| /* |
| * Copyright 2013 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "include/private/SkPathRef.h" |
| |
| #include "include/core/SkMatrix.h" |
| #include "include/core/SkPath.h" |
| #include "include/core/SkRRect.h" |
| #include "include/private/base/SkFloatingPoint.h" |
| #include "include/private/base/SkOnce.h" |
| #include "src/base/SkVx.h" |
| |
| #include <cstring> |
| |
| #ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK |
| static constexpr int kPathRefGenIDBitCnt = 30; // leave room for the fill type (skbug.com/1762) |
| #else |
| static constexpr int kPathRefGenIDBitCnt = 32; |
| #endif |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| SkPathRef::Editor::Editor(sk_sp<SkPathRef>* pathRef, |
| int incReserveVerbs, |
| int incReservePoints, |
| int incReserveConics) |
| { |
| SkASSERT(incReserveVerbs >= 0); |
| SkASSERT(incReservePoints >= 0); |
| |
| if ((*pathRef)->unique()) { |
| (*pathRef)->incReserve(incReserveVerbs, incReservePoints, incReserveConics); |
| } else { |
| SkPathRef* copy; |
| // No need to copy if the existing ref is the empty ref (because it doesn't contain |
| // anything). |
| if (!(*pathRef)->isInitialEmptyPathRef()) { |
| copy = new SkPathRef; |
| copy->copy(**pathRef, incReserveVerbs, incReservePoints, incReserveConics); |
| } else { |
| // Size previously empty paths to exactly fit the supplied hints. The assumpion is |
| // the caller knows the exact size they want (as happens in chrome when deserializing |
| // paths). |
| copy = new SkPathRef(incReserveVerbs, incReservePoints, incReserveConics); |
| } |
| pathRef->reset(copy); |
| } |
| fPathRef = pathRef->get(); |
| fPathRef->callGenIDChangeListeners(); |
| fPathRef->fGenerationID = 0; |
| fPathRef->fBoundsIsDirty = true; |
| SkDEBUGCODE(fPathRef->fEditorsAttached++;) |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| size_t SkPathRef::approximateBytesUsed() const { |
| return sizeof(SkPathRef) |
| + fPoints .capacity() * sizeof(fPoints [0]) |
| + fVerbs .capacity() * sizeof(fVerbs [0]) |
| + fConicWeights.capacity() * sizeof(fConicWeights[0]); |
| } |
| |
| SkPathRef::~SkPathRef() { |
| // Deliberately don't validate() this path ref, otherwise there's no way |
| // to read one that's not valid and then free its memory without asserting. |
| SkDEBUGCODE(fGenerationID = 0xEEEEEEEE;) |
| SkDEBUGCODE(fEditorsAttached.store(0x7777777);) |
| } |
| |
| static SkPathRef* gEmpty = nullptr; |
| |
| SkPathRef* SkPathRef::CreateEmpty() { |
| static SkOnce once; |
| once([]{ |
| gEmpty = new SkPathRef; |
| gEmpty->computeBounds(); // Avoids races later to be the first to do this. |
| }); |
| return SkRef(gEmpty); |
| } |
| |
| static void transform_dir_and_start(const SkMatrix& matrix, bool isRRect, bool* isCCW, |
| unsigned* start) { |
| int inStart = *start; |
| int rm = 0; |
| if (isRRect) { |
| // Degenerate rrect indices to oval indices and remember the remainder. |
| // Ovals have one index per side whereas rrects have two. |
