blob: 64021857f78564ccee448c536f6739099130901a [file] [log] [blame]
/*
* Copyright 2022 Google LLC
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/text/gpu/SubRunContainer.h"
#include "include/core/SkMatrix.h"
#include "include/core/SkScalar.h"
#include "include/core/SkTypes.h"
#include "include/private/base/SkOnce.h"
#include "include/private/chromium/SkChromeRemoteGlyphCache.h"
#include "src/core/SkDescriptor.h"
#include "src/core/SkDistanceFieldGen.h"
#include "src/core/SkEnumerate.h"
#include "src/core/SkGlyph.h"
#include "src/core/SkGlyphBuffer.h"
#include "src/core/SkReadBuffer.h"
#include "src/core/SkRectPriv.h"
#include "src/core/SkStrike.h"
#include "src/core/SkStrikeCache.h"
#include "src/gpu/AtlasTypes.h"
#include "src/text/GlyphRun.h"
#include "src/text/StrikeForGPU.h"
#include "src/text/gpu/Glyph.h"
#include "src/text/gpu/GlyphVector.h"
#include "src/text/gpu/SubRunAllocator.h"
#if SK_SUPPORT_GPU // Ganesh Support
#include "src/gpu/ganesh/GrClip.h"
#include "src/gpu/ganesh/GrStyle.h"
#include "src/gpu/ganesh/SkGr.h"
#include "src/gpu/ganesh/SurfaceDrawContext.h"
#include "src/gpu/ganesh/ops/AtlasTextOp.h"
using AtlasTextOp = skgpu::ganesh::AtlasTextOp;
#endif // SK_SUPPORT_GPU
#ifdef SK_GRAPHITE_ENABLED
#include "src/gpu/graphite/Device.h"
#include "src/gpu/graphite/DrawWriter.h"
#include "src/gpu/graphite/Renderer.h"
#include "src/gpu/graphite/RendererProvider.h"
#endif
#include <cinttypes>
#include <cmath>
#include <optional>
// -- GPU Text -------------------------------------------------------------------------------------
// Naming conventions
// * drawMatrix - the CTM from the canvas.
// * drawOrigin - the x, y location of the drawTextBlob call.
// * positionMatrix - this is the combination of the drawMatrix and the drawOrigin:
// positionMatrix = drawMatrix * TranslationMatrix(drawOrigin.x, drawOrigin.y);
//
// Note:
// In order to transform Slugs, you need to set the fSupportBilerpFromGlyphAtlas on
// GrContextOptions.
namespace sktext::gpu {
// -- SubRunType -----------------------------------------------------------------------------------
enum SubRun::SubRunType : int {
kBad = 0, // Make this 0 to line up with errors from readInt.
kDirectMask,
#if !defined(SK_DISABLE_SDF_TEXT)
kSDFT,
#endif
kTransformMask,
kPath,
kDrawable,
kSubRunTypeCount,
};
#ifdef SK_GRAPHITE_ENABLED
// AtlasSubRun provides a draw() function that grants the anonymous subclasses access to
// Device::drawAtlasSubRun.
void AtlasSubRun::draw(skgpu::graphite::Device* device,
SkPoint drawOrigin,
const SkPaint& paint,
sk_sp<SkRefCnt> subRunStorage) const {
device->drawAtlasSubRun(this, drawOrigin, paint, std::move(subRunStorage));
}
#endif
} // namespace sktext::gpu
using MaskFormat = skgpu::MaskFormat;
using namespace sktext;
using namespace sktext::gpu;
#if defined(SK_GRAPHITE_ENABLED)
namespace gr = skgpu::graphite;
using BindBufferInfo = gr::BindBufferInfo;
using BufferType = gr::BufferType;
using Device = gr::Device;
using DrawWriter = gr::DrawWriter;
using Recorder = gr::Recorder;
using Renderer = gr::Renderer;
using RendererProvider = gr::RendererProvider;
using TextureProxy = gr::TextureProxy;
using Transform = gr::Transform;
#endif
namespace {
// Use the following in your args.gn to dump telemetry for diagnosing chrome Renderer/GPU
// differences.
// extra_cflags = ["-D", "SK_TRACE_GLYPH_RUN_PROCESS"]
#if defined(SK_TRACE_GLYPH_RUN_PROCESS)
static const constexpr bool kTrace = true;
#else
static const constexpr bool kTrace = false;
#endif
// Returns the empty span if there is a problem reading the positions.
SkSpan<SkPoint> make_points_from_buffer(SkReadBuffer& buffer, SubRunAllocator* alloc) {
uint32_t glyphCount = buffer.getArrayCount();
// Zero indicates a problem with serialization.
if (!buffer.validate(glyphCount != 0)) { return {}; }
// Check that the count will not overflow the arena.
if (!buffer.validate(glyphCount <= INT_MAX &&
BagOfBytes::WillCountFit<SkPoint>(glyphCount))) { return {}; }
SkPoint* positionsData = alloc->makePODArray<SkPoint>(glyphCount);
if (!buffer.readPointArray(positionsData, glyphCount)) { return {}; }
return {positionsData, glyphCount};
}
// -- TransformedMaskVertexFiller ------------------------------------------------------------------
// The TransformedMaskVertexFiller assumes that all points, glyph atlas entries, and bounds are
// created with respect to the CreationMatrix. This assumes that mapping any point, mask or
// bounds through the CreationMatrix will result in the proper device position. In order to draw
// using an arbitrary PositionMatrix, calculate a
//
// viewDifference = [PositionMatrix] * [CreationMatrix] ^ -1.
//
// The viewDifference is used to map all points, masks and bounds to position to the device
// respecting the PositionMatrix.
class TransformedMaskVertexFiller {
public:
TransformedMaskVertexFiller(MaskFormat maskFormat,
const SkMatrix& creationMatrix,
SkRect creationBounds,
SkSpan<const SkPoint> leftTop)
: fMaskType{maskFormat}
, fCreationMatrix{creationMatrix}
, fCreationBounds{creationBounds}
, fLeftTop{leftTop} {}
static TransformedMaskVertexFiller Make(MaskFormat maskType,
const SkMatrix& creationMatrix,
SkRect creationBounds,
const SkZip<SkGlyphVariant, SkPoint>& accepted,
SubRunAllocator* alloc) {
SkSpan<SkPoint> leftTop = alloc->makePODArray<SkPoint>(
accepted,
[&](auto e) -> SkPoint {
auto [variant, pos] = e;
return pos;
});
return TransformedMaskVertexFiller{maskType, creationMatrix, creationBounds, leftTop};
}
static std::optional<TransformedMaskVertexFiller> MakeFromBuffer(
SkReadBuffer& buffer, SubRunAllocator* alloc);
int unflattenSize() const;
void flatten(SkWriteBuffer& buffer) const;
SkMatrix viewDifference(const SkMatrix& positionMatrix) const {
if (SkMatrix inverse; fCreationMatrix.invert(&inverse)) {
return SkMatrix::Concat(positionMatrix, inverse);
}
return SkMatrix::I();
}
#if SK_SUPPORT_GPU
size_t vertexStride(const SkMatrix& matrix) const {
if (fMaskType != MaskFormat::kARGB) {
// For formats MaskFormat::kA565 and MaskFormat::kA8 where A8 include SDF.
return matrix.hasPerspective() ? sizeof(Mask3DVertex) : sizeof(Mask2DVertex);
} else {
// For format MaskFormat::kARGB
return matrix.hasPerspective() ? sizeof(ARGB3DVertex) : sizeof(ARGB2DVertex);
}
}
void fillVertexData(int offset, int count,
SkSpan<const Glyph*> glyphs,
GrColor color,
const SkMatrix& positionMatrix,
SkIRect clip,
void* vertexBuffer) const;
AtlasTextOp::MaskType opMaskType() const;
#endif // SK_SUPPORT_GPU
#if defined(SK_GRAPHITE_ENABLED)
void fillVertexData(DrawWriter* dw,
int offset, int count,
int ssboIndex,
SkSpan<const Glyph*> glyphs,
SkScalar depth,
const skgpu::graphite::Transform& toDevice) const;
void fillInstanceData(DrawWriter* dw,
int offset, int count,
unsigned short flags,
int ssboIndex,
SkSpan<const Glyph*> glyphs,
SkScalar depth) const;
#endif
SkRect deviceRect(const SkMatrix& positionMatrix) const;
SkRect creationBounds() const { return fCreationBounds; }
MaskFormat grMaskType() const { return fMaskType; }
int count() const { return SkCount(fLeftTop); }
private:
struct AtlasPt {
uint16_t u;
uint16_t v;
};
#if SK_SUPPORT_GPU
// Normal text mask, SDFT, or color.
struct Mask2DVertex {
SkPoint devicePos;
GrColor color;
AtlasPt atlasPos;
};
struct ARGB2DVertex {
ARGB2DVertex(SkPoint d, GrColor, AtlasPt a) : devicePos{d}, atlasPos{a} {}
SkPoint devicePos;
AtlasPt atlasPos;
};
// Perspective SDFT or SDFT forced to 3D or perspective color.
