blob: e90ff8b10dee80d3cd3f3d56abd83d553ff7dae3 [file] [log] [blame]
/*
* Copyright 2019 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef GrOpsTask_DEFINED
#define GrOpsTask_DEFINED
#include "include/core/SkMatrix.h"
#include "include/core/SkRefCnt.h"
#include "include/core/SkStrokeRec.h"
#include "include/core/SkTypes.h"
#include "include/gpu/GrRecordingContext.h"
#include "include/private/SkTArray.h"
#include "include/private/SkTDArray.h"
#include "src/core/SkArenaAlloc.h"
#include "src/core/SkClipStack.h"
#include "src/core/SkSpan.h"
#include "src/core/SkStringUtils.h"
#include "src/core/SkTLazy.h"
#include "src/gpu/GrAppliedClip.h"
#include "src/gpu/GrGeometryProcessor.h"
#include "src/gpu/GrRenderTask.h"
#include "src/gpu/ops/GrDrawOp.h"
#include "src/gpu/ops/GrOp.h"
class GrAuditTrail;
class GrCaps;
class GrClearOp;
class GrGpuBuffer;
class GrRenderTargetProxy;
class GrOpsTask : public GrRenderTask {
private:
using DstProxyView = GrXferProcessor::DstProxyView;
public:
// Manage the arenas life time by maintaining are reference to it.
GrOpsTask(GrDrawingManager*, GrSurfaceProxyView, GrAuditTrail*, sk_sp<GrArenas>);
~GrOpsTask() override;
GrOpsTask* asOpsTask() override { return this; }
bool isEmpty() const { return fOpChains.empty(); }
/**
* Empties the draw buffer of any queued up draws.
*/
void endFlush(GrDrawingManager*) override;
void onPrePrepare(GrRecordingContext*) override;
/**
* Together these two functions flush all queued up draws to GrCommandBuffer. The return value
* of onExecute() indicates whether any commands were actually issued to the GPU.
*/
void onPrepare(GrOpFlushState* flushState) override;
bool onExecute(GrOpFlushState* flushState) override;
void addSampledTexture(GrSurfaceProxy* proxy) {
// This function takes a GrSurfaceProxy because all subsequent uses of the proxy do not
// require the specifics of GrTextureProxy, so this avoids a number of unnecessary virtual
// asTextureProxy() calls. However, sampling the proxy implicitly requires that the proxy
// be a texture. Eventually, when proxies are a unified type with flags, this can just
// assert that capability.
SkASSERT(proxy->asTextureProxy());
fSampledProxies.push_back(proxy);
}
void addOp(GrDrawingManager*, GrOp::Owner, GrTextureResolveManager, const GrCaps&);
void addDrawOp(GrDrawingManager*, GrOp::Owner, const GrProcessorSet::Analysis&,
GrAppliedClip&&, const DstProxyView&, GrTextureResolveManager, const GrCaps&);
void discard();
enum class CanDiscardPreviousOps : bool {
kYes = true,
kNo = false
};
// Perform book-keeping for a fullscreen clear, regardless of how the clear is implemented later
// (i.e. setColorLoadOp(), adding a ClearOp, or adding a GrFillRectOp that covers the device).
// Returns true if the clear can be converted into a load op (barring device caps).
bool resetForFullscreenClear(CanDiscardPreviousOps);
// Must only be called if native color buffer clearing is enabled.
void setColorLoadOp(GrLoadOp op, std::array<float, 4> color = {0, 0, 0, 0});
// Merge as many opsTasks as possible from the head of 'tasks'. They should all be
// renderPass compatible. Return the number of tasks merged into 'this'.
int mergeFrom(SkSpan<const sk_sp<GrRenderTask>> tasks);
#ifdef SK_DEBUG
int numClips() const override { return fNumClips; }
void visitProxies_debugOnly(const GrOp::VisitProxyFunc&) const override;
#endif
#if GR_TEST_UTILS
void dump(const SkString& label,
SkString indent,
bool printDependencies,
bool close) const override;
const char* name() const final { return "Ops"; }
int numOpChains() const { return fOpChains.count(); }
const GrOp* getChain(int index) const { return fOpChains[index].head(); }
#endif
private:
bool isNoOp() const {
// TODO: GrLoadOp::kDiscard (i.e., storing a discard) should also be grounds for skipping
// execution. We currently don't because of Vulkan. See http://skbug.com/9373.
//
// TODO: We should also consider stencil load/store here. We get away with it for now
// because we never discard stencil buffers.
return fOpChains.empty() && GrLoadOp::kLoad == fColorLoadOp;
}
void deleteOps();
enum class StencilContent {
kDontCare,
kUserBitsCleared, // User bits: cleared
// Clip bit: don't care (Ganesh always pre-clears the clip bit.)
kPreserved
};
// Lets the caller specify what the content of the stencil buffer should be at the beginning
// of the render pass.
//
// When requesting kClear: Tilers will load the stencil buffer with a "clear" op; non-tilers
// will clear the stencil on first load, and then preserve it on subsequent loads. (Preserving
// works because renderTargetContexts are required to leave the user bits in a cleared state
// once finished.)