| rm = inStart & 0b1; |
| inStart /= 2; |
| } |
| // Is the antidiagonal non-zero (otherwise the diagonal is zero) |
| int antiDiag; |
| // Is the non-zero value in the top row (either kMScaleX or kMSkewX) negative |
| int topNeg; |
| // Are the two non-zero diagonal or antidiagonal values the same sign. |
| int sameSign; |
| if (matrix.get(SkMatrix::kMScaleX) != 0) { |
| antiDiag = 0b00; |
| if (matrix.get(SkMatrix::kMScaleX) > 0) { |
| topNeg = 0b00; |
| sameSign = matrix.get(SkMatrix::kMScaleY) > 0 ? 0b01 : 0b00; |
| } else { |
| topNeg = 0b10; |
| sameSign = matrix.get(SkMatrix::kMScaleY) > 0 ? 0b00 : 0b01; |
| } |
| } else { |
| antiDiag = 0b01; |
| if (matrix.get(SkMatrix::kMSkewX) > 0) { |
| topNeg = 0b00; |
| sameSign = matrix.get(SkMatrix::kMSkewY) > 0 ? 0b01 : 0b00; |
| } else { |
| topNeg = 0b10; |
| sameSign = matrix.get(SkMatrix::kMSkewY) > 0 ? 0b00 : 0b01; |
| } |
| } |
| if (sameSign != antiDiag) { |
| // This is a rotation (and maybe scale). The direction is unchanged. |
| // Trust me on the start computation (or draw yourself some pictures) |
| *start = (inStart + 4 - (topNeg | antiDiag)) % 4; |
| SkASSERT(*start < 4); |
| if (isRRect) { |
| *start = 2 * *start + rm; |
| } |
| } else { |
| // This is a mirror (and maybe scale). The direction is reversed. |
| *isCCW = !*isCCW; |
| // Trust me on the start computation (or draw yourself some pictures) |
| *start = (6 + (topNeg | antiDiag) - inStart) % 4; |
| SkASSERT(*start < 4); |
| if (isRRect) { |
| *start = 2 * *start + (rm ? 0 : 1); |
| } |
| } |
| } |
| |
| void SkPathRef::CreateTransformedCopy(sk_sp<SkPathRef>* dst, |
| const SkPathRef& src, |
| const SkMatrix& matrix) { |
| SkDEBUGCODE(src.validate();) |
| if (matrix.isIdentity()) { |
| if (dst->get() != &src) { |
| src.ref(); |
| dst->reset(const_cast<SkPathRef*>(&src)); |
| SkDEBUGCODE((*dst)->validate();) |
| } |
| return; |
| } |
| |
| sk_sp<const SkPathRef> srcKeepAlive; |
| if (!(*dst)->unique()) { |
| // If dst and src are the same then we are about to drop our only ref on the common path |
| // ref. Some other thread may have owned src when we checked unique() above but it may not |
| // continue to do so. Add another ref so we continue to be an owner until we're done. |
| if (dst->get() == &src) { |
| srcKeepAlive.reset(SkRef(&src)); |
| } |
| dst->reset(new SkPathRef); |
| } |
| |
| if (dst->get() != &src) { |
| (*dst)->fVerbs = src.fVerbs; |
| (*dst)->fConicWeights = src.fConicWeights; |
| (*dst)->callGenIDChangeListeners(); |
| (*dst)->fGenerationID = 0; // mark as dirty |
| // don't copy, just allocate the points |
| (*dst)->fPoints.resize(src.fPoints.size()); |
| } |
| matrix.mapPoints((*dst)->fPoints.begin(), src.fPoints.begin(), src.fPoints.size()); |
| |
| // Need to check this here in case (&src == dst) |
| bool canXformBounds = !src.fBoundsIsDirty && matrix.rectStaysRect() && src.countPoints() > 1; |
| |
| /* |
| * Here we optimize the bounds computation, by noting if the bounds are |
