blob: 862a0bc216838bd82319dc7dc920b58f9336dc87 [file] [log] [blame]
/*
* Copyright 2020 Google LLC
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/sksl/SkSLConstantFolder.h"
#include <limits>
#include "src/sksl/SkSLContext.h"
#include "src/sksl/SkSLErrorReporter.h"
#include "src/sksl/ir/SkSLBinaryExpression.h"
#include "src/sksl/ir/SkSLBoolLiteral.h"
#include "src/sksl/ir/SkSLConstructor.h"
#include "src/sksl/ir/SkSLConstructorCompound.h"
#include "src/sksl/ir/SkSLConstructorSplat.h"
#include "src/sksl/ir/SkSLExpression.h"
#include "src/sksl/ir/SkSLFloatLiteral.h"
#include "src/sksl/ir/SkSLIntLiteral.h"
#include "src/sksl/ir/SkSLPrefixExpression.h"
#include "src/sksl/ir/SkSLType.h"
#include "src/sksl/ir/SkSLVariable.h"
#include "src/sksl/ir/SkSLVariableReference.h"
namespace SkSL {
static std::unique_ptr<Expression> eliminate_no_op_boolean(const Expression& left,
Operator op,
const Expression& right) {
SkASSERT(right.is<BoolLiteral>());
bool rightVal = right.as<BoolLiteral>().value();
// Detect no-op Boolean expressions and optimize them away.
if ((op.kind() == Token::Kind::TK_LOGICALAND && rightVal) || // (expr && true) -> (expr)
(op.kind() == Token::Kind::TK_LOGICALOR && !rightVal) || // (expr || false) -> (expr)
(op.kind() == Token::Kind::TK_LOGICALXOR && !rightVal) || // (expr ^^ false) -> (expr)
(op.kind() == Token::Kind::TK_EQEQ && rightVal) || // (expr == true) -> (expr)
(op.kind() == Token::Kind::TK_NEQ && !rightVal)) { // (expr != false) -> (expr)
return left.clone();
}
return nullptr;
}
static std::unique_ptr<Expression> short_circuit_boolean(const Expression& left,
Operator op,
const Expression& right) {
SkASSERT(left.is<BoolLiteral>());
bool leftVal = left.as<BoolLiteral>().value();
// When the literal is on the left, we can sometimes eliminate the other expression entirely.
if ((op.kind() == Token::Kind::TK_LOGICALAND && !leftVal) || // (false && expr) -> (false)
(op.kind() == Token::Kind::TK_LOGICALOR && leftVal)) { // (true || expr) -> (true)
return left.clone();
}
// We can't eliminate the right-side expression via short-circuit, but we might still be able to
// simplify away a no-op expression.
return eliminate_no_op_boolean(right, op, left);
}
// 'T' is the actual stored type of the literal data (SKSL_FLOAT or SKSL_INT).
// 'U' is an unsigned version of that, used to perform addition, subtraction, and multiplication,
// to avoid signed-integer overflow errors. This mimics the use of URESULT vs. RESULT when doing
// scalar folding in Simplify, later in this file.