struct Mask3DVertex {
SkPoint3 devicePos;
GrColor color;
AtlasPt atlasPos;
};
struct ARGB3DVertex {
ARGB3DVertex(SkPoint3 d, GrColor, AtlasPt a) : devicePos{d}, atlasPos{a} {}
SkPoint3 devicePos;
AtlasPt atlasPos;
};
template<typename Quad, typename VertexData>
void fill2D(SkZip<Quad, const Glyph*, const VertexData> quadData,
GrColor color,
const SkMatrix& viewDifference) const;
template<typename Quad, typename VertexData>
void fill3D(SkZip<Quad, const Glyph*, const VertexData> quadData,
GrColor color,
const SkMatrix& viewDifference) const;
#endif // SK_SUPPORT_GPU
const MaskFormat fMaskType;
const SkMatrix fCreationMatrix;
const SkRect fCreationBounds;
const SkSpan<const SkPoint> fLeftTop;
};
std::optional<TransformedMaskVertexFiller> TransformedMaskVertexFiller::MakeFromBuffer(
SkReadBuffer& buffer, SubRunAllocator* alloc) {
int checkingMaskType = buffer.readInt();
if (!buffer.validate(0 <= checkingMaskType && checkingMaskType < skgpu::kMaskFormatCount)) {
return std::nullopt;
}
MaskFormat maskType = (MaskFormat)checkingMaskType;
SkMatrix creationMatrix;
buffer.readMatrix(&creationMatrix);
SkRect creationBounds = buffer.readRect();
SkSpan<SkPoint> leftTop = make_points_from_buffer(buffer, alloc);
if (leftTop.empty()) { return std::nullopt; }
SkASSERT(buffer.isValid());
return TransformedMaskVertexFiller{maskType, creationMatrix, creationBounds, leftTop};
}
void TransformedMaskVertexFiller::flatten(SkWriteBuffer& buffer) const {
buffer.writeInt(static_cast<int>(fMaskType));
buffer.writeMatrix(fCreationMatrix);
buffer.writeRect(fCreationBounds);
buffer.writePointArray(fLeftTop.data(), SkCount(fLeftTop));
}
SkRect TransformedMaskVertexFiller::deviceRect(const SkMatrix& positionMatrix) const {
SkMatrix viewDiff = this->viewDifference(positionMatrix);
return viewDiff.mapRect(fCreationBounds);
}
int TransformedMaskVertexFiller::unflattenSize() const {
return fLeftTop.size_bytes();
}
#if SK_SUPPORT_GPU
void TransformedMaskVertexFiller::fillVertexData(int offset, int count,
SkSpan<const Glyph*> glyphs,
GrColor color,
const SkMatrix& positionMatrix,
SkIRect clip,
void* vertexBuffer) const {
auto quadData = [&](auto dst) {
return SkMakeZip(dst,
glyphs.subspan(offset, count),
fLeftTop.subspan(offset, count));
};
SkMatrix viewDifference = this->viewDifference(positionMatrix);
if (!positionMatrix.hasPerspective()) {
if (fMaskType == MaskFormat::kARGB) {
using Quad = ARGB2DVertex[4];
SkASSERT(sizeof(ARGB2DVertex) == this->vertexStride(positionMatrix));
this->fill2D(quadData((Quad*)vertexBuffer), color, viewDifference);
} else {
using Quad = Mask2DVertex[4];
SkASSERT(sizeof(Mask2DVertex) == this->vertexStride(positionMatrix));
this->fill2D(quadData((Quad*)vertexBuffer), color, viewDifference);
}
} else {
if (fMaskType == MaskFormat::kARGB) {
using Quad = ARGB3DVertex[4];
SkASSERT(sizeof(ARGB3DVertex) == this->vertexStride(positionMatrix));
this->fill3D(quadData((Quad*)vertexBuffer), color, viewDifference);
} else {
using Quad = Mask3DVertex[4];
SkASSERT(sizeof(Mask3DVertex) == this->vertexStride(positionMatrix));
this->fill3D(quadData((Quad*)vertexBuffer), color, viewDifference);
}
}
}
template <typename Quad, typename VertexData>
void TransformedMaskVertexFiller::fill2D(SkZip<Quad, const Glyph*, const VertexData> quadData,
GrColor color,
const SkMatrix& viewDifference) const {
for (auto [quad, glyph, leftTop] : quadData) {
auto [l, t] = leftTop;
auto [r, b] = leftTop + glyph->fAtlasLocator.widthHeight();
SkPoint lt = viewDifference.mapXY(l, t),
lb = viewDifference.mapXY(l, b),
rt = viewDifference.mapXY(r, t),
rb = viewDifference.mapXY(r, b);
auto [al, at, ar, ab] = glyph->fAtlasLocator.getUVs();
quad[0] = {lt, color, {al, at}}; // L,T
quad[1] = {lb, color, {al, ab}}; // L,B
quad[2] = {rt, color, {ar, at}}; // R,T
quad[3] = {rb, color, {ar, ab}}; // R,B
}
}
template <typename Quad, typename VertexData>
void TransformedMaskVertexFiller::fill3D(SkZip<Quad, const Glyph*, const VertexData> quadData,
GrColor color,
const SkMatrix& viewDifference) const {
auto mapXYZ = [&](SkScalar x, SkScalar y) {
SkPoint pt{x, y};
SkPoint3 result;
viewDifference.mapHomogeneousPoints(&result, &pt, 1);
return result;
};
for (auto [quad, glyph, leftTop] : quadData) {
auto [l, t] = leftTop;
auto [r, b] = leftTop + glyph->fAtlasLocator.widthHeight();
SkPoint3 lt = mapXYZ(l, t),
lb = mapXYZ(l, b),
rt = mapXYZ(r, t),
rb = mapXYZ(r, b);
auto [al, at, ar, ab] = glyph->fAtlasLocator.getUVs();
quad[0] = {lt, color, {al, at}}; // L,T
quad[1] = {lb, color, {al, ab}}; // L,B
quad[2] = {rt, color, {ar, at}}; // R,T
quad[3] = {rb, color, {ar, ab}}; // R,B
}
}
AtlasTextOp::MaskType TransformedMaskVertexFiller::opMaskType() const {
switch (fMaskType) {
case MaskFormat::kA8: return AtlasTextOp::MaskType::kGrayscaleCoverage;
case MaskFormat::kA565: return AtlasTextOp::MaskType::kLCDCoverage;
case MaskFormat::kARGB: return AtlasTextOp::MaskType::kColorBitmap;
}
SkUNREACHABLE;
}
#endif // SK_SUPPORT_GPU
#if defined(SK_GRAPHITE_ENABLED)
void TransformedMaskVertexFiller::fillVertexData(DrawWriter* dw,
int offset, int count,
int ssboIndex,
SkSpan<const Glyph*> glyphs,
SkScalar depth,
const Transform& toDevice) const {
auto quadData = [&]() {
return SkMakeZip(glyphs.subspan(offset, count),
fLeftTop.subspan(offset, count));
};
// TODO: can't handle perspective right now
if (toDevice.type() == Transform::Type::kProjection) {
return;
}
DrawWriter::Vertices verts{*dw};
verts.reserve(6*count);
for (auto [glyph, leftTop]: quadData()) {
auto [al, at, ar, ab] = glyph->fAtlasLocator.getUVs();
auto [l, t] = leftTop;
auto [r, b] = leftTop + glyph->fAtlasLocator.widthHeight();
SkV2 localCorners[4] = {{l, t}, {r, t}, {r, b}, {l, b}};
SkV4 devOut[4];
toDevice.mapPoints(localCorners, devOut, 4);
// TODO: Ganesh uses indices but that's not available with dynamic vertex data
// TODO: we should really use instances as well.
verts.append(6) << SkPoint{devOut[0].x, devOut[0].y} << depth << AtlasPt{al, at} // L,T
<< ssboIndex
<< SkPoint{devOut[3].x, devOut[3].y} << depth << AtlasPt{al, ab} // L,B
<< ssboIndex
<< SkPoint{devOut[1].x, devOut[1].y} << depth << AtlasPt{ar, at} // R,T
<< ssboIndex
<< SkPoint{devOut[3].x, devOut[3].y} << depth << AtlasPt{al, ab} // L,B
<< ssboIndex
<< SkPoint{devOut[2].x, devOut[2].y} << depth << AtlasPt{ar, ab} // R,B
<< ssboIndex
<< SkPoint{devOut[1].x, devOut[1].y} << depth << AtlasPt{ar, at} // R,T
<< ssboIndex;
}
}
void TransformedMaskVertexFiller::fillInstanceData(DrawWriter* dw,
int offset, int count,
unsigned short flags,
int ssboIndex,
SkSpan<const Glyph*> glyphs,
SkScalar depth) const {
auto quadData = [&]() {
return SkMakeZip(glyphs.subspan(offset, count),
fLeftTop.subspan(offset, count));
};
DrawWriter::Instances instances{*dw, {}, {}, 4};
instances.reserve(count);
// Need to send width, height, uvPos, xyPos, and strikeToSourceScale
// pre-transform coords = (s*w*b_x + t_x, s*h*b_y + t_y)
// where (b_x, b_y) are the vertexID coords
for (auto [glyph, leftTop]: quadData()) {
auto[al, at, ar, ab] = glyph->fAtlasLocator.getUVs();
instances.append(1) << AtlasPt{uint16_t(ar-al), uint16_t(ab-at)}
<< AtlasPt{uint16_t(al & 0x1fff), at}
<< leftTop << /*index=*/uint16_t(al >> 13) << flags
<< 1.0f
<< depth << ssboIndex;
}
}
#endif
struct AtlasPt {
uint16_t u;
uint16_t v;
};
#if SK_SUPPORT_GPU
// Normal text mask, SDFT, or color.
struct Mask2DVertex {
SkPoint devicePos;
GrColor color;
AtlasPt atlasPos;
};
struct ARGB2DVertex {
ARGB2DVertex(SkPoint d, GrColor, AtlasPt a) : devicePos{d}, atlasPos{a} {}
SkPoint devicePos;
AtlasPt atlasPos;
};
// Perspective SDFT or SDFT forced to 3D or perspective color.
struct Mask3DVertex {
SkPoint3 devicePos;
GrColor color;
AtlasPt atlasPos;
};
struct ARGB3DVertex {
ARGB3DVertex(SkPoint3 d, GrColor, AtlasPt a) : devicePos{d}, atlasPos{a} {}
SkPoint3 devicePos;
AtlasPt atlasPos;
};
AtlasTextOp::MaskType op_mask_type(MaskFormat maskFormat) {
switch (maskFormat) {
case MaskFormat::kA8: return AtlasTextOp::MaskType::kGrayscaleCoverage;
case MaskFormat::kA565: return AtlasTextOp::MaskType::kLCDCoverage;
case MaskFormat::kARGB: return AtlasTextOp::MaskType::kColorBitmap;
}
SkUNREACHABLE;
}
SkPMColor4f calculate_colors(skgpu::v1::SurfaceDrawContext* sdc,
const SkPaint& paint,
const SkMatrixProvider& matrix,
MaskFormat maskFormat,
GrPaint* grPaint) {
GrRecordingContext* rContext = sdc->recordingContext();
const GrColorInfo& colorInfo = sdc->colorInfo();
const SkSurfaceProps& props = sdc->surfaceProps();
if (maskFormat == MaskFormat::kARGB) {
SkPaintToGrPaintReplaceShader(rContext, colorInfo, paint, matrix, nullptr, props, grPaint);
float a = grPaint->getColor4f().fA;
return {a, a, a, a};
}
SkPaintToGrPaint(rContext, colorInfo, paint, matrix, props, grPaint);
return grPaint->getColor4f();
}
SkMatrix position_matrix(const SkMatrix& drawMatrix, SkPoint drawOrigin) {
SkMatrix position_matrix = drawMatrix;
return position_matrix.preTranslate(drawOrigin.x(), drawOrigin.y());
}
#endif // SK_SUPPORT_GPU
// Check for integer translate with the same 2x2 matrix.
// Returns the translation, and true if the change from initial matrix to the position matrix
// support using direct glyph masks.
std::tuple<bool, SkVector> can_use_direct(
const SkMatrix& initialPositionMatrix, const SkMatrix& positionMatrix) {
// The existing direct glyph info can be used if the initialPositionMatrix, and the
// positionMatrix have the same 2x2, and the translation between them is integer.
// Calculate the translation in source space to a translation in device space by mapping
// (0, 0) through both the initial position matrix and the position matrix; take the difference.
SkVector translation = positionMatrix.mapOrigin() - initialPositionMatrix.mapOrigin();
return {initialPositionMatrix.getScaleX() == positionMatrix.getScaleX() &&
initialPositionMatrix.getScaleY() == positionMatrix.getScaleY() &&
initialPositionMatrix.getSkewX() == positionMatrix.getSkewX() &&
initialPositionMatrix.getSkewY() == positionMatrix.getSkewY() &&
SkScalarIsInt(translation.x()) && SkScalarIsInt(translation.y()),
translation};
}
// -- PathOpSubmitter ------------------------------------------------------------------------------
// PathOpSubmitter holds glyph ids until ready to draw. During drawing, the glyph ids are
// converted to SkPaths. PathOpSubmitter can only be serialized when it is holding glyph ids;
// it can only be serialized before submitDraws has been called.
class PathOpSubmitter {
public:
PathOpSubmitter() = delete;
PathOpSubmitter(const PathOpSubmitter&) = delete;
const PathOpSubmitter& operator=(const PathOpSubmitter&) = delete;
PathOpSubmitter(PathOpSubmitter&& that)
// Transfer ownership of fIDsOrPaths from that to this.