| * already known, and if so, we just transform those as well and mark |
| * them as "known", rather than force the transformed path to have to |
| * recompute them. |
| * |
| * Special gotchas if the path is effectively empty (<= 1 point) or |
| * if it is non-finite. In those cases bounds need to stay empty, |
| * regardless of the matrix. |
| */ |
| if (canXformBounds) { |
| (*dst)->fBoundsIsDirty = false; |
| if (src.fIsFinite) { |
| matrix.mapRect(&(*dst)->fBounds, src.fBounds); |
| if (!((*dst)->fIsFinite = (*dst)->fBounds.isFinite())) { |
| (*dst)->fBounds.setEmpty(); |
| } |
| } else { |
| (*dst)->fIsFinite = false; |
| (*dst)->fBounds.setEmpty(); |
| } |
| } else { |
| (*dst)->fBoundsIsDirty = true; |
| } |
| |
| (*dst)->fSegmentMask = src.fSegmentMask; |
| |
| // It's an oval only if it stays a rect. Technically if scale is uniform, then it would stay an |
| // arc. For now, don't bother handling that (we'd also need to fixup the angles for negative |
| // scale, etc.) |
| bool rectStaysRect = matrix.rectStaysRect(); |
| const PathType newType = |
| (rectStaysRect && src.fType != PathType::kArc) ? src.fType : PathType::kGeneral; |
| (*dst)->fType = newType; |
| if (newType == PathType::kOval || newType == PathType::kOpenOval || |
| newType == PathType::kRRect) { |
| unsigned start = src.fRRectOrOvalStartIdx; |
| bool isCCW = SkToBool(src.fRRectOrOvalIsCCW); |
| transform_dir_and_start(matrix, newType == PathType::kRRect, &isCCW, &start); |
| (*dst)->fRRectOrOvalIsCCW = isCCW; |
| (*dst)->fRRectOrOvalStartIdx = start; |
| } |
| |
| if (dst->get() == &src) { |
| (*dst)->callGenIDChangeListeners(); |
| (*dst)->fGenerationID = 0; |
| } |
| |
| SkDEBUGCODE((*dst)->validate();) |
| } |
| |
| void SkPathRef::Rewind(sk_sp<SkPathRef>* pathRef) { |
| if ((*pathRef)->unique()) { |
| SkDEBUGCODE((*pathRef)->validate();) |
| (*pathRef)->callGenIDChangeListeners(); |
| (*pathRef)->fBoundsIsDirty = true; // this also invalidates fIsFinite |
| (*pathRef)->fGenerationID = 0; |
| (*pathRef)->fPoints.clear(); |
| (*pathRef)->fVerbs.clear(); |
| (*pathRef)->fConicWeights.clear(); |
| (*pathRef)->fSegmentMask = 0; |
| (*pathRef)->fType = PathType::kGeneral; |
| SkDEBUGCODE((*pathRef)->validate();) |
| } else { |
| int oldVCnt = (*pathRef)->countVerbs(); |
| int oldPCnt = (*pathRef)->countPoints(); |
| pathRef->reset(new SkPathRef); |
| (*pathRef)->resetToSize(0, 0, 0, oldVCnt, oldPCnt); |
| } |
| } |
| |
| bool SkPathRef::operator== (const SkPathRef& ref) const { |
| SkDEBUGCODE(this->validate();) |
| SkDEBUGCODE(ref.validate();) |
| |
| // We explicitly check fSegmentMask as a quick-reject. We could skip it, |
| // since it is only a cache of info in the fVerbs, but its a fast way to |
| // notice a difference |
| if (fSegmentMask != ref.fSegmentMask) { |
| return false; |
| } |
| |
| bool genIDMatch = fGenerationID && fGenerationID == ref.fGenerationID; |
| #ifdef SK_RELEASE |
| if (genIDMatch) { |
| return true; |
| } |
| #endif |