//
// NOTE: initialContent must not be kClear if caps.performStencilClearsAsDraws() is true.
void setInitialStencilContent(StencilContent initialContent) {
fInitialStencilContent = initialContent;
}
// If a surfaceDrawContext splits its opsTask, it uses this method to guarantee stencil values
// get preserved across its split tasks.
void setMustPreserveStencil() { fMustPreserveStencil = true; }
class OpChain {
public:
OpChain(GrOp::Owner, GrProcessorSet::Analysis, GrAppliedClip*, const DstProxyView*);
~OpChain() {
// The ops are stored in a GrMemoryPool and must be explicitly deleted via the pool.
SkASSERT(fList.empty());
}
OpChain(const OpChain&) = delete;
OpChain& operator=(const OpChain&) = delete;
OpChain(OpChain&&) = default;
OpChain& operator=(OpChain&&) = default;
void visitProxies(const GrOp::VisitProxyFunc&) const;
GrOp* head() const { return fList.head(); }
GrAppliedClip* appliedClip() const { return fAppliedClip; }
const DstProxyView& dstProxyView() const { return fDstProxyView; }
const SkRect& bounds() const { return fBounds; }
// Deletes all the ops in the chain.
void deleteOps();
// Attempts to move the ops from the passed chain to this chain at the head. Also attempts
// to merge ops between the chains. Upon success the passed chain is empty.
// Fails when the chains aren't of the same op type, have different clips or dst proxies.
bool prependChain(OpChain*, const GrCaps&, SkArenaAlloc* opsTaskArena, GrAuditTrail*);
// Attempts to add 'op' to this chain either by merging or adding to the tail. Returns
// 'op' to the caller upon failure, otherwise null. Fails when the op and chain aren't of
// the same op type, have different clips or dst proxies.
GrOp::Owner appendOp(GrOp::Owner op, GrProcessorSet::Analysis, const DstProxyView*,
const GrAppliedClip*, const GrCaps&, SkArenaAlloc* opsTaskArena,
GrAuditTrail*);
bool shouldExecute() const {
return SkToBool(this->head());
}
private:
class List {
public:
List() = default;
List(GrOp::Owner);
List(List&&);
List& operator=(List&& that);
bool empty() const { return !SkToBool(fHead); }
GrOp* head() const { return fHead.get(); }
GrOp* tail() const { return fTail; }
GrOp::Owner popHead();
GrOp::Owner removeOp(GrOp* op);
void pushHead(GrOp::Owner op);
void pushTail(GrOp::Owner);
void validate() const;
private:
GrOp::Owner fHead{nullptr};
GrOp* fTail{nullptr};
};
void validate() const;
bool tryConcat(List*, GrProcessorSet::Analysis, const DstProxyView&, const GrAppliedClip*,
const SkRect& bounds, const GrCaps&, SkArenaAlloc* opsTaskArena,
GrAuditTrail*);
static List DoConcat(List, List, const GrCaps&, SkArenaAlloc* opsTaskArena, GrAuditTrail*);
List fList;
GrProcessorSet::Analysis fProcessorAnalysis;
DstProxyView fDstProxyView;
GrAppliedClip* fAppliedClip;
SkRect fBounds;
};
void onCanSkip() override;
bool onIsUsed(GrSurfaceProxy*) const override;
void gatherProxyIntervals(GrResourceAllocator*) const override;
void recordOp(GrOp::Owner, GrProcessorSet::Analysis, GrAppliedClip*,
const DstProxyView*, const GrCaps&);
void forwardCombine(const GrCaps&);
ExpectedOutcome onMakeClosed(const GrCaps& caps, SkIRect* targetUpdateBounds) override;
// Remove all ops, proxies, etc. Used in the merging algorithm when tasks can be skipped.
void reset();
friend class OpsTaskTestingAccess;
// The RTC and OpsTask have to work together to handle buffer clears. In most cases, buffer
// clearing can be done natively, in which case the op list's load ops are sufficient. In other
// cases, draw ops must be used, which makes the RTC the best place for those decisions. This,
// however, requires that the RTC be able to coordinate with the op list to achieve similar ends
friend class GrSurfaceDrawContext;
GrAuditTrail* fAuditTrail;
bool fUsesMSAASurface;
GrSwizzle fTargetSwizzle;
GrSurfaceOrigin fTargetOrigin;
GrLoadOp fColorLoadOp = GrLoadOp::kLoad;
std::array<float, 4> fLoadClearColor = {0, 0, 0, 0};
StencilContent fInitialStencilContent = StencilContent::kDontCare;
bool fMustPreserveStencil = false;
uint32_t fLastClipStackGenID = SK_InvalidUniqueID;
SkIRect fLastDevClipBounds;
int fLastClipNumAnalyticElements;
GrXferBarrierFlags fRenderPassXferBarriers = GrXferBarrierFlags::kNone;
// For ops/opsTask we have mean: 5 stdDev: 28
SkSTArray<25, OpChain> fOpChains;
// MDB TODO: 4096 for the first allocation may be huge overkill. Gather statistics to determine
// the correct size.
SkSTArray<1, std::unique_ptr<SkArenaAlloc>> fAllocators;
sk_sp<GrArenas> fArenas;
SkDEBUGCODE(int fNumClips;)
// TODO: We could look into this being a set if we find we're adding a lot of duplicates that is
// causing slow downs.
SkTArray<GrSurfaceProxy*, true> fSampledProxies;
SkRect fTotalBounds = SkRect::MakeEmpty();
SkIRect fClippedContentBounds = SkIRect::MakeEmpty();
};
#endif