template <typename T, typename U = T>
static std::unique_ptr<Expression> simplify_vector(const Context& context,
const Expression& left,
Operator op,
const Expression& right) {
SkASSERT(left.type().isVector());
SkASSERT(left.type() == right.type());
const Type& type = left.type();
// Handle boolean operations: == !=
if (op.kind() == Token::Kind::TK_EQEQ || op.kind() == Token::Kind::TK_NEQ) {
bool equality = (op.kind() == Token::Kind::TK_EQEQ);
switch (left.compareConstant(right)) {
case Expression::ComparisonResult::kNotEqual:
equality = !equality;
[[fallthrough]];
case Expression::ComparisonResult::kEqual:
return BoolLiteral::Make(context, left.fOffset, equality);
case Expression::ComparisonResult::kUnknown:
return nullptr;
}
}
// Handle floating-point arithmetic: + - * /
const auto vectorComponentwiseFold = [&](auto foldFn) -> std::unique_ptr<Expression> {
const Type& componentType = type.componentType();
ExpressionArray args;
args.reserve_back(type.columns());
for (int i = 0; i < type.columns(); i++) {
U value = foldFn(left.getConstantSubexpression(i)->as<Literal<T>>().value(),
right.getConstantSubexpression(i)->as<Literal<T>>().value());
args.push_back(Literal<T>::Make(left.fOffset, value, &componentType));
}
return ConstructorCompound::Make(context, left.fOffset, type, std::move(args));
};
switch (op.kind()) {
case Token::Kind::TK_PLUS: return vectorComponentwiseFold([](U a, U b) { return a + b; });
case Token::Kind::TK_MINUS: return vectorComponentwiseFold([](U a, U b) { return a - b; });
case Token::Kind::TK_STAR: return vectorComponentwiseFold([](U a, U b) { return a * b; });
case Token::Kind::TK_SLASH: return vectorComponentwiseFold([](T a, T b) { return a / b; });
default:
return nullptr;
}
}
static std::unique_ptr<Expression> cast_expression(const Context& context,
const Expression& expr,
const Type& type) {
ExpressionArray ctorArgs;
ctorArgs.push_back(expr.clone());
std::unique_ptr<Expression> ctor = Constructor::Convert(context, expr.fOffset, type,
std::move(ctorArgs));
SkASSERT(ctor);
return ctor;
}
static ConstructorSplat splat_scalar(const Expression& scalar, const Type& type) {
SkASSERT(type.isVector());
SkASSERT(type.componentType() == scalar.type());
// Use a constructor to splat the scalar expression across a vector.
return ConstructorSplat{scalar.fOffset, type, scalar.clone()};
}
bool ConstantFolder::GetConstantInt(const Expression& value, SKSL_INT* out) {
const Expression* expr = GetConstantValueForVariable(value);
if (!expr->is<IntLiteral>()) {
return false;
}
*out = expr->as<IntLiteral>().value();
return true;
}
bool ConstantFolder::GetConstantFloat(const Expression& value, SKSL_FLOAT* out) {
const Expression* expr = GetConstantValueForVariable(value);
if (!expr->is<FloatLiteral>()) {
return false;
}
*out = expr->as<FloatLiteral>().value();
return true;
}
static bool is_constant_scalar_value(const Expression& inExpr, float match) {
const Expression* expr = ConstantFolder::GetConstantValueForVariable(inExpr);
return (expr->is<IntLiteral>() && expr->as<IntLiteral>().value() == match) ||
(expr->is<FloatLiteral>() && expr->as<FloatLiteral>().value() == match);
}
static bool contains_constant_zero(const Expression& expr) {
if (expr.isAnyConstructor()) {
for (const auto& arg : expr.asAnyConstructor().argumentSpan()) {
if (contains_constant_zero(*arg)) {
return true;
}
}
return false;
}
return is_constant_scalar_value(expr, 0.0);
}
static bool is_constant_value(const Expression& expr, float value) {
// This check only supports scalars and vectors (and in particular, not matrices).
SkASSERT(expr.type().isScalar() || expr.type().isVector());
if (expr.isAnyConstructor()) {
for (const auto& arg : expr.asAnyConstructor().argumentSpan()) {
if (!is_constant_value(*arg, value)) {
return false;
}
}
return true;
}
return is_constant_scalar_value(expr, value);
}
bool ConstantFolder::ErrorOnDivideByZero(const Context& context, int offset, Operator op,
const Expression& right) {
switch (op.kind()) {
case Token::Kind::TK_SLASH:
case Token::Kind::TK_SLASHEQ:
case Token::Kind::TK_PERCENT:
case Token::Kind::TK_PERCENTEQ:
if (contains_constant_zero(right)) {
context.fErrors.error(offset, "division by zero");
return true;
}
return false;
default:
return false;
}
}
const Expression* ConstantFolder::GetConstantValueForVariable(const Expression& inExpr) {
for (const Expression* expr = &inExpr;;) {
if (!expr->is<VariableReference>()) {
break;
}
const VariableReference& varRef = expr->as<VariableReference>();
if (varRef.refKind() != VariableRefKind::kRead) {
break;
}
const Variable& var = *varRef.variable();
if (!(var.modifiers().fFlags & Modifiers::kConst_Flag)) {
break;
}
expr = var.initialValue();
if (!expr) {
SkDEBUGFAILF("found a const variable without an initial value (%s)",
var.description().c_str());
break;
}
if (expr->isCompileTimeConstant()) {
return expr;
}
if (!expr->is<VariableReference>()) {
break;
}
}
// We didn't find a compile-time constant at the end. Return the expression as-is.