| if (fPoints != ref.fPoints || fConicWeights != ref.fConicWeights || fVerbs != ref.fVerbs) { |
| SkASSERT(!genIDMatch); |
| return false; |
| } |
| if (ref.fVerbs.empty()) { |
| SkASSERT(ref.fPoints.empty()); |
| } |
| return true; |
| } |
| |
| void SkPathRef::copy(const SkPathRef& ref, |
| int additionalReserveVerbs, |
| int additionalReservePoints, |
| int additionalReserveConics) { |
| SkDEBUGCODE(this->validate();) |
| this->resetToSize(ref.fVerbs.size(), ref.fPoints.size(), ref.fConicWeights.size(), |
| additionalReserveVerbs, additionalReservePoints, additionalReserveConics); |
| fVerbs = ref.fVerbs; |
| fPoints = ref.fPoints; |
| fConicWeights = ref.fConicWeights; |
| fBoundsIsDirty = ref.fBoundsIsDirty; |
| if (!fBoundsIsDirty) { |
| fBounds = ref.fBounds; |
| fIsFinite = ref.fIsFinite; |
| } |
| fSegmentMask = ref.fSegmentMask; |
| fType = ref.fType; |
| fRRectOrOvalIsCCW = ref.fRRectOrOvalIsCCW; |
| fRRectOrOvalStartIdx = ref.fRRectOrOvalStartIdx; |
| fArcOval = ref.fArcOval; |
| fArcStartAngle = ref.fArcStartAngle; |
| fArcSweepAngle = ref.fArcSweepAngle; |
| fArcType = ref.fArcType; |
| SkDEBUGCODE(this->validate();) |
| } |
| |
| void SkPathRef::interpolate(const SkPathRef& ending, SkScalar weight, SkPathRef* out) const { |
| const SkScalar* inValues = &ending.getPoints()->fX; |
| SkScalar* outValues = &out->getWritablePoints()->fX; |
| int count = out->countPoints() * 2; |
| for (int index = 0; index < count; ++index) { |
| outValues[index] = outValues[index] * weight + inValues[index] * (1 - weight); |
| } |
| out->fBoundsIsDirty = true; |
| out->fType = PathType::kGeneral; |
| } |
| |
| std::tuple<SkPoint*, SkScalar*> SkPathRef::growForVerbsInPath(const SkPathRef& path) { |
| SkDEBUGCODE(this->validate();) |
| |
| fSegmentMask |= path.fSegmentMask; |
| fBoundsIsDirty = true; // this also invalidates fIsFinite |
| fType = PathType::kGeneral; |
| |
| if (int numVerbs = path.countVerbs()) { |
| memcpy(fVerbs.push_back_n(numVerbs), path.fVerbs.begin(), numVerbs * sizeof(fVerbs[0])); |
| } |
| |
| SkPoint* pts = nullptr; |
| if (int numPts = path.countPoints()) { |
| pts = fPoints.push_back_n(numPts); |
| } |
| |
| SkScalar* weights = nullptr; |
| if (int numConics = path.countWeights()) { |
| weights = fConicWeights.push_back_n(numConics); |
| } |
| |
| SkDEBUGCODE(this->validate();) |
| return {pts, weights}; |
| } |
| |
| SkPoint* SkPathRef::growForRepeatedVerb(int /*SkPath::Verb*/ verb, |
| int numVbs, |
| SkScalar** weights) { |
| SkDEBUGCODE(this->validate();) |
| int pCnt; |
| switch (verb) { |
| case SkPath::kMove_Verb: |
| pCnt = numVbs; |
| break; |
| case SkPath::kLine_Verb: |
| fSegmentMask |= SkPath::kLine_SegmentMask; |
| pCnt = numVbs; |
| break; |
| case SkPath::kQuad_Verb: |
| fSegmentMask |= SkPath::kQuad_SegmentMask; |
| pCnt = 2 * numVbs; |
| break; |
| case SkPath::kConic_Verb: |
| fSegmentMask |= SkPath::kConic_SegmentMask; |
| pCnt = 2 * numVbs; |
| break; |
| case SkPath::kCubic_Verb: |
| fSegmentMask |= SkPath::kCubic_SegmentMask; |
