return SkColorSpace::MakeRGB(gamma, toXYZD50);
}
sk_sp<SkColorSpace> SkColorSpace::MakeRGB(const SkColorSpaceTransferFn& coeffs, Gamut gamut) {
SkMatrix44 toXYZD50(SkMatrix44::kUninitialized_Constructor);
to_xyz_d50(&toXYZD50, gamut);
return SkColorSpace::MakeRGB(coeffs, toXYZD50);
}
class SkColorSpaceSingletonFactory {
public:
static SkColorSpace* Make(SkGammaNamed gamma, const float to_xyz[9]) {
SkMatrix44 m44(SkMatrix44::kUninitialized_Constructor);
m44.set3x3RowMajorf(to_xyz);
(void)m44.getType(); // Force typemask to be computed to avoid races.
return new SkColorSpace(gamma, nullptr, m44);
}
};
SkColorSpace* sk_srgb_singleton() {
static SkColorSpace* cs = SkColorSpaceSingletonFactory::Make(kSRGB_SkGammaNamed,
gSRGB_toXYZD50);
return cs;
}
SkColorSpace* sk_srgb_linear_singleton() {
static SkColorSpace* cs = SkColorSpaceSingletonFactory::Make(kLinear_SkGammaNamed,
gSRGB_toXYZD50);
return cs;
}
sk_sp<SkColorSpace> SkColorSpace::MakeSRGB() {
return sk_ref_sp(sk_srgb_singleton());
}
sk_sp<SkColorSpace> SkColorSpace::MakeSRGBLinear() {
return sk_ref_sp(sk_srgb_linear_singleton());
}
///////////////////////////////////////////////////////////////////////////////////////////////////
bool SkColorSpace::isNumericalTransferFn(SkColorSpaceTransferFn* coeffs) const {
switch (fGammaNamed) {
case kSRGB_SkGammaNamed:
*coeffs = gSRGB_TransferFn;
break;
case k2Dot2Curve_SkGammaNamed:
*coeffs = g2Dot2_TransferFn;
break;
case kLinear_SkGammaNamed:
*coeffs = gLinear_TransferFn;
break;
case kNonStandard_SkGammaNamed:
*coeffs = fTransferFn;
break;
default:
SkDEBUGFAIL("Unknown named gamma");
return false;
}
return true;
}
bool SkColorSpace::toXYZD50(SkMatrix44* toXYZD50) const {
const SkMatrix44* matrix = this->toXYZD50();
if (matrix) {
*toXYZD50 = *matrix;
return true;
}
return false;
}
const SkMatrix44* SkColorSpace::fromXYZD50() const {
fFromXYZOnce([this] {
if (!fToXYZD50.invert(&fFromXYZD50)) {
// If a client gives us a dst gamut with a transform that we can't invert, we will
// simply give them back a transform to sRGB gamut.
SkMatrix44 srgbToxyzD50(SkMatrix44::kUninitialized_Constructor);
srgbToxyzD50.set3x3RowMajorf(gSRGB_toXYZD50);
srgbToxyzD50.invert(&fFromXYZD50);
}
});
return &fFromXYZD50;
}
bool SkColorSpace::isSRGB() const {
return sk_srgb_singleton() == this;
}
sk_sp<SkColorSpace> SkColorSpace::makeLinearGamma() const {
if (this->gammaIsLinear()) {
return sk_ref_sp(const_cast<SkColorSpace*>(this));
}
return SkColorSpace::MakeRGB(kLinear_SkGammaNamed, fToXYZD50);
}
sk_sp<SkColorSpace> SkColorSpace::makeSRGBGamma() const {
if (this->gammaCloseToSRGB()) {
return sk_ref_sp(const_cast<SkColorSpace*>(this));
}
return SkColorSpace::MakeRGB(kSRGB_SkGammaNamed, fToXYZD50);
}
sk_sp<SkColorSpace> SkColorSpace::makeColorSpin() const {
SkMatrix44 spin(SkMatrix44::kUninitialized_Constructor);
spin.set3x3(0, 1, 0, 0, 0, 1, 1, 0, 0);
spin.postConcat(fToXYZD50);
(void)spin.getType(); // Pre-cache spin matrix type to avoid races in future getType() calls.
return sk_sp<SkColorSpace>(new SkColorSpace(fGammaNamed, &fTransferFn, spin));
}
///////////////////////////////////////////////////////////////////////////////////////////////////
enum Version {
k0_Version, // Initial version, header + flags for matrix and profile
};
enum NamedColorSpace {
kSRGB_NamedColorSpace,
// No longer a singleton, preserved to support reading data from branches m65 and older
kAdobeRGB_NamedColorSpace,
kSRGBLinear_NamedColorSpace,
};
struct ColorSpaceHeader {
/**
* It is only valid to set zero or one flags.