: fIDsOrPaths{std::exchange(
const_cast<SkSpan<IDOrPath>&>(that.fIDsOrPaths), SkSpan<IDOrPath>{})}
, fPositions{that.fPositions}
, fStrikeToSourceScale{that.fStrikeToSourceScale}
, fIsAntiAliased{that.fIsAntiAliased}
, fStrikePromise{std::move(that.fStrikePromise)} {}
PathOpSubmitter& operator=(PathOpSubmitter&& that) {
this->~PathOpSubmitter();
new (this) PathOpSubmitter{std::move(that)};
return *this;
}
PathOpSubmitter(bool isAntiAliased,
SkScalar strikeToSourceScale,
SkSpan<SkPoint> positions,
SkSpan<IDOrPath> idsOrPaths,
SkStrikePromise&& strikePromise);
~PathOpSubmitter();
static PathOpSubmitter Make(const SkZip<SkPackedGlyphID, SkPoint>& accepted,
bool isAntiAliased,
SkScalar strikeToSourceScale,
SkStrikePromise&& strikePromise,
SubRunAllocator* alloc);
int unflattenSize() const;
void flatten(SkWriteBuffer& buffer) const;
static std::optional<PathOpSubmitter> MakeFromBuffer(SkReadBuffer& buffer,
SubRunAllocator* alloc,
const SkStrikeClient* client);
// submitDraws is not thread safe. It only occurs the single thread drawing portion of the GPU
// rendering.
void submitDraws(SkCanvas*,
SkPoint drawOrigin,
const SkPaint& paint) const;
private:
// When PathOpSubmitter is created only the glyphIDs are needed, during the submitDraws call,
// the glyphIDs are converted to SkPaths.
const SkSpan<IDOrPath> fIDsOrPaths;
const SkSpan<const SkPoint> fPositions;
const SkScalar fStrikeToSourceScale;
const bool fIsAntiAliased;
mutable SkStrikePromise fStrikePromise;
mutable SkOnce fConvertIDsToPaths;
mutable bool fPathsAreCreated{false};
};
int PathOpSubmitter::unflattenSize() const {
return fPositions.size_bytes() + fIDsOrPaths.size_bytes();
}
void PathOpSubmitter::flatten(SkWriteBuffer& buffer) const {
fStrikePromise.flatten(buffer);
buffer.writeInt(fIsAntiAliased);
buffer.writeScalar(fStrikeToSourceScale);
buffer.writePointArray(fPositions.data(), SkCount(fPositions));
for (IDOrPath& idOrPath : fIDsOrPaths) {
buffer.writeInt(idOrPath.fGlyphID);
}
}
std::optional<PathOpSubmitter> PathOpSubmitter::MakeFromBuffer(SkReadBuffer& buffer,
SubRunAllocator* alloc,
const SkStrikeClient* client) {
std::optional<SkStrikePromise> strikePromise =
SkStrikePromise::MakeFromBuffer(buffer, client, SkStrikeCache::GlobalStrikeCache());
if (!buffer.validate(strikePromise.has_value())) {
return std::nullopt;
}
bool isAntiAlias = buffer.readInt();
SkScalar strikeToSourceScale = buffer.readScalar();
if (!buffer.validate(0 < strikeToSourceScale)) { return std::nullopt; }
SkSpan<SkPoint> positions = make_points_from_buffer(buffer, alloc);
if (positions.empty()) { return std::nullopt; }
const int glyphCount = SkCount(positions);
// Remember, we stored an int for glyph id.
if (!buffer.validateCanReadN<int>(glyphCount)) { return std::nullopt; }
auto idsOrPaths = SkSpan(alloc->makeUniqueArray<IDOrPath>(glyphCount).release(), glyphCount);
for (auto& idOrPath : idsOrPaths) {
idOrPath.fGlyphID = SkTo<SkGlyphID>(buffer.readInt());
}
if (!buffer.isValid()) { return std::nullopt; }
return PathOpSubmitter{isAntiAlias,
strikeToSourceScale,
positions,
idsOrPaths,
std::move(strikePromise.value())};
}
PathOpSubmitter::PathOpSubmitter(
bool isAntiAliased,
SkScalar strikeToSourceScale,
SkSpan<SkPoint> positions,
SkSpan<IDOrPath> idsOrPaths,
SkStrikePromise&& strikePromise)
: fIDsOrPaths{idsOrPaths}
, fPositions{positions}
, fStrikeToSourceScale{strikeToSourceScale}
, fIsAntiAliased{isAntiAliased}
, fStrikePromise{std::move(strikePromise)} {
SkASSERT(!fPositions.empty());
}
PathOpSubmitter::~PathOpSubmitter() {
// If we have converted glyph IDs to paths, then clean up the SkPaths.
if (fPathsAreCreated) {
for (auto& idOrPath : fIDsOrPaths) {
idOrPath.fPath.~SkPath();
}
}
}
PathOpSubmitter PathOpSubmitter::Make(const SkZip<SkPackedGlyphID, SkPoint>& accepted,
bool isAntiAliased,
SkScalar strikeToSourceScale,
SkStrikePromise&& strikePromise,
SubRunAllocator* alloc) {
int glyphCount = SkCount(accepted);
SkPoint* positions = alloc->makePODArray<SkPoint>(glyphCount);
IDOrPath* idsOrPaths = alloc->makeUniqueArray<IDOrPath>(glyphCount).release();
for (auto [dstIdOrPath, dstPosition, srcPackedGlyphID, srcPosition] :
SkMakeZip(idsOrPaths, positions, accepted.get<0>(), accepted.get<1>())) {
dstPosition = srcPosition;
dstIdOrPath.fGlyphID = srcPackedGlyphID.glyphID();
}
return PathOpSubmitter{isAntiAliased,
strikeToSourceScale,
SkSpan(positions, glyphCount),
SkSpan(idsOrPaths, glyphCount),
std::move(strikePromise)};
}
void
PathOpSubmitter::submitDraws(SkCanvas* canvas, SkPoint drawOrigin, const SkPaint& paint) const {
// Convert the glyph IDs to paths if it hasn't been done yet. This is thread safe.
fConvertIDsToPaths([&]() {
if (SkStrike* strike = fStrikePromise.strike()) {
strike->glyphIDsToPaths(fIDsOrPaths);
// Drop ref to strike so that it can be purged from the cache if needed.
fStrikePromise.resetStrike();
fPathsAreCreated = true;
}
});
SkPaint runPaint{paint};
runPaint.setAntiAlias(fIsAntiAliased);
SkMaskFilterBase* maskFilter = as_MFB(runPaint.getMaskFilter());
// Calculate the matrix that maps the path glyphs from their size in the strike to
// the graphics source space.
SkMatrix strikeToSource = SkMatrix::Scale(fStrikeToSourceScale, fStrikeToSourceScale);
strikeToSource.postTranslate(drawOrigin.x(), drawOrigin.y());
// If there are shaders, non-blur mask filters or styles, the path must be scaled into source
// space independently of the CTM. This allows the CTM to be correct for the different effects.
SkStrokeRec style(runPaint);
bool needsExactCTM = runPaint.getShader()
|| runPaint.getPathEffect()
|| (!style.isFillStyle() && !style.isHairlineStyle())
|| (maskFilter != nullptr && !maskFilter->asABlur(nullptr));
if (!needsExactCTM) {
SkMaskFilterBase::BlurRec blurRec;
// If there is a blur mask filter, then sigma needs to be adjusted to account for the
// scaling of fStrikeToSourceScale.
if (maskFilter != nullptr && maskFilter->asABlur(&blurRec)) {
runPaint.setMaskFilter(
SkMaskFilter::MakeBlur(blurRec.fStyle, blurRec.fSigma / fStrikeToSourceScale));
}
for (auto [idOrPath, pos] : SkMakeZip(fIDsOrPaths, fPositions)) {
// Transform the glyph to source space.
SkMatrix pathMatrix = strikeToSource;
pathMatrix.postTranslate(pos.x(), pos.y());
SkAutoCanvasRestore acr(canvas, true);
canvas->concat(pathMatrix);
canvas->drawPath(idOrPath.fPath, runPaint);
}
} else {
// Transform the path to device because the deviceMatrix must be unchanged to
// draw effect, filter or shader paths.
for (auto [idOrPath, pos] : SkMakeZip(fIDsOrPaths, fPositions)) {
// Transform the glyph to source space.
SkMatrix pathMatrix = strikeToSource;
pathMatrix.postTranslate(pos.x(), pos.y());
SkPath deviceOutline;
idOrPath.fPath.transform(pathMatrix, &deviceOutline);
deviceOutline.setIsVolatile(true);
canvas->drawPath(deviceOutline, runPaint);
}
}
}
// -- PathSubRun -----------------------------------------------------------------------------------
class PathSubRun final : public SubRun {
public:
PathSubRun(PathOpSubmitter&& pathDrawing) : fPathDrawing(std::move(pathDrawing)) {}
static SubRunOwner Make(const SkZip<SkPackedGlyphID, SkPoint>& accepted,
bool isAntiAliased,
SkScalar strikeToSourceScale,
SkStrikePromise&& strikePromise,
SubRunAllocator* alloc) {
return alloc->makeUnique<PathSubRun>(
PathOpSubmitter::Make(
accepted, isAntiAliased, strikeToSourceScale, std::move(strikePromise), alloc));
}
#if SK_SUPPORT_GPU
void draw(SkCanvas* canvas,
const GrClip*,
const SkMatrixProvider&,
SkPoint drawOrigin,
const SkPaint& paint,
sk_sp<SkRefCnt>,
skgpu::v1::SurfaceDrawContext*) const override {
fPathDrawing.submitDraws(canvas, drawOrigin, paint);
}
#endif // SK_SUPPORT_GPU
#if defined(SK_GRAPHITE_ENABLED)
void draw(SkCanvas* canvas,
SkPoint drawOrigin,
const SkPaint& paint,
sk_sp<SkRefCnt> subRunStorage,
Device* device) const override {
fPathDrawing.submitDraws(canvas, drawOrigin, paint);
}
#endif // SK_GRAPHITE_ENABLED
int unflattenSize() const override;
bool canReuse(const SkPaint& paint, const SkMatrix& positionMatrix) const override {
return true;
}
const AtlasSubRun* testingOnly_atlasSubRun() const override { return nullptr; }
static SubRunOwner MakeFromBuffer(const SkMatrix& initialPositionMatrix,
SkReadBuffer& buffer,
SubRunAllocator* alloc,
const SkStrikeClient* client);
protected:
SubRunType subRunType() const override { return kPath; }
void doFlatten(SkWriteBuffer& buffer) const override;
private:
PathOpSubmitter fPathDrawing;
};
int PathSubRun::unflattenSize() const {
return sizeof(PathSubRun) + fPathDrawing.unflattenSize();
}
void PathSubRun::doFlatten(SkWriteBuffer& buffer) const {
fPathDrawing.flatten(buffer);
}
SubRunOwner PathSubRun::MakeFromBuffer(const SkMatrix& initialPositionMatrix,
SkReadBuffer& buffer,
SubRunAllocator* alloc,
const SkStrikeClient* client) {
auto pathOpSubmitter = PathOpSubmitter::MakeFromBuffer(buffer, alloc, client);
if (!buffer.validate(pathOpSubmitter.has_value())) { return nullptr; }
return alloc->makeUnique<PathSubRun>(std::move(*pathOpSubmitter));
}
// -- DrawableOpSubmitter --------------------------------------------------------------------------
// Shared code for submitting GPU ops for drawing glyphs as drawables.
class DrawableOpSubmitter {
public:
DrawableOpSubmitter() = delete;
DrawableOpSubmitter(const DrawableOpSubmitter&) = delete;
const DrawableOpSubmitter& operator=(const DrawableOpSubmitter&) = delete;
DrawableOpSubmitter(DrawableOpSubmitter&& that)
: fStrikeToSourceScale{that.fStrikeToSourceScale}
, fPositions{that.fPositions}
, fIDsOrDrawables{that.fIDsOrDrawables}
, fStrikePromise{std::move(that.fStrikePromise)} {}
DrawableOpSubmitter& operator=(DrawableOpSubmitter&& that) {
this->~DrawableOpSubmitter();
new (this) DrawableOpSubmitter{std::move(that)};
return *this;
}
DrawableOpSubmitter(SkScalar strikeToSourceScale,
SkSpan<SkPoint> positions,
SkSpan<IDOrDrawable> idsOrDrawables,
SkStrikePromise&& strikePromise);
static DrawableOpSubmitter Make(const SkZip<SkPackedGlyphID, SkPoint>& accepted,
SkScalar strikeToSourceScale,
SkStrikePromise&& strikePromise,
SubRunAllocator* alloc);
int unflattenSize() const;
void flatten(SkWriteBuffer& buffer) const;
static std::optional<DrawableOpSubmitter> MakeFromBuffer(SkReadBuffer& buffer,
SubRunAllocator* alloc,
const SkStrikeClient* client);
void submitDraws(SkCanvas* canvas, SkPoint drawOrigin, const SkPaint& paint) const;
private:
const SkScalar fStrikeToSourceScale;
const SkSpan<SkPoint> fPositions;
const SkSpan<IDOrDrawable> fIDsOrDrawables;
// When the promise is converted to a strike it acts as the ref on the strike to keep the
// SkDrawable data alive.