| pCnt = 3 * numVbs; |
| break; |
| case SkPath::kClose_Verb: |
| SkDEBUGFAIL("growForRepeatedVerb called for kClose_Verb"); |
| pCnt = 0; |
| break; |
| case SkPath::kDone_Verb: |
| SkDEBUGFAIL("growForRepeatedVerb called for kDone"); |
| pCnt = 0; |
| break; |
| default: |
| SkDEBUGFAIL("default should not be reached"); |
| pCnt = 0; |
| break; |
| } |
| |
| fBoundsIsDirty = true; // this also invalidates fIsFinite |
| fType = PathType::kGeneral; |
| |
| memset(fVerbs.push_back_n(numVbs), verb, numVbs); |
| if (SkPath::kConic_Verb == verb) { |
| SkASSERT(weights); |
| *weights = fConicWeights.push_back_n(numVbs); |
| } |
| SkPoint* pts = fPoints.push_back_n(pCnt); |
| |
| SkDEBUGCODE(this->validate();) |
| return pts; |
| } |
| |
| SkPoint* SkPathRef::growForVerb(int /* SkPath::Verb*/ verb, SkScalar weight) { |
| SkDEBUGCODE(this->validate();) |
| int pCnt; |
| unsigned mask = 0; |
| switch (verb) { |
| case SkPath::kMove_Verb: |
| pCnt = 1; |
| break; |
| case SkPath::kLine_Verb: |
| mask = SkPath::kLine_SegmentMask; |
| pCnt = 1; |
| break; |
| case SkPath::kQuad_Verb: |
| mask = SkPath::kQuad_SegmentMask; |
| pCnt = 2; |
| break; |
| case SkPath::kConic_Verb: |
| mask = SkPath::kConic_SegmentMask; |
| pCnt = 2; |
| break; |
| case SkPath::kCubic_Verb: |
| mask = SkPath::kCubic_SegmentMask; |
| pCnt = 3; |
| break; |
| case SkPath::kClose_Verb: |
| pCnt = 0; |
| break; |
| case SkPath::kDone_Verb: |
| SkDEBUGFAIL("growForVerb called for kDone"); |
| pCnt = 0; |
| break; |
| default: |
| SkDEBUGFAIL("default is not reached"); |
| pCnt = 0; |
| break; |
| } |
| |
| fSegmentMask |= mask; |
| fBoundsIsDirty = true; // this also invalidates fIsFinite |
| if (verb == SkPath::kClose_Verb && fType == PathType::kOpenOval) { |
| fType = PathType::kOval; |
| } else { |
| fType = PathType::kGeneral; |
| } |
| |
| fVerbs.push_back(verb); |
| if (SkPath::kConic_Verb == verb) { |
| fConicWeights.push_back(weight); |
| } |
| SkPoint* pts = fPoints.push_back_n(pCnt); |
| |
| SkDEBUGCODE(this->validate();) |
| return pts; |
| } |
| |
| uint32_t SkPathRef::genID(uint8_t fillType) const { |
| SkASSERT(fEditorsAttached.load() == 0); |
| static const uint32_t kMask = (static_cast<int64_t>(1) << kPathRefGenIDBitCnt) - 1; |
| |
| if (fGenerationID == 0) { |
| if (fPoints.empty() && fVerbs.empty()) { |
| fGenerationID = kEmptyGenID; |
| } else { |
| static std::atomic<uint32_t> nextID{kEmptyGenID + 1}; |
| do { |
| fGenerationID = nextID.fetch_add(1, std::memory_order_relaxed) & kMask; |
| } while (fGenerationID == 0 || fGenerationID == kEmptyGenID); |
| } |
| } |
| #if defined(SK_BUILD_FOR_ANDROID_FRAMEWORK) |
| SkASSERT((unsigned)fillType < (1 << (32 - kPathRefGenIDBitCnt))); |
| fGenerationID |= static_cast<uint32_t>(fillType) << kPathRefGenIDBitCnt; |
| #endif |
| return fGenerationID; |
| } |
| |
| void SkPathRef::addGenIDChangeListener(sk_sp<SkIDChangeListener> listener) { |
| if (this == gEmpty) { |
| return; |
| } |
| fGenIDChangeListeners.add(std::move(listener)); |