return &inExpr;
}
static std::unique_ptr<Expression> simplify_no_op_arithmetic(const Context& context,
const Expression& left,
Operator op,
const Expression& right,
const Type& resultType) {
switch (op.kind()) {
case Token::Kind::TK_PLUS:
if (is_constant_value(right, 0.0)) { // x + 0
return cast_expression(context, left, resultType);
}
if (is_constant_value(left, 0.0)) { // 0 + x
return cast_expression(context, right, resultType);
}
break;
case Token::Kind::TK_STAR:
if (is_constant_value(right, 1.0)) { // x * 1
return cast_expression(context, left, resultType);
}
if (is_constant_value(left, 1.0)) { // 1 * x
return cast_expression(context, right, resultType);
}
if (is_constant_value(right, 0.0) && !left.hasSideEffects()) { // x * 0
return cast_expression(context, right, resultType);
}
if (is_constant_value(left, 0.0) && !right.hasSideEffects()) { // 0 * x
return cast_expression(context, left, resultType);
}
break;
case Token::Kind::TK_MINUS:
if (is_constant_value(right, 0.0)) { // x - 0
return cast_expression(context, left, resultType);
}
if (is_constant_value(left, 0.0)) { // 0 - x (to `-x`)
return PrefixExpression::Make(context, Token::Kind::TK_MINUS,
cast_expression(context, right, resultType));
}
break;
case Token::Kind::TK_SLASH:
if (is_constant_value(right, 1.0)) { // x / 1
return cast_expression(context, left, resultType);
}
if (is_constant_value(left, 0.0) &&
!is_constant_value(right, 0.0) &&
!right.hasSideEffects()) { // 0 / x (where x is not 0)
return cast_expression(context, left, resultType);
}
break;
case Token::Kind::TK_PLUSEQ:
case Token::Kind::TK_MINUSEQ:
if (is_constant_value(right, 0.0)) { // x += 0, x -= 0
std::unique_ptr<Expression> result = cast_expression(context, left, resultType);
Analysis::UpdateRefKind(result.get(), VariableRefKind::kRead);
return result;
}
break;
case Token::Kind::TK_STAREQ:
case Token::Kind::TK_SLASHEQ:
if (is_constant_value(right, 1.0)) { // x *= 1, x /= 1
std::unique_ptr<Expression> result = cast_expression(context, left, resultType);
Analysis::UpdateRefKind(result.get(), VariableRefKind::kRead);
return result;
}
break;
default:
break;
}
return nullptr;
}
std::unique_ptr<Expression> ConstantFolder::Simplify(const Context& context,
int offset,
const Expression& leftExpr,
Operator op,
const Expression& rightExpr,
const Type& resultType) {
// When optimization is enabled, replace constant variables with trivial initial-values.
const Expression* left;
const Expression* right;
if (context.fConfig->fSettings.fOptimize) {
left = GetConstantValueForVariable(leftExpr);
right = GetConstantValueForVariable(rightExpr);
} else {
left = &leftExpr;
right = &rightExpr;
}
// If this is the comma operator, the left side is evaluated but not otherwise used in any way.
// So if the left side has no side effects, it can just be eliminated entirely.
if (op.kind() == Token::Kind::TK_COMMA && !left->hasSideEffects()) {
return right->clone();
}
// If this is the assignment operator, and both sides are the same trivial expression, this is
// self-assignment (i.e., `var = var`) and can be reduced to just a variable reference (`var`).