mutable SkStrikePromise fStrikePromise;
mutable SkOnce fConvertIDsToDrawables;
};
int DrawableOpSubmitter::unflattenSize() const {
return fPositions.size_bytes() + fIDsOrDrawables.size_bytes();
}
void DrawableOpSubmitter::flatten(SkWriteBuffer& buffer) const {
fStrikePromise.flatten(buffer);
buffer.writeScalar(fStrikeToSourceScale);
buffer.writePointArray(fPositions.data(), SkCount(fPositions));
for (IDOrDrawable idOrDrawable : fIDsOrDrawables) {
buffer.writeInt(idOrDrawable.fGlyphID);
}
}
std::optional<DrawableOpSubmitter> DrawableOpSubmitter::MakeFromBuffer(
SkReadBuffer& buffer, SubRunAllocator* alloc, const SkStrikeClient* client) {
std::optional<SkStrikePromise> strikePromise =
SkStrikePromise::MakeFromBuffer(buffer, client, SkStrikeCache::GlobalStrikeCache());
if (!buffer.validate(strikePromise.has_value())) {
return std::nullopt;
}
SkScalar strikeToSourceScale = buffer.readScalar();
if (!buffer.validate(0 < strikeToSourceScale)) { return std::nullopt; }
SkSpan<SkPoint> positions = make_points_from_buffer(buffer, alloc);
if (positions.empty()) { return std::nullopt; }
const int glyphCount = SkCount(positions);
if (!buffer.validateCanReadN<int>(glyphCount)) { return std::nullopt; }
auto idsOrDrawables = alloc->makePODArray<IDOrDrawable>(glyphCount);
for (int i = 0; i < SkToInt(glyphCount); ++i) {
// Remember, we stored an int for glyph id.
idsOrDrawables[i].fGlyphID = SkTo<SkGlyphID>(buffer.readInt());
}
SkASSERT(buffer.isValid());
return DrawableOpSubmitter{strikeToSourceScale,
positions,
SkSpan(idsOrDrawables, glyphCount),
std::move(strikePromise.value())};
}
DrawableOpSubmitter::DrawableOpSubmitter(
SkScalar strikeToSourceScale,
SkSpan<SkPoint> positions,
SkSpan<IDOrDrawable> idsOrDrawables,
SkStrikePromise&& strikePromise)
: fStrikeToSourceScale{strikeToSourceScale}
, fPositions{positions}
, fIDsOrDrawables{idsOrDrawables}
, fStrikePromise(std::move(strikePromise)) {
SkASSERT(!fPositions.empty());
}
DrawableOpSubmitter DrawableOpSubmitter::Make(const SkZip<SkPackedGlyphID, SkPoint>& accepted,
SkScalar strikeToSourceScale,
SkStrikePromise&& strikePromise,
SubRunAllocator* alloc) {
int glyphCount = SkCount(accepted);
SkPoint* positions = alloc->makePODArray<SkPoint>(glyphCount);
IDOrDrawable* idsOrDrawables = alloc->makePODArray<IDOrDrawable>(glyphCount);
for (auto [i, variant, pos] : SkMakeEnumerate(accepted)) {
positions[i] = pos;
idsOrDrawables[i].fGlyphID = variant.glyphID();
}
return DrawableOpSubmitter{strikeToSourceScale,
SkSpan(positions, glyphCount),
SkSpan(idsOrDrawables, glyphCount),
std::move(strikePromise)};
}
void
DrawableOpSubmitter::submitDraws(SkCanvas* canvas, SkPoint drawOrigin,const SkPaint& paint) const {
// Convert glyph IDs to Drawables if it hasn't been done yet.
fConvertIDsToDrawables([&]() {
fStrikePromise.strike()->glyphIDsToDrawables(fIDsOrDrawables);
// Do not call resetStrike() because the strike must remain owned to ensure the Drawable
// data is not freed.
});
// Calculate the matrix that maps the path glyphs from their size in the strike to
// the graphics source space.
SkMatrix strikeToSource = SkMatrix::Scale(fStrikeToSourceScale, fStrikeToSourceScale);
strikeToSource.postTranslate(drawOrigin.x(), drawOrigin.y());
// Transform the path to device because the deviceMatrix must be unchanged to
// draw effect, filter or shader paths.
for (auto [i, position] : SkMakeEnumerate(fPositions)) {
SkDrawable* drawable = fIDsOrDrawables[i].fDrawable;
if (drawable == nullptr) {
// This better be pinned to keep the drawable data alive.
fStrikePromise.strike()->verifyPinnedStrike();
SkDEBUGFAIL("Drawable should not be nullptr.");
continue;
}
// Transform the glyph to source space.
SkMatrix pathMatrix = strikeToSource;
pathMatrix.postTranslate(position.x(), position.y());
SkAutoCanvasRestore acr(canvas, false);
SkRect drawableBounds = drawable->getBounds();
pathMatrix.mapRect(&drawableBounds);
canvas->saveLayer(&drawableBounds, &paint);
drawable->draw(canvas, &pathMatrix);
}
}
template <typename SubRunT>
SubRunOwner make_drawable_sub_run(const SkZip<SkPackedGlyphID, SkPoint>& drawables,
SkScalar strikeToSourceScale,
SkStrikePromise&& strikePromise,
SubRunAllocator* alloc) {
return alloc->makeUnique<SubRunT>(
DrawableOpSubmitter::Make(drawables, strikeToSourceScale, std::move(strikePromise), alloc));
}
// -- DrawableSubRun -------------------------------------------------------------------------------
class DrawableSubRun : public SubRun {
public:
DrawableSubRun(DrawableOpSubmitter&& drawingDrawing)
: fDrawingDrawing(std::move(drawingDrawing)) {}
static SubRunOwner MakeFromBuffer(const SkMatrix&,
SkReadBuffer& buffer,
SubRunAllocator* alloc,
const SkStrikeClient* client);
#if SK_SUPPORT_GPU
void draw(SkCanvas* canvas,
const GrClip* clip,
const SkMatrixProvider& viewMatrix,
SkPoint drawOrigin,
const SkPaint& paint,
sk_sp<SkRefCnt> subRunStorage,
skgpu::v1::SurfaceDrawContext* sdc) const override {
fDrawingDrawing.submitDraws(canvas, drawOrigin, paint);
}
#endif // SK_SUPPORT_GPU
#if defined(SK_GRAPHITE_ENABLED)
void draw(SkCanvas* canvas,
SkPoint drawOrigin,
const SkPaint& paint,
sk_sp<SkRefCnt> subRunStorage,
Device* device) const override {
fDrawingDrawing.submitDraws(canvas, drawOrigin, paint);
}
#endif // SK_GRAPHITE_ENABLED
int unflattenSize() const override;
bool canReuse(const SkPaint& paint, const SkMatrix& positionMatrix) const override;
const AtlasSubRun* testingOnly_atlasSubRun() const override;
protected:
SubRunType subRunType() const override { return kDrawable; }
void doFlatten(SkWriteBuffer& buffer) const override;
private:
DrawableOpSubmitter fDrawingDrawing;
};
int DrawableSubRun::unflattenSize() const {
return sizeof(DrawableSubRun) + fDrawingDrawing.unflattenSize();
}
void DrawableSubRun::doFlatten(SkWriteBuffer& buffer) const {
fDrawingDrawing.flatten(buffer);
}
SubRunOwner DrawableSubRun::MakeFromBuffer(const SkMatrix&,
SkReadBuffer& buffer,
SubRunAllocator* alloc,
const SkStrikeClient* client) {
auto drawableOpSubmitter = DrawableOpSubmitter::MakeFromBuffer(buffer, alloc, client);
if (!buffer.validate(drawableOpSubmitter.has_value())) { return nullptr; }
return alloc->makeUnique<DrawableSubRun>(std::move(*drawableOpSubmitter));
}
bool DrawableSubRun::canReuse(const SkPaint& paint, const SkMatrix& positionMatrix) const {
return true;
}
const AtlasSubRun* DrawableSubRun::testingOnly_atlasSubRun() const {
return nullptr;
}
#if SK_SUPPORT_GPU
enum ClipMethod {
kClippedOut,
kUnclipped,
kGPUClipped,
kGeometryClipped
};
std::tuple<ClipMethod, SkIRect>
calculate_clip(const GrClip* clip, SkRect deviceBounds, SkRect glyphBounds) {
if (clip == nullptr && !deviceBounds.intersects(glyphBounds)) {
return {kClippedOut, SkIRect::MakeEmpty()};
} else if (clip != nullptr) {
switch (auto result = clip->preApply(glyphBounds, GrAA::kNo); result.fEffect) {
case GrClip::Effect::kClippedOut:
return {kClippedOut, SkIRect::MakeEmpty()};
case GrClip::Effect::kUnclipped:
return {kUnclipped, SkIRect::MakeEmpty()};
case GrClip::Effect::kClipped: {
if (result.fIsRRect && result.fRRect.isRect()) {
SkRect r = result.fRRect.rect();
if (result.fAA == GrAA::kNo || GrClip::IsPixelAligned(r)) {
SkIRect clipRect = SkIRect::MakeEmpty();
// Clip geometrically during onPrepare using clipRect.
r.round(&clipRect);
if (clipRect.contains(glyphBounds)) {
// If fully within the clip, signal no clipping using the empty rect.
return {kUnclipped, SkIRect::MakeEmpty()};
}
// Use the clipRect to clip the geometry.
return {kGeometryClipped, clipRect};
}
// Partial pixel clipped at this point. Have the GPU handle it.
}
}
break;
}
}
return {kGPUClipped, SkIRect::MakeEmpty()};
}
template <typename Rect>
auto ltbr(const Rect& r) {
return std::make_tuple(r.left(), r.top(), r.right(), r.bottom());
}
// Handle any combination of BW or color and clip or no clip.
template<typename Quad, typename VertexData>
void generalized_direct_2D(SkZip<Quad, const Glyph*, const VertexData> quadData,
GrColor color,
SkPoint originOffset,
SkIRect* clip = nullptr) {
for (auto[quad, glyph, leftTop] : quadData) {
auto[al, at, ar, ab] = glyph->fAtlasLocator.getUVs();
uint16_t w = ar - al,
h = ab - at;
SkScalar l = leftTop.x() + originOffset.x(),
t = leftTop.y() + originOffset.y();
if (clip == nullptr) {
auto[dl, dt, dr, db] = SkRect::MakeLTRB(l, t, l + w, t + h);
quad[0] = {{dl, dt}, color, {al, at}}; // L,T
quad[1] = {{dl, db}, color, {al, ab}}; // L,B
quad[2] = {{dr, dt}, color, {ar, at}}; // R,T
quad[3] = {{dr, db}, color, {ar, ab}}; // R,B
} else {
SkIRect devIRect = SkIRect::MakeLTRB(l, t, l + w, t + h);
SkScalar dl, dt, dr, db;
if (!clip->containsNoEmptyCheck(devIRect)) {
if (SkIRect clipped; clipped.intersect(devIRect, *clip)) {
al += clipped.left() - devIRect.left();
at += clipped.top() - devIRect.top();
ar += clipped.right() - devIRect.right();
ab += clipped.bottom() - devIRect.bottom();
std::tie(dl, dt, dr, db) = ltbr(clipped);
} else {
// TODO: omit generating any vertex data for fully clipped glyphs ?
std::tie(dl, dt, dr, db) = std::make_tuple(0, 0, 0, 0);
std::tie(al, at, ar, ab) = std::make_tuple(0, 0, 0, 0);
}
} else {
std::tie(dl, dt, dr, db) = ltbr(devIRect);
}
quad[0] = {{dl, dt}, color, {al, at}}; // L,T
quad[1] = {{dl, db}, color, {al, ab}}; // L,B
quad[2] = {{dr, dt}, color, {ar, at}}; // R,T
quad[3] = {{dr, db}, color, {ar, ab}}; // R,B
}
}
}
// The 99% case. No clip. Non-color only.