| } |
| |
| int SkPathRef::genIDChangeListenerCount() { return fGenIDChangeListeners.count(); } |
| |
| // we need to be called *before* the genID gets changed or zerod |
| void SkPathRef::callGenIDChangeListeners() { |
| fGenIDChangeListeners.changed(); |
| } |
| |
| SkRRect SkPathRef::getRRect() const { |
| const SkRect& bounds = this->getBounds(); |
| SkVector radii[4] = {{0, 0}, {0, 0}, {0, 0}, {0, 0}}; |
| Iter iter(*this); |
| SkPoint pts[4]; |
| uint8_t verb = iter.next(pts); |
| SkASSERT(SkPath::kMove_Verb == verb); |
| while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { |
| if (SkPath::kConic_Verb == verb) { |
| SkVector v1_0 = pts[1] - pts[0]; |
| SkVector v2_1 = pts[2] - pts[1]; |
| SkVector dxdy; |
| if (v1_0.fX) { |
| SkASSERT(!v2_1.fX && !v1_0.fY); |
| dxdy.set(SkScalarAbs(v1_0.fX), SkScalarAbs(v2_1.fY)); |
| } else if (!v1_0.fY) { |
| SkASSERT(!v2_1.fX || !v2_1.fY); |
| dxdy.set(SkScalarAbs(v2_1.fX), SkScalarAbs(v2_1.fY)); |
| } else { |
| SkASSERT(!v2_1.fY); |
| dxdy.set(SkScalarAbs(v2_1.fX), SkScalarAbs(v1_0.fY)); |
| } |
| SkRRect::Corner corner = |
| pts[1].fX == bounds.fLeft ? |
| pts[1].fY == bounds.fTop ? |
| SkRRect::kUpperLeft_Corner : SkRRect::kLowerLeft_Corner : |
| pts[1].fY == bounds.fTop ? |
| SkRRect::kUpperRight_Corner : SkRRect::kLowerRight_Corner; |
| SkASSERT(!radii[corner].fX && !radii[corner].fY); |
| radii[corner] = dxdy; |
| } else { |
| SkASSERT((verb == SkPath::kLine_Verb |
| && (!(pts[1].fX - pts[0].fX) || !(pts[1].fY - pts[0].fY))) |
| || verb == SkPath::kClose_Verb); |
| } |
| } |
| SkRRect rrect; |
| rrect.setRectRadii(bounds, radii); |
| return rrect; |
| } |
| |
| bool SkPathRef::isRRect(SkRRect* rrect, bool* isCCW, unsigned* start) const { |
| if (fType == PathType::kRRect) { |
| if (rrect) { |
| *rrect = this->getRRect(); |
| } |
| if (isCCW) { |
| *isCCW = SkToBool(fRRectOrOvalIsCCW); |
| } |
| if (start) { |
| *start = fRRectOrOvalStartIdx; |
| } |
| } |
| return fType == PathType::kRRect; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| SkPathRef::Iter::Iter() { |
| #ifdef SK_DEBUG |
| fPts = nullptr; |
| fConicWeights = nullptr; |
| #endif |
| // need to init enough to make next() harmlessly return kDone_Verb |
| fVerbs = nullptr; |
| fVerbStop = nullptr; |
| } |
| |
| SkPathRef::Iter::Iter(const SkPathRef& path) { |
| this->setPathRef(path); |
| } |
| |
| void SkPathRef::Iter::setPathRef(const SkPathRef& path) { |
| fPts = path.points(); |
| fVerbs = path.verbsBegin(); |
| fVerbStop = path.verbsEnd(); |
| fConicWeights = path.conicWeights(); |
| if (fConicWeights) { |
| fConicWeights -= 1; // begin one behind |
| } |
| |
| // Don't allow iteration through non-finite points. |
| if (!path.isFinite()) { |
| fVerbStop = fVerbs; |
| } |
| } |
| |
| uint8_t SkPathRef::Iter::next(SkPoint pts[4]) { |
| SkASSERT(pts); |
| |
| SkDEBUGCODE(unsigned peekResult = this->peek();) |
| |
| if (fVerbs == fVerbStop) { |
| SkASSERT(peekResult == SkPath::kDone_Verb); |