// This can happen when other parts of the assignment are optimized away.
if (op.kind() == Token::Kind::TK_EQ && Analysis::IsSameExpressionTree(*left, *right)) {
return right->clone();
}
// Simplify the expression when both sides are constant Boolean literals.
if (left->is<BoolLiteral>() && right->is<BoolLiteral>()) {
bool leftVal = left->as<BoolLiteral>().value();
bool rightVal = right->as<BoolLiteral>().value();
bool result;
switch (op.kind()) {
case Token::Kind::TK_LOGICALAND: result = leftVal && rightVal; break;
case Token::Kind::TK_LOGICALOR: result = leftVal || rightVal; break;
case Token::Kind::TK_LOGICALXOR: result = leftVal ^ rightVal; break;
case Token::Kind::TK_EQEQ: result = leftVal == rightVal; break;
case Token::Kind::TK_NEQ: result = leftVal != rightVal; break;
default: return nullptr;
}
return BoolLiteral::Make(context, offset, result);
}
// If the left side is a Boolean literal, apply short-circuit optimizations.
if (left->is<BoolLiteral>()) {
return short_circuit_boolean(*left, op, *right);
}
// If the right side is a Boolean literal...
if (right->is<BoolLiteral>()) {
// ... and the left side has no side effects...
if (!left->hasSideEffects()) {
// We can reverse the expressions and short-circuit optimizations are still valid.
return short_circuit_boolean(*right, op, *left);
}
// We can't use short-circuiting, but we can still optimize away no-op Boolean expressions.
return eliminate_no_op_boolean(*left, op, *right);
}
if (op.kind() == Token::Kind::TK_EQEQ && Analysis::IsSameExpressionTree(*left, *right)) {
// With == comparison, if both sides are the same trivial expression, this is self-
// comparison and is always true. (We are not concerned with NaN.)
return BoolLiteral::Make(context, leftExpr.fOffset, /*value=*/true);
}
if (op.kind() == Token::Kind::TK_NEQ && Analysis::IsSameExpressionTree(*left, *right)) {
// With != comparison, if both sides are the same trivial expression, this is self-
// comparison and is always false. (We are not concerned with NaN.)
return BoolLiteral::Make(context, leftExpr.fOffset, /*value=*/false);
}
if (ErrorOnDivideByZero(context, offset, op, *right)) {
return nullptr;
}
// Optimize away no-op arithmetic like `x * 1`, `x *= 1`, `x + 0`, `x * 0`, `0 / x`, etc.
const Type& leftType = left->type();
const Type& rightType = right->type();
if ((leftType.isScalar() || leftType.isVector()) &&
(rightType.isScalar() || rightType.isVector())) {
std::unique_ptr<Expression> expr = simplify_no_op_arithmetic(context, *left, op, *right,
resultType);
if (expr) {
return expr;
}
}
// Other than the cases above, constant folding requires both sides to be constant.
if (!left->isCompileTimeConstant() || !right->isCompileTimeConstant()) {
return nullptr;
}
// Note that we expressly do not worry about precision and overflow here -- we use the maximum
// precision to calculate the results and hope the result makes sense.
// TODO(skia:10932): detect and handle integer overflow properly.
using SKSL_UINT = uint64_t;
#define RESULT(t, op) t ## Literal::Make(context, offset, leftVal op rightVal)
#define URESULT(t, op) t ## Literal::Make(context, offset, (SKSL_UINT) leftVal op \
(SKSL_UINT) rightVal)
if (left->is<IntLiteral>() && right->is<IntLiteral>()) {
SKSL_INT leftVal = left->as<IntLiteral>().value();
SKSL_INT rightVal = right->as<IntLiteral>().value();
switch (op.kind()) {
case Token::Kind::TK_PLUS: return URESULT(Int, +);
case Token::Kind::TK_MINUS: return URESULT(Int, -);
case Token::Kind::TK_STAR: return URESULT(Int, *);
case Token::Kind::TK_SLASH:
if (leftVal == std::numeric_limits<SKSL_INT>::min() && rightVal == -1) {
context.fErrors.error(offset, "arithmetic overflow");
return nullptr;
}
return RESULT(Int, /);
case Token::Kind::TK_PERCENT:
if (leftVal == std::numeric_limits<SKSL_INT>::min() && rightVal == -1) {
context.fErrors.error(offset, "arithmetic overflow");
return nullptr;
}
return RESULT(Int, %);
case Token::Kind::TK_BITWISEAND: return RESULT(Int, &);
case Token::Kind::TK_BITWISEOR: return RESULT(Int, |);
case Token::Kind::TK_BITWISEXOR: return RESULT(Int, ^);
case Token::Kind::TK_EQEQ: return RESULT(Bool, ==);
case Token::Kind::TK_NEQ: return RESULT(Bool, !=);
case Token::Kind::TK_GT: return RESULT(Bool, >);
case Token::Kind::TK_GTEQ: return RESULT(Bool, >=);
case Token::Kind::TK_LT: return RESULT(Bool, <);
case Token::Kind::TK_LTEQ: return RESULT(Bool, <=);
case Token::Kind::TK_SHL:
if (rightVal >= 0 && rightVal <= 31) {
// Left-shifting a negative (or really, any signed) value is undefined behavior
// in C++, but not GLSL. Do the shift on unsigned values, to avoid UBSAN.