* Setting multiple flags is invalid.
*/
/**
* If kMatrix_Flag is set, we will write 12 floats after the header.
*/
static constexpr uint8_t kMatrix_Flag = 1 << 0;
/**
* If kICC_Flag is set, we will write an ICC profile after the header.
* The ICC profile will be written as a uint32 size, followed immediately
* by the data (padded to 4 bytes).
* DEPRECATED / UNUSED
*/
static constexpr uint8_t kICC_Flag = 1 << 1;
/**
* If kTransferFn_Flag is set, we will write 19 floats after the header.
* The first seven represent the transfer fn, and the next twelve are the
* matrix.
*/
static constexpr uint8_t kTransferFn_Flag = 1 << 3;
static ColorSpaceHeader Pack(Version version, uint8_t named, uint8_t gammaNamed, uint8_t flags)
{
ColorSpaceHeader header;
SkASSERT(k0_Version == version);
header.fVersion = (uint8_t) version;
SkASSERT(named <= kSRGBLinear_NamedColorSpace);
header.fNamed = (uint8_t) named;
SkASSERT(gammaNamed <= kNonStandard_SkGammaNamed);
header.fGammaNamed = (uint8_t) gammaNamed;
SkASSERT(flags <= kTransferFn_Flag);
header.fFlags = flags;
return header;
}
uint8_t fVersion; // Always zero
uint8_t fNamed; // Must be a SkColorSpace::Named
uint8_t fGammaNamed; // Must be a SkGammaNamed
uint8_t fFlags;
};
size_t SkColorSpace::writeToMemory(void* memory) const {
// If we have a named profile, only write the enum.
const SkGammaNamed gammaNamed = this->gammaNamed();
if (this == sk_srgb_singleton()) {
if (memory) {
*((ColorSpaceHeader*) memory) = ColorSpaceHeader::Pack(
k0_Version, kSRGB_NamedColorSpace, gammaNamed, 0);
}
return sizeof(ColorSpaceHeader);
} else if (this == sk_srgb_linear_singleton()) {
if (memory) {
*((ColorSpaceHeader*) memory) = ColorSpaceHeader::Pack(
k0_Version, kSRGBLinear_NamedColorSpace, gammaNamed, 0);
}
return sizeof(ColorSpaceHeader);
}
// If we have a named gamma, write the enum and the matrix.
switch (gammaNamed) {
case kSRGB_SkGammaNamed:
case k2Dot2Curve_SkGammaNamed:
case kLinear_SkGammaNamed: {
if (memory) {
*((ColorSpaceHeader*) memory) =
ColorSpaceHeader::Pack(k0_Version, 0, gammaNamed,
ColorSpaceHeader::kMatrix_Flag);
memory = SkTAddOffset<void>(memory, sizeof(ColorSpaceHeader));
this->toXYZD50()->as3x4RowMajorf((float*) memory);
}
return sizeof(ColorSpaceHeader) + 12 * sizeof(float);
}
default: {
SkColorSpaceTransferFn transferFn;
SkAssertResult(this->isNumericalTransferFn(&transferFn));
if (memory) {
*((ColorSpaceHeader*) memory) =
ColorSpaceHeader::Pack(k0_Version, 0, gammaNamed,
ColorSpaceHeader::kTransferFn_Flag);
memory = SkTAddOffset<void>(memory, sizeof(ColorSpaceHeader));
*(((float*) memory) + 0) = transferFn.fA;
*(((float*) memory) + 1) = transferFn.fB;
*(((float*) memory) + 2) = transferFn.fC;
*(((float*) memory) + 3) = transferFn.fD;
*(((float*) memory) + 4) = transferFn.fE;
*(((float*) memory) + 5) = transferFn.fF;
*(((float*) memory) + 6) = transferFn.fG;
memory = SkTAddOffset<void>(memory, 7 * sizeof(float));
this->toXYZD50()->as3x4RowMajorf((float*) memory);
}
return sizeof(ColorSpaceHeader) + 19 * sizeof(float);
}
}
}
sk_sp<SkData> SkColorSpace::serialize() const {
size_t size = this->writeToMemory(nullptr);
if (0 == size) {
return nullptr;
}
sk_sp<SkData> data = SkData::MakeUninitialized(size);
this->writeToMemory(data->writable_data());
return data;
}
sk_sp<SkColorSpace> SkColorSpace::Deserialize(const void* data, size_t length) {
if (length < sizeof(ColorSpaceHeader)) {
return nullptr;
}
ColorSpaceHeader header = *((const ColorSpaceHeader*) data);
data = SkTAddOffset<const void>(data, sizeof(ColorSpaceHeader));
length -= sizeof(ColorSpaceHeader);
if (0 == header.fFlags) {
switch ((NamedColorSpace)header.fNamed) {
case kSRGB_NamedColorSpace:
return SkColorSpace::MakeSRGB();
case kSRGBLinear_NamedColorSpace:
return SkColorSpace::MakeSRGBLinear();
case kAdobeRGB_NamedColorSpace:
return SkColorSpace::MakeRGB(g2Dot2_TransferFn, SkColorSpace::kAdobeRGB_Gamut);
}
}
switch ((SkGammaNamed) header.fGammaNamed) {
case kSRGB_SkGammaNamed:
case k2Dot2Curve_SkGammaNamed:
case kLinear_SkGammaNamed: {
if (ColorSpaceHeader::kMatrix_Flag != header.fFlags || length < 12 * sizeof(float)) {
return nullptr;
}
SkMatrix44 toXYZ(SkMatrix44::kUninitialized_Constructor);
toXYZ.set3x4RowMajorf((const float*) data);
return SkColorSpace::MakeRGB((SkGammaNamed) header.fGammaNamed, toXYZ);
}
default:
break;
}
switch (header.fFlags) {
case ColorSpaceHeader::kICC_Flag: {
// Deprecated and unsupported code path
return nullptr;
}
case ColorSpaceHeader::kTransferFn_Flag: {
if (length < 19 * sizeof(float)) {
return nullptr;
}
SkColorSpaceTransferFn transferFn;
transferFn.fA = *(((const float*) data) + 0);
transferFn.fB = *(((const float*) data) + 1);
transferFn.fC = *(((const float*) data) + 2);
transferFn.fD = *(((const float*) data) + 3);
transferFn.fE = *(((const float*) data) + 4);
transferFn.fF = *(((const float*) data) + 5);
transferFn.fG = *(((const float*) data) + 6);
data = SkTAddOffset<const void>(data, 7 * sizeof(float));
SkMatrix44 toXYZ(SkMatrix44::kUninitialized_Constructor);
toXYZ.set3x4RowMajorf((const float*) data);
return SkColorSpace::MakeRGB(transferFn, toXYZ);
}
default:
return nullptr;
}
}
bool SkColorSpace::Equals(const SkColorSpace* src, const SkColorSpace* dst) {
if (src == dst) {
return true;
}
if (!src || !dst) {
return false;
}
if (src->gammaNamed() != dst->gammaNamed()) {
return false;
}
switch (src->gammaNamed()) {
case kSRGB_SkGammaNamed:
case k2Dot2Curve_SkGammaNamed:
case kLinear_SkGammaNamed:
if (src->toXYZD50Hash() == dst->toXYZD50Hash()) {
SkASSERT(*src->toXYZD50() == *dst->toXYZD50() && "Hash collision");
return true;
}
return false;
default:
// It is unlikely that we will reach this case.
// TODO: Simplify this case now that color spaces have one representation.
sk_sp<SkData> serializedSrcData = src->serialize();
sk_sp<SkData> serializedDstData = dst->serialize();
return serializedSrcData->size() == serializedDstData->size() &&
0 == memcmp(serializedSrcData->data(), serializedDstData->data(),
serializedSrcData->size());
}
}
SkColorSpaceTransferFn SkColorSpaceTransferFn::invert() const {
// Original equation is: y = (ax + b)^g + e for x >= d
// y = cx + f otherwise
//
// so 1st inverse is: (y - e)^(1/g) = ax + b
// x = ((y - e)^(1/g) - b) / a
//
// which can be re-written as: x = (1/a)(y - e)^(1/g) - b/a
// x = ((1/a)^g)^(1/g) * (y - e)^(1/g) - b/a
// x = ([(1/a)^g]y + [-((1/a)^g)e]) ^ [1/g] + [-b/a]
//
// and 2nd inverse is: x = (y - f) / c
// which can be re-written as: x = [1/c]y + [-f/c]
//
// and now both can be expressed in terms of the same parametric form as the
// original - parameters are enclosed in square brackets.
SkColorSpaceTransferFn inv = { 0, 0, 0, 0, 0, 0, 0 };
// find inverse for linear segment (if possible)
if (!transfer_fn_almost_equal(0.f, fC)) {
inv.fC = 1.f / fC;
inv.fF = -fF / fC;
} else {
// otherwise assume it should be 0 as it is the lower segment
// as y = f is a constant function
}
// find inverse for the other segment (if possible)
if (transfer_fn_almost_equal(0.f, fA) || transfer_fn_almost_equal(0.f, fG)) {
// otherwise assume it should be 1 as it is the top segment
// as you can't invert the constant functions y = b^g + e, or y = 1 + e
inv.fG = 1.f;
inv.fE = 1.f;
} else {
inv.fG = 1.f / fG;
inv.fA = powf(1.f / fA, fG);
inv.fB = -inv.fA * fE;
inv.fE = -fB / fA;
}
inv.fD = fC * fD + fF;
return inv;
}