| return (uint8_t) SkPath::kDone_Verb; |
| } |
| |
| // fVerbs points one beyond next verb so decrement first. |
| unsigned verb = *fVerbs++; |
| const SkPoint* srcPts = fPts; |
| |
| switch (verb) { |
| case SkPath::kMove_Verb: |
| pts[0] = srcPts[0]; |
| srcPts += 1; |
| break; |
| case SkPath::kLine_Verb: |
| pts[0] = srcPts[-1]; |
| pts[1] = srcPts[0]; |
| srcPts += 1; |
| break; |
| case SkPath::kConic_Verb: |
| fConicWeights += 1; |
| [[fallthrough]]; |
| case SkPath::kQuad_Verb: |
| pts[0] = srcPts[-1]; |
| pts[1] = srcPts[0]; |
| pts[2] = srcPts[1]; |
| srcPts += 2; |
| break; |
| case SkPath::kCubic_Verb: |
| pts[0] = srcPts[-1]; |
| pts[1] = srcPts[0]; |
| pts[2] = srcPts[1]; |
| pts[3] = srcPts[2]; |
| srcPts += 3; |
| break; |
| case SkPath::kClose_Verb: |
| break; |
| case SkPath::kDone_Verb: |
| SkASSERT(fVerbs == fVerbStop); |
| break; |
| } |
| fPts = srcPts; |
| SkASSERT(peekResult == verb); |
| return (uint8_t) verb; |
| } |
| |
| uint8_t SkPathRef::Iter::peek() const { |
| return fVerbs < fVerbStop ? *fVerbs : (uint8_t) SkPath::kDone_Verb; |
| } |
| |
| |
| bool SkPathRef::isValid() const { |
| switch (fType) { |
| case PathType::kGeneral: |
| break; |
| case PathType::kOval: |
| case PathType::kOpenOval: |
| if (fRRectOrOvalStartIdx >= 4) { |
| return false; |
| } |
| break; |
| case PathType::kRRect: |
| if (fRRectOrOvalStartIdx >= 8) { |
| return false; |
| } |
| break; |
| case PathType::kArc: |
| if (!(fArcOval.isFinite() && SkIsFinite(fArcStartAngle, fArcSweepAngle))) { |
| return false; |
| } |
| break; |
| } |
| |
| if (!fBoundsIsDirty && !fBounds.isEmpty()) { |
| bool isFinite = true; |
| auto leftTop = skvx::float2(fBounds.fLeft, fBounds.fTop); |
| auto rightBot = skvx::float2(fBounds.fRight, fBounds.fBottom); |
| for (int i = 0; i < fPoints.size(); ++i) { |
| auto point = skvx::float2(fPoints[i].fX, fPoints[i].fY); |
| #ifdef SK_DEBUG |
| if (fPoints[i].isFinite() && (any(point < leftTop)|| any(point > rightBot))) { |
| SkDebugf("bad SkPathRef bounds: %g %g %g %g\n", |
| fBounds.fLeft, fBounds.fTop, fBounds.fRight, fBounds.fBottom); |
| for (int j = 0; j < fPoints.size(); ++j) { |
| if (i == j) { |
| SkDebugf("*** bounds do not contain: "); |
| } |
| SkDebugf("%g %g\n", fPoints[j].fX, fPoints[j].fY); |
| } |
| return false; |
| } |
| #endif |
| |
| if (fPoints[i].isFinite() && any(point < leftTop) && !any(point > rightBot)) |
| return false; |
| if (!fPoints[i].isFinite()) { |
| isFinite = false; |
| } |
| } |
| if (SkToBool(fIsFinite) != isFinite) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| void SkPathRef::reset() { |
| commonReset(); |
| fPoints.clear(); |
| fVerbs.clear(); |
| fConicWeights.clear(); |
| SkDEBUGCODE(validate();) |
| } |
| |
| bool SkPathRef::dataMatchesVerbs() const { |
| const auto info = sk_path_analyze_verbs(fVerbs.begin(), fVerbs.size()); |
| return info.valid && |
| info.segmentMask == fSegmentMask && |
| info.points == fPoints.size() && |
| info.weights == fConicWeights.size(); |
| } |