return URESULT(Int, <<);
}
context.fErrors.error(offset, "shift value out of range");
return nullptr;
case Token::Kind::TK_SHR:
if (rightVal >= 0 && rightVal <= 31) {
return RESULT(Int, >>);
}
context.fErrors.error(offset, "shift value out of range");
return nullptr;
default:
return nullptr;
}
}
// Perform constant folding on pairs of floating-point literals.
if (left->is<FloatLiteral>() && right->is<FloatLiteral>()) {
SKSL_FLOAT leftVal = left->as<FloatLiteral>().value();
SKSL_FLOAT rightVal = right->as<FloatLiteral>().value();
switch (op.kind()) {
case Token::Kind::TK_PLUS: return RESULT(Float, +);
case Token::Kind::TK_MINUS: return RESULT(Float, -);
case Token::Kind::TK_STAR: return RESULT(Float, *);
case Token::Kind::TK_SLASH: return RESULT(Float, /);
case Token::Kind::TK_EQEQ: return RESULT(Bool, ==);
case Token::Kind::TK_NEQ: return RESULT(Bool, !=);
case Token::Kind::TK_GT: return RESULT(Bool, >);
case Token::Kind::TK_GTEQ: return RESULT(Bool, >=);
case Token::Kind::TK_LT: return RESULT(Bool, <);
case Token::Kind::TK_LTEQ: return RESULT(Bool, <=);
default: return nullptr;
}
}
// Perform constant folding on pairs of vectors.
if (leftType.isVector() && leftType == rightType) {
if (leftType.componentType().isFloat()) {
return simplify_vector<SKSL_FLOAT>(context, *left, op, *right);
}
if (leftType.componentType().isInteger()) {
return simplify_vector<SKSL_INT, SKSL_UINT>(context, *left, op, *right);
}
return nullptr;
}
// Perform constant folding on vectors against scalars, e.g.: half4(2) + 2
if (leftType.isVector() && leftType.componentType() == rightType) {
if (rightType.isFloat()) {
return simplify_vector<SKSL_FLOAT>(context, *left, op,
splat_scalar(*right, left->type()));
}
if (rightType.isInteger()) {
return simplify_vector<SKSL_INT, SKSL_UINT>(context, *left, op,
splat_scalar(*right, left->type()));
}
return nullptr;
}
// Perform constant folding on scalars against vectors, e.g.: 2 + half4(2)
if (rightType.isVector() && rightType.componentType() == leftType) {
if (leftType.isFloat()) {
return simplify_vector<SKSL_FLOAT>(context, splat_scalar(*left, right->type()), op,
*right);
}
if (leftType.isInteger()) {
return simplify_vector<SKSL_INT, SKSL_UINT>(context, splat_scalar(*left, right->type()),
op, *right);
}
return nullptr;
}
// Perform constant folding on pairs of matrices or arrays.
if ((leftType.isMatrix() && rightType.isMatrix()) ||
(leftType.isArray() && rightType.isArray())) {
bool equality;
switch (op.kind()) {
case Token::Kind::TK_EQEQ:
equality = true;
break;
case Token::Kind::TK_NEQ:
equality = false;
break;
default:
return nullptr;
}
switch (left->compareConstant(*right)) {
case Expression::ComparisonResult::kNotEqual:
equality = !equality;
[[fallthrough]];
case Expression::ComparisonResult::kEqual:
return BoolLiteral::Make(context, offset, equality);
case Expression::ComparisonResult::kUnknown:
return nullptr;
}
}
// We aren't able to constant-fold.
#undef RESULT
#undef URESULT
return nullptr;
}
} // namespace SkSL