void direct_2D(SkZip<Mask2DVertex[4],
const Glyph*,
const SkPoint> quadData,
GrColor color,
SkPoint originOffset) {
for (auto[quad, glyph, leftTop] : quadData) {
auto[al, at, ar, ab] = glyph->fAtlasLocator.getUVs();
SkScalar dl = leftTop.x() + originOffset.x(),
dt = leftTop.y() + originOffset.y(),
dr = dl + (ar - al),
db = dt + (ab - at);
quad[0] = {{dl, dt}, color, {al, at}}; // L,T
quad[1] = {{dl, db}, color, {al, ab}}; // L,B
quad[2] = {{dr, dt}, color, {ar, at}}; // R,T
quad[3] = {{dr, db}, color, {ar, ab}}; // R,B
}
}
#endif // SK_SUPPORT_GPU
// -- DirectMaskSubRun -------------------------------------------------------------------------
class DirectMaskSubRun final : public SubRun, public AtlasSubRun {
public:
DirectMaskSubRun(MaskFormat format,
const SkMatrix& initialPositionMatrix,
SkRect deviceBounds,
SkSpan<const SkPoint> devicePositions,
GlyphVector&& glyphs);
static SubRunOwner Make(SkRect runBounds,
const SkZip<SkGlyphVariant, SkPoint>& accepted,
const SkMatrix& initialPositionMatrix,
SkStrikePromise&& strikePromise,
MaskFormat format,
SubRunAllocator* alloc);
static SubRunOwner MakeFromBuffer(const SkMatrix& initialPositionMatrix,
SkReadBuffer& buffer,
SubRunAllocator* alloc,
const SkStrikeClient* client);
#if SK_SUPPORT_GPU
void draw(SkCanvas*,
const GrClip* clip,
const SkMatrixProvider& viewMatrix,
SkPoint drawOrigin,
const SkPaint& paint,
sk_sp<SkRefCnt> subRunOwner,
skgpu::v1::SurfaceDrawContext* sdc) const override;
#endif // SK_SUPPORT_GPU
#ifdef SK_GRAPHITE_ENABLED
void draw(SkCanvas*,
SkPoint drawOrigin,
const SkPaint&,
sk_sp<SkRefCnt> subRunStorage,
Device*) const override;
#endif
int unflattenSize() const override;
int glyphCount() const override;
MaskFormat maskFormat() const override { return fMaskFormat; }
void testingOnly_packedGlyphIDToGlyph(StrikeCache* cache) const override;
#if SK_SUPPORT_GPU
size_t vertexStride(const SkMatrix& drawMatrix) const override;
std::tuple<const GrClip*, GrOp::Owner>
makeAtlasTextOp(const GrClip*,
const SkMatrixProvider& viewMatrix,
SkPoint,
const SkPaint&,
sk_sp<SkRefCnt>&& subRunStorage,
skgpu::v1::SurfaceDrawContext*) const override;
std::tuple<bool, int>
regenerateAtlas(int begin, int end, GrMeshDrawTarget*) const override;
void fillVertexData(void* vertexDst, int offset, int count,
GrColor color,
const SkMatrix& drawMatrix, SkPoint drawOrigin,
SkIRect clip) const override;
#endif // SK_SUPPORT_GPU
#if defined(SK_GRAPHITE_ENABLED)
std::tuple<bool, int>
regenerateAtlas(int begin, int end, Recorder*) const override;
std::tuple<gr::Rect, Transform> boundsAndDeviceMatrix(const Transform&,
SkPoint drawOrigin) const override;
const Renderer* renderer(const RendererProvider* renderers) const override {
return renderers->bitmapText();
}
void fillInstanceData(skgpu::graphite::DrawWriter*,
int offset, int count,
int ssboIndex,
SkScalar depth) const override;
#endif
bool canReuse(const SkPaint& paint, const SkMatrix& positionMatrix) const override;
const AtlasSubRun* testingOnly_atlasSubRun() const override;
protected:
SubRunType subRunType() const override { return kDirectMask; }
void doFlatten(SkWriteBuffer& buffer) const override;
private:
// Return true if the positionMatrix represents an integer translation. Return the device
// bounding box of all the glyphs. If the bounding box is empty, then something went singular
// and this operation should be dropped.
std::tuple<bool, SkRect> deviceRectAndCheckTransform(const SkMatrix& positionMatrix) const;
const MaskFormat fMaskFormat;
const SkMatrix& fInitialPositionMatrix;
// The vertex bounds in device space. The bounds are the joined rectangles of all the glyphs.
const SkRect fGlyphDeviceBounds;
const SkSpan<const SkPoint> fLeftTopDevicePos;
// The regenerateAtlas method mutates fGlyphs. It should be called from onPrepare which must
// be single threaded.
mutable GlyphVector fGlyphs;
};
DirectMaskSubRun::DirectMaskSubRun(MaskFormat format,
const SkMatrix& initialPositionMatrix,
SkRect deviceBounds,
SkSpan<const SkPoint> devicePositions,
GlyphVector&& glyphs)
: fMaskFormat{format}
, fInitialPositionMatrix{initialPositionMatrix}
, fGlyphDeviceBounds{deviceBounds}
, fLeftTopDevicePos{devicePositions}
, fGlyphs{std::move(glyphs)} {}
SubRunOwner DirectMaskSubRun::Make(SkRect runBounds,
const SkZip<SkGlyphVariant, SkPoint>& accepted,
const SkMatrix& initialPositionMatrix,
SkStrikePromise&& strikePromise,
MaskFormat format,
SubRunAllocator* alloc) {
auto glyphLeftTop = alloc->makePODArray<SkPoint>(accepted.size());
auto glyphIDs = alloc->makePODArray<GlyphVector::Variant>(accepted.size());
for (auto [i, variant, pos] : SkMakeEnumerate(accepted)) {
glyphLeftTop[i] = pos;
glyphIDs[i].packedGlyphID = variant.packedID();
}
SkSpan<const SkPoint> leftTop{glyphLeftTop, accepted.size()};
return alloc->makeUnique<DirectMaskSubRun>(
format, initialPositionMatrix, runBounds, leftTop,
GlyphVector{std::move(strikePromise), {glyphIDs, accepted.size()}});
}
bool DirectMaskSubRun::canReuse(const SkPaint& paint, const SkMatrix& positionMatrix) const {
auto [reuse, _] = can_use_direct(fInitialPositionMatrix, positionMatrix);
return reuse;
}
SubRunOwner DirectMaskSubRun::MakeFromBuffer(const SkMatrix& initialPositionMatrix,
SkReadBuffer& buffer,
SubRunAllocator* alloc,
const SkStrikeClient* client) {
MaskFormat maskType = (MaskFormat)buffer.readInt();
SkRect runBounds = buffer.readRect();
SkSpan<SkPoint> leftTop = make_points_from_buffer(buffer, alloc);
if (leftTop.empty()) { return nullptr; }
const int glyphCount = SkCount(leftTop);
auto glyphVector = GlyphVector::MakeFromBuffer(buffer, client, alloc);
if (!buffer.validate(glyphVector.has_value())) { return nullptr; }
if (!buffer.validate(SkCount(glyphVector->glyphs()) == glyphCount)) { return nullptr; }
SkASSERT(buffer.isValid());
return alloc->makeUnique<DirectMaskSubRun>(
maskType, initialPositionMatrix, runBounds, leftTop,
std::move(glyphVector.value()));
}
void DirectMaskSubRun::doFlatten(SkWriteBuffer& buffer) const {
buffer.writeInt(static_cast<int>(fMaskFormat));
buffer.writeRect(fGlyphDeviceBounds);
buffer.writePointArray(fLeftTopDevicePos.data(), SkCount(fLeftTopDevicePos));
fGlyphs.flatten(buffer);
}
int DirectMaskSubRun::unflattenSize() const {
return sizeof(DirectMaskSubRun) +
fGlyphs.unflattenSize() +
sizeof(SkPoint) * fGlyphs.glyphs().size();
}
const AtlasSubRun* DirectMaskSubRun::testingOnly_atlasSubRun() const {
return this;
}
int DirectMaskSubRun::glyphCount() const {
return SkCount(fGlyphs.glyphs());
}
#if SK_SUPPORT_GPU
size_t DirectMaskSubRun::vertexStride(const SkMatrix& positionMatrix) const {
if (!positionMatrix.hasPerspective()) {
if (fMaskFormat != MaskFormat::kARGB) {
return sizeof(Mask2DVertex);
} else {
return sizeof(ARGB2DVertex);
}
} else {
if (fMaskFormat != MaskFormat::kARGB) {
return sizeof(Mask3DVertex);
} else {
return sizeof(ARGB3DVertex);
}
}
}
void DirectMaskSubRun::draw(SkCanvas*,
const GrClip* clip,
const SkMatrixProvider& viewMatrix,
SkPoint drawOrigin,
const SkPaint& paint,
sk_sp<SkRefCnt> subRunStorage,
skgpu::v1::SurfaceDrawContext* sdc) const {
auto[drawingClip, op] = this->makeAtlasTextOp(
clip, viewMatrix, drawOrigin, paint, std::move(subRunStorage), sdc);
if (op != nullptr) {
sdc->addDrawOp(drawingClip, std::move(op));
}
}
std::tuple<const GrClip*, GrOp::Owner> DirectMaskSubRun::makeAtlasTextOp(
const GrClip* clip,
const SkMatrixProvider& viewMatrix,
SkPoint drawOrigin,
const SkPaint& paint,
sk_sp<SkRefCnt>&& subRunStorage,
skgpu::v1::SurfaceDrawContext* sdc) const {
SkASSERT(this->glyphCount() != 0);
const SkMatrix& drawMatrix = viewMatrix.localToDevice();
const SkMatrix& positionMatrix = position_matrix(drawMatrix, drawOrigin);
auto [integerTranslate, subRunDeviceBounds] = this->deviceRectAndCheckTransform(positionMatrix);
if (subRunDeviceBounds.isEmpty()) {
return {nullptr, nullptr};
}
// Rect for optimized bounds clipping when doing an integer translate.
SkIRect geometricClipRect = SkIRect::MakeEmpty();
if (integerTranslate) {
// We can clip geometrically using clipRect and ignore clip when an axis-aligned rectangular
// non-AA clip is used. If clipRect is empty, and clip is nullptr, then there is no clipping
// needed.
const SkRect deviceBounds = SkRect::MakeWH(sdc->width(), sdc->height());
auto [clipMethod, clipRect] = calculate_clip(clip, deviceBounds, subRunDeviceBounds);
switch (clipMethod) {
case kClippedOut:
// Returning nullptr as op means skip this op.
return {nullptr, nullptr};
case kUnclipped:
case kGeometryClipped:
// GPU clip is not needed.
clip = nullptr;
break;
case kGPUClipped:
// Use th GPU clip; clipRect is ignored.
break;
}
geometricClipRect = clipRect;
if (!geometricClipRect.isEmpty()) { SkASSERT(clip == nullptr); }
}
GrPaint grPaint;
const SkPMColor4f drawingColor =
calculate_colors(sdc, paint, viewMatrix, fMaskFormat, &grPaint);
auto geometry = AtlasTextOp::Geometry::Make(*this,
drawMatrix,
drawOrigin,
geometricClipRect,
std::move(subRunStorage),
drawingColor,
sdc->arenaAlloc());
GrRecordingContext* const rContext = sdc->recordingContext();
GrOp::Owner op = GrOp::Make<AtlasTextOp>(rContext,
op_mask_type(fMaskFormat),
!integerTranslate,
this->glyphCount(),
subRunDeviceBounds,
geometry,
std::move(grPaint));
return {clip, std::move(op)};
}
#endif // SK_SUPPORT_GPU
#ifdef SK_GRAPHITE_ENABLED
void DirectMaskSubRun::draw(SkCanvas*,
SkPoint drawOrigin,
const SkPaint& paint,
sk_sp<SkRefCnt> subRunStorage,
Device* device) const {
this->AtlasSubRun::draw(device, drawOrigin, paint, std::move(subRunStorage));
}
#endif
void DirectMaskSubRun::testingOnly_packedGlyphIDToGlyph(StrikeCache *cache) const {
fGlyphs.packedGlyphIDToGlyph(cache);
}
#if SK_SUPPORT_GPU
std::tuple<bool, int> DirectMaskSubRun::regenerateAtlas(int begin, int end,
GrMeshDrawTarget* target) const {
return fGlyphs.regenerateAtlas(begin, end, fMaskFormat, 0, target);
}
template<typename Quad, typename VertexData>
void transformed_direct_2D(SkZip<Quad, const Glyph*, const VertexData> quadData,
GrColor color,
const SkMatrix& matrix) {
for (auto[quad, glyph, leftTop] : quadData) {
auto[al, at, ar, ab] = glyph->fAtlasLocator.getUVs();
SkScalar dl = leftTop.x(),
dt = leftTop.y(),
dr = dl + (ar - al),
db = dt + (ab - at);
SkPoint lt = matrix.mapXY(dl, dt),
lb = matrix.mapXY(dl, db),
rt = matrix.mapXY(dr, dt),
rb = matrix.mapXY(dr, db);
quad[0] = {lt, color, {al, at}}; // L,T
quad[1] = {lb, color, {al, ab}}; // L,B
quad[2] = {rt, color, {ar, at}}; // R,T
quad[3] = {rb, color, {ar, ab}}; // R,B
}
}
template<typename Quad, typename VertexData>
void transformed_direct_3D(SkZip<Quad, const Glyph*, const VertexData> quadData,
GrColor color,
const SkMatrix& matrix) {
auto mapXYZ = [&](SkScalar x, SkScalar y) {
SkPoint pt{x, y};
SkPoint3 result;
matrix.mapHomogeneousPoints(&result, &pt, 1);
return result;
};
for (auto[quad, glyph, leftTop] : quadData) {
auto[al, at, ar, ab] = glyph->fAtlasLocator.getUVs();
SkScalar dl = leftTop.x(),
dt = leftTop.y(),
dr = dl + (ar - al),
db = dt + (ab - at);
SkPoint3 lt = mapXYZ(dl, dt),
lb = mapXYZ(dl, db),
rt = mapXYZ(dr, dt),
rb = mapXYZ(dr, db);
quad[0] = {lt, color, {al, at}}; // L,T
quad[1] = {lb, color, {al, ab}}; // L,B
quad[2] = {rt, color, {ar, at}}; // R,T
quad[3] = {rb, color, {ar, ab}}; // R,B
}
}
void DirectMaskSubRun::fillVertexData(void* vertexDst, int offset, int count,
GrColor color,
const SkMatrix& drawMatrix, SkPoint drawOrigin,
SkIRect clip) const {
auto quadData = [&](auto dst) {
return SkMakeZip(dst,
fGlyphs.glyphs().subspan(offset, count),
fLeftTopDevicePos.subspan(offset, count));
};
const SkMatrix positionMatrix = position_matrix(drawMatrix, drawOrigin);
auto [noTransformNeeded, originOffset] =
can_use_direct(fInitialPositionMatrix, positionMatrix);
if (noTransformNeeded) {
if (clip.isEmpty()) {
if (fMaskFormat != MaskFormat::kARGB) {
using Quad = Mask2DVertex[4];
SkASSERT(sizeof(Mask2DVertex) == this->vertexStride(SkMatrix::I()));
direct_2D(quadData((Quad*)vertexDst), color, originOffset);
} else {
using Quad = ARGB2DVertex[4];
SkASSERT(sizeof(ARGB2DVertex) == this->vertexStride(SkMatrix::I()));
generalized_direct_2D(quadData((Quad*)vertexDst), color, originOffset);
}
} else {
if (fMaskFormat != MaskFormat::kARGB) {
using Quad = Mask2DVertex[4];
SkASSERT(sizeof(Mask2DVertex) == this->vertexStride(SkMatrix::I()));
generalized_direct_2D(quadData((Quad*)vertexDst), color, originOffset, &clip);
} else {
using Quad = ARGB2DVertex[4];
SkASSERT(sizeof(ARGB2DVertex) == this->vertexStride(SkMatrix::I()));
generalized_direct_2D(quadData((Quad*)vertexDst), color, originOffset, &clip);
}
}
} else if (SkMatrix inverse; fInitialPositionMatrix.invert(&inverse)) {
SkMatrix viewDifference = SkMatrix::Concat(positionMatrix, inverse);
if (!viewDifference.hasPerspective()) {
if (fMaskFormat != MaskFormat::kARGB) {
using Quad = Mask2DVertex[4];
SkASSERT(sizeof(Mask2DVertex) == this->vertexStride(positionMatrix));
transformed_direct_2D(quadData((Quad*)vertexDst), color, viewDifference);
} else {
using Quad = ARGB2DVertex[4];
SkASSERT(sizeof(ARGB2DVertex) == this->vertexStride(positionMatrix));
transformed_direct_2D(quadData((Quad*)vertexDst), color, viewDifference);
}
} else {
if (fMaskFormat != MaskFormat::kARGB) {
using Quad = Mask3DVertex[4];
SkASSERT(sizeof(Mask3DVertex) == this->vertexStride(positionMatrix));
transformed_direct_3D(quadData((Quad*)vertexDst), color, viewDifference);
} else {
using Quad = ARGB3DVertex[4];
SkASSERT(sizeof(ARGB3DVertex) == this->vertexStride(positionMatrix));
transformed_direct_3D(quadData((Quad*)vertexDst), color, viewDifference);
}
}
}
}
#endif // SK_SUPPORT_GPU
#if defined(SK_GRAPHITE_ENABLED)
std::tuple<bool, int> DirectMaskSubRun::regenerateAtlas(int begin, int end,
Recorder* recorder) const {
return fGlyphs.regenerateAtlas(begin, end, fMaskFormat, 0, recorder);
}
std::tuple<gr::Rect, Transform> DirectMaskSubRun::boundsAndDeviceMatrix(
const Transform& localToDevice, SkPoint drawOrigin) const {
// The baked-in matrix differs from the current localToDevice by a translation if the upper 2x2
// remains the same, and there's no perspective. Since there's no projection, Z is irrelevant
// so it's okay that fInitialPositionMatrix is an SkMatrix and has discarded the 3rd row/col,
// and can ignore those values in localToDevice.
const SkM44& positionMatrix = localToDevice.matrix();
const bool compatibleMatrix = positionMatrix.rc(0,0) == fInitialPositionMatrix.rc(0,0) &&
positionMatrix.rc(0,1) == fInitialPositionMatrix.rc(0,1) &&
positionMatrix.rc(1,0) == fInitialPositionMatrix.rc(1,0) &&
positionMatrix.rc(1,1) == fInitialPositionMatrix.rc(1,1) &&
localToDevice.type() != Transform::Type::kProjection &&
!fInitialPositionMatrix.hasPerspective();
if (compatibleMatrix) {
const SkV4 mappedOrigin = positionMatrix.map(drawOrigin.x(), drawOrigin.y(), 0.f, 1.f);
const SkV2 offset = {mappedOrigin.x - fInitialPositionMatrix.getTranslateX(),
mappedOrigin.y - fInitialPositionMatrix.getTranslateY()};
if (SkScalarIsInt(offset.x) && SkScalarIsInt(offset.y)) {
// The offset is an integer (but make sure), which means the generated mask can be
// accessed without changing how texels would be sampled.
return {gr::Rect(fGlyphDeviceBounds),
Transform(SkM44::Translate(SkScalarRoundToInt(offset.x),
SkScalarRoundToInt(offset.y)))};
}
}
// Otherwise compute the relative transformation from fInitialPositionMatrix to localToDevice,
// with the drawOrigin applied. If fInitialPositionMatrix or the concatenation is not invertible
// the returned Transform is marked invalid and the draw will be automatically dropped.
return {gr::Rect(fGlyphDeviceBounds),
localToDevice.preTranslate(drawOrigin.x(), drawOrigin.y())
.concatInverse(SkM44(fInitialPositionMatrix))};
}
void DirectMaskSubRun::fillInstanceData(DrawWriter* dw,
int offset, int count,
int ssboIndex,
SkScalar depth) const {
auto quadData = [&]() {
return SkMakeZip(fGlyphs.glyphs().subspan(offset, count),
fLeftTopDevicePos.subspan(offset, count));
};
DrawWriter::Instances instances{*dw, {}, {}, 4};
instances.reserve(count);
unsigned short flags = (unsigned short)fMaskFormat;
for (auto [glyph, leftTop]: quadData()) {
auto[al, at, ar, ab] = glyph->fAtlasLocator.getUVs();
instances.append(1) << AtlasPt{uint16_t(ar-al), uint16_t(ab-at)}
<< AtlasPt{uint16_t(al & 0x1fff), at}
<< leftTop << /*index=*/uint16_t(al >> 13) << flags
<< 1.0f
<< depth << ssboIndex;
}
}
#endif
// true if only need to translate by integer amount, device rect.
std::tuple<bool, SkRect> DirectMaskSubRun::deviceRectAndCheckTransform(
const SkMatrix& positionMatrix) const {
const SkMatrix& initialMatrix = fInitialPositionMatrix;
const SkPoint offset = positionMatrix.mapOrigin() - initialMatrix.mapOrigin();
const bool compatibleMatrix = positionMatrix[0] == initialMatrix[0] &&
positionMatrix[1] == initialMatrix[1] &&
positionMatrix[3] == initialMatrix[3] &&
positionMatrix[4] == initialMatrix[4] &&
!positionMatrix.hasPerspective() &&
!initialMatrix.hasPerspective();
if (compatibleMatrix && SkScalarIsInt(offset.x()) && SkScalarIsInt(offset.y())) {
return {true, fGlyphDeviceBounds.makeOffset(offset)};
} else if (SkMatrix inverse; fInitialPositionMatrix.invert(&inverse)) {
SkMatrix viewDifference = SkMatrix::Concat(positionMatrix, inverse);
return {false, viewDifference.mapRect(fGlyphDeviceBounds)};
}
// initialPositionMatrix is singular. Do nothing.
return {false, SkRect::MakeEmpty()};
}
// -- TransformedMaskSubRun ------------------------------------------------------------------------
class TransformedMaskSubRun final : public SubRun, public AtlasSubRun {
public:
TransformedMaskSubRun(const SkMatrix& initialPositionMatrix,
TransformedMaskVertexFiller&& vertexFiller,
GlyphVector&& glyphs)
: fInitialPositionMatrix{initialPositionMatrix}
, fVertexFiller{std::move(vertexFiller)}
, fGlyphs{std::move(glyphs)} {}
static SubRunOwner Make(const SkZip<SkGlyphVariant, SkPoint>& accepted,
const SkMatrix& initialPositionMatrix,
SkStrikePromise&& strikePromise,
SkMatrix creationMatrix,
SkRect creationBounds,
MaskFormat maskType,
SubRunAllocator* alloc) {
auto vertexFiller = TransformedMaskVertexFiller::Make(
maskType, creationMatrix, creationBounds, accepted, alloc);
auto glyphVector = GlyphVector::Make(std::move(strikePromise), accepted.get<0>(), alloc);
return alloc->makeUnique<TransformedMaskSubRun>(
initialPositionMatrix, std::move(vertexFiller), std::move(glyphVector));
}
static SubRunOwner MakeFromBuffer(const SkMatrix& initialPositionMatrix,
SkReadBuffer& buffer,
SubRunAllocator* alloc,
const SkStrikeClient* client) {
auto vertexFiller = TransformedMaskVertexFiller::MakeFromBuffer(buffer, alloc);
if (!buffer.validate(vertexFiller.has_value())) { return nullptr; }
auto glyphVector = GlyphVector::MakeFromBuffer(buffer, client, alloc);
if (!buffer.validate(glyphVector.has_value())) { return nullptr; }
if (!buffer.validate(SkCount(glyphVector->glyphs()) == vertexFiller->count())) {
return nullptr;
}
return alloc->makeUnique<TransformedMaskSubRun>(
initialPositionMatrix, std::move(*vertexFiller), std::move(*glyphVector));
}
int unflattenSize() const override {
return sizeof(TransformedMaskSubRun) +
fGlyphs.unflattenSize() +
fVertexFiller.unflattenSize();
}
bool canReuse(const SkPaint& paint, const SkMatrix& positionMatrix) const override {
// If we are not scaling the cache entry to be larger, than a cache with smaller glyphs may
// be better.
if (fInitialPositionMatrix.getMaxScale() < 1) {
return false;
}
return true;
}
const AtlasSubRun* testingOnly_atlasSubRun() const override { return this; }
void testingOnly_packedGlyphIDToGlyph(StrikeCache *cache) const override {
fGlyphs.packedGlyphIDToGlyph(cache);
}
int glyphCount() const override { return SkCount(fGlyphs.glyphs()); }
MaskFormat maskFormat() const override { return fVertexFiller.grMaskType(); }
#if SK_SUPPORT_GPU
void draw(SkCanvas*,
const GrClip* clip,
const SkMatrixProvider& viewMatrix,
SkPoint drawOrigin,
const SkPaint& paint,
sk_sp<SkRefCnt> subRunStorage,
skgpu::v1::SurfaceDrawContext* sdc) const override {
auto[drawingClip, op] = this->makeAtlasTextOp(
clip, viewMatrix, drawOrigin, paint, std::move(subRunStorage), sdc);
if (op != nullptr) {
sdc->addDrawOp(drawingClip, std::move(op));
}
}
std::tuple<const GrClip*, GrOp::Owner>
makeAtlasTextOp(const GrClip* clip,
const SkMatrixProvider& viewMatrix,
SkPoint drawOrigin,
const SkPaint& paint,
sk_sp<SkRefCnt>&& subRunStorage,
skgpu::v1::SurfaceDrawContext* sdc) const override {
SkASSERT(this->glyphCount() != 0);
const SkMatrix& drawMatrix = viewMatrix.localToDevice();
GrPaint grPaint;
SkPMColor4f drawingColor = calculate_colors(
sdc, paint, viewMatrix, fVertexFiller.grMaskType(), &grPaint);
auto geometry = AtlasTextOp::Geometry::Make(*this,
drawMatrix,
drawOrigin,
SkIRect::MakeEmpty(),
std::move(subRunStorage),
drawingColor,
sdc->arenaAlloc());
GrRecordingContext* const rContext = sdc->recordingContext();
SkMatrix positionMatrix = position_matrix(drawMatrix, drawOrigin);
GrOp::Owner op = GrOp::Make<AtlasTextOp>(rContext,
fVertexFiller.opMaskType(),
true,
this->glyphCount(),
this->deviceRect(positionMatrix),
geometry,
std::move(grPaint));
return {clip, std::move(op)};
}
std::tuple<bool, int> regenerateAtlas(int begin, int end,
GrMeshDrawTarget* target) const override {
return fGlyphs.regenerateAtlas(begin, end, fVertexFiller.grMaskType(), 1, target);
}
void fillVertexData(
void* vertexDst, int offset, int count,
GrColor color,
const SkMatrix& drawMatrix, SkPoint drawOrigin,
SkIRect clip) const override {
const SkMatrix positionMatrix = position_matrix(drawMatrix, drawOrigin);
fVertexFiller.fillVertexData(offset, count,
fGlyphs.glyphs(),
color,
positionMatrix,
clip,
vertexDst);
}
size_t vertexStride(const SkMatrix& drawMatrix) const override {
return fVertexFiller.vertexStride(drawMatrix);
}
#endif // SK_SUPPORT_GPU
#if defined(SK_GRAPHITE_ENABLED)
void draw(SkCanvas*,
SkPoint drawOrigin,
const SkPaint& paint,
sk_sp<SkRefCnt> subRunStorage,
Device* device) const override {
this->AtlasSubRun::draw(device, drawOrigin, paint, std::move(subRunStorage));
}
std::tuple<bool, int> regenerateAtlas(int begin, int end, Recorder* recorder) const override {
return fGlyphs.regenerateAtlas(begin, end, fVertexFiller.grMaskType(), 1, recorder);
}
std::tuple<gr::Rect, Transform> boundsAndDeviceMatrix(const Transform& localToDevice,
SkPoint drawOrigin) const override {
const SkMatrix viewDifference = fVertexFiller.viewDifference(
localToDevice.preTranslate(drawOrigin.x(), drawOrigin.y()));
return {gr::Rect(fVertexFiller.creationBounds()), Transform(SkM44(viewDifference))};
}
const Renderer* renderer(const RendererProvider* renderers) const override {
return renderers->bitmapText();
}
void fillInstanceData(DrawWriter* dw,
int offset, int count,
int ssboIndex,
SkScalar depth) const override {
unsigned short flags = (unsigned short)fVertexFiller.grMaskType();
fVertexFiller.fillInstanceData(dw,
offset, count,
flags,
ssboIndex,
fGlyphs.glyphs(),
depth);
}
#endif // SK_GRAPHITE_ENABLED
protected:
SubRunType subRunType() const override { return kTransformMask; }
void doFlatten(SkWriteBuffer& buffer) const override {
fVertexFiller.flatten(buffer);
fGlyphs.flatten(buffer);
}
private:
// The rectangle that surrounds all the glyph bounding boxes in device space.
SkRect deviceRect(const SkMatrix& positionMatrix) const {
return fVertexFiller.deviceRect(positionMatrix);
}
const SkMatrix& fInitialPositionMatrix;
const TransformedMaskVertexFiller fVertexFiller;
// The regenerateAtlas method mutates fGlyphs. It should be called from onPrepare which must
// be single threaded.
mutable GlyphVector fGlyphs;
}; // class TransformedMaskSubRun
// -- SDFTSubRun -----------------------------------------------------------------------------------
bool has_some_antialiasing(const SkFont& font ) {
SkFont::Edging edging = font.getEdging();
return edging == SkFont::Edging::kAntiAlias
|| edging == SkFont::Edging::kSubpixelAntiAlias;
}
#if !defined(SK_DISABLE_SDF_TEXT)
#if SK_SUPPORT_GPU
static std::tuple<AtlasTextOp::MaskType, uint32_t, bool> calculate_sdf_parameters(
const skgpu::v1::SurfaceDrawContext& sdc,
const SkMatrix& drawMatrix,
bool useLCDText,
bool isAntiAliased) {
const GrColorInfo& colorInfo = sdc.colorInfo();
const SkSurfaceProps& props = sdc.surfaceProps();
bool isBGR = SkPixelGeometryIsBGR(props.pixelGeometry());
bool isLCD = useLCDText && SkPixelGeometryIsH(props.pixelGeometry());
using MT = AtlasTextOp::MaskType;
MT maskType = !isAntiAliased ? MT::kAliasedDistanceField
: isLCD ? (isBGR ? MT::kLCDBGRDistanceField
: MT::kLCDDistanceField)
: MT::kGrayscaleDistanceField;
bool useGammaCorrectDistanceTable = colorInfo.isLinearlyBlended();
uint32_t DFGPFlags = drawMatrix.isSimilarity() ? kSimilarity_DistanceFieldEffectFlag : 0;
DFGPFlags |= drawMatrix.isScaleTranslate() ? kScaleOnly_DistanceFieldEffectFlag : 0;
DFGPFlags |= useGammaCorrectDistanceTable ? kGammaCorrect_DistanceFieldEffectFlag : 0;
DFGPFlags |= MT::kAliasedDistanceField == maskType ? kAliased_DistanceFieldEffectFlag : 0;
DFGPFlags |= drawMatrix.hasPerspective() ? kPerspective_DistanceFieldEffectFlag : 0;
if (isLCD) {
DFGPFlags |= kUseLCD_DistanceFieldEffectFlag;
DFGPFlags |= MT::kLCDBGRDistanceField == maskType ? kBGR_DistanceFieldEffectFlag : 0;
}
return {maskType, DFGPFlags, useGammaCorrectDistanceTable};
}
#endif // SK_SUPPORT_GPU
class SDFTSubRun final : public SubRun, public AtlasSubRun {
public:
SDFTSubRun(bool useLCDText,
bool antiAliased,
const SDFTMatrixRange& matrixRange,
TransformedMaskVertexFiller&& vertexFiller,
GlyphVector&& glyphs)
: fUseLCDText{useLCDText}
, fAntiAliased{antiAliased}
, fMatrixRange{matrixRange}
, fVertexFiller{std::move(vertexFiller)}
, fGlyphs{std::move(glyphs)} { }
static SubRunOwner Make(const SkZip<SkGlyphVariant, SkPoint>& accepted,
const SkFont& runFont,
SkStrikePromise&& strikePromise,
const SkMatrix& creationMatrix,
SkRect creationBounds,
const SDFTMatrixRange& matrixRange,
SubRunAllocator* alloc) {
auto vertexFiller = TransformedMaskVertexFiller::Make(
MaskFormat::kA8,
creationMatrix,
creationBounds,
accepted,
alloc);
auto glyphVector = GlyphVector::Make(std::move(strikePromise), accepted.get<0>(), alloc);
return alloc->makeUnique<SDFTSubRun>(
runFont.getEdging() == SkFont::Edging::kSubpixelAntiAlias,
has_some_antialiasing(runFont),
matrixRange,
std::move(vertexFiller),
std::move(glyphVector));
}
static SubRunOwner MakeFromBuffer(const SkMatrix&,
SkReadBuffer& buffer,
SubRunAllocator* alloc,
const SkStrikeClient* client) {
int useLCD = buffer.readInt();
int isAntiAliased = buffer.readInt();
SDFTMatrixRange matrixRange = SDFTMatrixRange::MakeFromBuffer(buffer);
auto vertexFiller = TransformedMaskVertexFiller::MakeFromBuffer(buffer, alloc);
if (!buffer.validate(vertexFiller.has_value())) { return nullptr; }
auto glyphVector = GlyphVector::MakeFromBuffer(buffer, client, alloc);
if (!buffer.validate(glyphVector.has_value())) { return nullptr; }
if (!buffer.validate(SkCount(glyphVector->glyphs()) == vertexFiller->count())) {
return nullptr;
}
return alloc->makeUnique<SDFTSubRun>(useLCD,
isAntiAliased,
matrixRange,
std::move(*vertexFiller),
std::move(*glyphVector));
}
int unflattenSize() const override {
return sizeof(SDFTSubRun) + fGlyphs.unflattenSize() + fVertexFiller.unflattenSize();
}
bool canReuse(const SkPaint& paint, const SkMatrix& positionMatrix) const override {
return fMatrixRange.matrixInRange(positionMatrix);
}
const AtlasSubRun* testingOnly_atlasSubRun() const override { return this; }
void testingOnly_packedGlyphIDToGlyph(StrikeCache *cache) const override {
fGlyphs.packedGlyphIDToGlyph(cache);
}
int glyphCount() const override { return fVertexFiller.count(); }
MaskFormat maskFormat() const override { return fVertexFiller.grMaskType(); }
#if SK_SUPPORT_GPU
void draw(SkCanvas*,
const GrClip* clip,
const SkMatrixProvider& viewMatrix,
SkPoint drawOrigin,
const SkPaint& paint,
sk_sp<SkRefCnt> subRunStorage,
skgpu::v1::SurfaceDrawContext* sdc) const override {
auto[drawingClip, op] = this->makeAtlasTextOp(
clip, viewMatrix, drawOrigin, paint, std::move(subRunStorage), sdc);
if (op != nullptr) {
sdc->addDrawOp(drawingClip, std::move(op));
}
}
std::tuple<const GrClip*, GrOp::Owner> makeAtlasTextOp(
const GrClip* clip,
const SkMatrixProvider& viewMatrix,
SkPoint drawOrigin,
const SkPaint& paint,
sk_sp<SkRefCnt>&& subRunStorage,
skgpu::v1::SurfaceDrawContext* sdc) const override {
SkASSERT(this->glyphCount() != 0);
const SkMatrix& drawMatrix = viewMatrix.localToDevice();
GrPaint grPaint;
SkPMColor4f drawingColor =
calculate_colors(sdc, paint, viewMatrix, MaskFormat::kA8, &grPaint);
auto [maskType, DFGPFlags, useGammaCorrectDistanceTable] =
calculate_sdf_parameters(*sdc, drawMatrix, fUseLCDText, fAntiAliased);
auto geometry = AtlasTextOp::Geometry::Make(*this,
drawMatrix,
drawOrigin,
SkIRect::MakeEmpty(),
std::move(subRunStorage),
drawingColor,
sdc->arenaAlloc());
GrRecordingContext* const rContext = sdc->recordingContext();
SkMatrix positionMatrix = position_matrix(drawMatrix, drawOrigin);
GrOp::Owner op = GrOp::Make<AtlasTextOp>(rContext,
maskType,
true,
this->glyphCount(),
this->deviceRect(positionMatrix),
SkPaintPriv::ComputeLuminanceColor(paint),
useGammaCorrectDistanceTable,
DFGPFlags,
geometry,
std::move(grPaint));
return {clip, std::move(op)};
}
std::tuple<bool, int> regenerateAtlas(
int begin, int end, GrMeshDrawTarget* target) const override {
return fGlyphs.regenerateAtlas(begin, end, MaskFormat::kA8, SK_DistanceFieldInset, target);
}
void fillVertexData(
void *vertexDst, int offset, int count,
GrColor color,
const SkMatrix& drawMatrix, SkPoint drawOrigin,
SkIRect clip) const override {
const SkMatrix positionMatrix = position_matrix(drawMatrix, drawOrigin);
fVertexFiller.fillVertexData(offset, count,
fGlyphs.glyphs(),
color,
positionMatrix,
clip,
vertexDst);
}
size_t vertexStride(const SkMatrix& drawMatrix) const override {
if (drawMatrix.hasPerspective()) {
return sizeof(Mask3DVertex);
} else {
return sizeof(Mask2DVertex);
}
}
#endif // SK_SUPPORT_GPU
#if defined(SK_GRAPHITE_ENABLED)
void draw(SkCanvas*,
SkPoint drawOrigin,
const SkPaint& paint,
sk_sp<SkRefCnt> subRunStorage,
Device* device) const override {
this->AtlasSubRun::draw(device, drawOrigin, paint, std::move(subRunStorage));
}
std::tuple<bool, int> regenerateAtlas(int begin, int end, Recorder *recorder) const override {
return fGlyphs.regenerateAtlas(
begin, end, MaskFormat::kA8, SK_DistanceFieldInset, recorder);
}
std::tuple<gr::Rect, Transform> boundsAndDeviceMatrix(const Transform& localToDevice,
SkPoint drawOrigin) const override {
const SkMatrix viewDifference = fVertexFiller.viewDifference(
localToDevice.preTranslate(drawOrigin.x(), drawOrigin.y()));
return {gr::Rect(fVertexFiller.creationBounds()), Transform(SkM44(viewDifference))};
}
const Renderer* renderer(const RendererProvider* renderers) const override {
return renderers->sdfText(fUseLCDText);
}
void fillInstanceData(DrawWriter* dw,
int offset, int count,
int ssboIndex,
SkScalar depth) const override {
fVertexFiller.fillInstanceData(dw,
offset, count, /*flags=*/0,
ssboIndex,
fGlyphs.glyphs(),
depth);
}
#endif // SK_GRAPHITE_ENABLED
protected:
SubRunType subRunType() const override { return kSDFT; }
void doFlatten(SkWriteBuffer& buffer) const override {
buffer.writeInt(fUseLCDText);
buffer.writeInt(fAntiAliased);
fMatrixRange.flatten(buffer);
fVertexFiller.flatten(buffer);
fGlyphs.flatten(buffer);
}
private:
// The rectangle that surrounds all the glyph bounding boxes in device space.
SkRect deviceRect(const SkMatrix& positionMatrix) const {
return fVertexFiller.deviceRect(positionMatrix);
}
const bool fUseLCDText;
const bool fAntiAliased;
const SDFTMatrixRange fMatrixRange;
const TransformedMaskVertexFiller fVertexFiller;
// The regenerateAtlas method mutates fGlyphs. It should be called from onPrepare which must
// be single threaded.
mutable GlyphVector fGlyphs;
}; // class SDFTSubRun
#endif // !defined(SK_DISABLE_SDF_TEXT)
// -- SubRun ---------------------------------------------------------------------------------------
template<typename AddSingleMaskFormat>
void add_multi_mask_format(
AddSingleMaskFormat addSingleMaskFormat,
const SkZip<SkGlyphVariant, SkPoint, SkMask::Format>& accepted) {
if (accepted.empty()) { return; }
auto maskSpan = accepted.get<2>();
MaskFormat format = Glyph::FormatFromSkGlyph(maskSpan[0]);
size_t startIndex = 0;
for (size_t i = 1; i < accepted.size(); i++) {
MaskFormat nextFormat = Glyph::FormatFromSkGlyph(maskSpan[i]);
if (format != nextFormat) {
auto interval = accepted.subspan(startIndex, i - startIndex);
// Only pass the packed glyph ids and positions.
auto glyphsWithSameFormat = SkMakeZip(interval.get<0>(), interval.get<1>());
// Take a ref on the strike. This should rarely happen.
addSingleMaskFormat(glyphsWithSameFormat, format);
format = nextFormat;
startIndex = i;
}
}
auto interval = accepted.last(accepted.size() - startIndex);
auto glyphsWithSameFormat = SkMakeZip(interval.get<0>(), interval.get<1>());
addSingleMaskFormat(glyphsWithSameFormat, format);
}
} // namespace
namespace sktext::gpu {
SubRun::~SubRun() = default;
void SubRun::flatten(SkWriteBuffer& buffer) const {
buffer.writeInt(this->subRunType());
this->doFlatten(buffer);
}
SubRunOwner SubRun::MakeFromBuffer(const SkMatrix& initialPositionMatrix,
SkReadBuffer& buffer,
SubRunAllocator* alloc,
const SkStrikeClient* client) {
using Maker = SubRunOwner (*)(const SkMatrix&,
SkReadBuffer&,
SubRunAllocator*,
const SkStrikeClient*);
static Maker makers[kSubRunTypeCount] = {
nullptr, // 0 index is bad.
DirectMaskSubRun::MakeFromBuffer,
#if !defined(SK_DISABLE_SDF_TEXT)
SDFTSubRun::MakeFromBuffer,
#endif
TransformedMaskSubRun::MakeFromBuffer,
PathSubRun::MakeFromBuffer,
DrawableSubRun::MakeFromBuffer,
};
int subRunTypeInt = buffer.readInt();
SkASSERT(kBad < subRunTypeInt && subRunTypeInt < kSubRunTypeCount);
if (!buffer.validate(kBad < subRunTypeInt && subRunTypeInt < kSubRunTypeCount)) {
return nullptr;
}
auto maker = makers[subRunTypeInt];
if (!buffer.validate(maker != nullptr)) { return nullptr; }
return maker(initialPositionMatrix, buffer, alloc, client);
}
// -- SubRunContainer ------------------------------------------------------------------------------
SubRunContainer::SubRunContainer(const SkMatrix& initialPositionMatrix)
: fInitialPositionMatrix{initialPositionMatrix} {}
void SubRunContainer::flattenAllocSizeHint(SkWriteBuffer& buffer) const {
int unflattenSizeHint = 0;
for (auto& subrun : fSubRuns) {
unflattenSizeHint += subrun.unflattenSize();
}
buffer.writeInt(unflattenSizeHint);
}
int SubRunContainer::AllocSizeHintFromBuffer(SkReadBuffer& buffer) {
int subRunsSizeHint = buffer.readInt();
// Since the hint doesn't affect correctness, if it looks fishy just pick a reasonable
// value.
if (subRunsSizeHint < 0 || (1 << 16) < subRunsSizeHint) {
subRunsSizeHint = 128;
}
return subRunsSizeHint;
}
void SubRunContainer::flattenRuns(SkWriteBuffer& buffer) const {
buffer.writeMatrix(fInitialPositionMatrix);
int subRunCount = 0;
for ([[maybe_unused]] auto& subRun : fSubRuns) {
subRunCount += 1;
}
buffer.writeInt(subRunCount);
for (auto& subRun : fSubRuns) {
subRun.flatten(buffer);
}
}
SubRunContainerOwner SubRunContainer::MakeFromBufferInAlloc(SkReadBuffer& buffer,
const SkStrikeClient* client,
SubRunAllocator* alloc) {
SkMatrix positionMatrix;
buffer.readMatrix(&positionMatrix);
if (!buffer.isValid()) { return nullptr; }
SubRunContainerOwner container = alloc->makeUnique<SubRunContainer>(positionMatrix);
int subRunCount = buffer.readInt();
SkASSERT(subRunCount > 0);
if (!buffer.validate(subRunCount > 0)) { return nullptr; }
for (int i = 0; i < subRunCount; ++i) {
auto subRunOwner = SubRun::MakeFromBuffer(
container->initialPosition(), buffer, alloc, client);
if (!buffer.validate(subRunOwner != nullptr)) { return nullptr; }
if (subRunOwner != nullptr) {
container->fSubRuns.append(std::move(subRunOwner));
}
}
return container;
}
size_t SubRunContainer::EstimateAllocSize(const GlyphRunList& glyphRunList) {
// The difference in alignment from the per-glyph data to the SubRun;
constexpr size_t alignDiff = alignof(DirectMaskSubRun) - alignof(SkPoint);
constexpr size_t vertexDataToSubRunPadding = alignDiff > 0 ? alignDiff : 0;
size_t totalGlyphCount = glyphRunList.totalGlyphCount();
// This is optimized for DirectMaskSubRun which is by far the most common case.
return totalGlyphCount * sizeof(SkPoint)
+ GlyphVector::GlyphVectorSize(totalGlyphCount)
+ glyphRunList.runCount() * (sizeof(DirectMaskSubRun) + vertexDataToSubRunPadding)
+ sizeof(SubRunContainer);
}
SkScalar find_maximum_glyph_dimension(StrikeForGPU* strike, SkSpan<const SkGlyphID> glyphs) {
StrikeMutationMonitor m{strike};
SkScalar maxDimension = 0;
for (SkGlyphID glyphID : glyphs) {
SkGlyphDigest digest = strike->digest(SkPackedGlyphID{glyphID});
maxDimension = std::max(static_cast<SkScalar>(digest.maxDimension()), maxDimension);
}
return maxDimension;
}
#if !defined(SK_DISABLE_SDF_TEXT)
SkRect prepare_for_SDFT_drawing(StrikeForGPU* strike,
const SkMatrix& creationMatrix,
SkDrawableGlyphBuffer* accepted,
SkSourceGlyphBuffer* rejected) {
SkGlyphRect boundingRect = skglyph::empty_rect();
StrikeMutationMonitor m{strike};
for (auto [i, packedID, pos] : SkMakeEnumerate(accepted->input())) {
if (!SkScalarsAreFinite(pos.x(), pos.y())) {
continue;
}
SkGlyphDigest digest = strike->digest(packedID);
if (digest.isEmpty()) {
continue;
}
if (digest.canDrawAsSDFT()) {
SkPoint mappedPos = creationMatrix.mapPoint(pos);
const SkGlyphRect glyphBounds =
digest.bounds()
// The SDFT glyphs have 2-pixel wide padding that should
// not be used in calculating the source rectangle.
.inset(SK_DistanceFieldInset, SK_DistanceFieldInset)
.offset(mappedPos);
boundingRect = skglyph::rect_union(boundingRect, glyphBounds);
accepted->accept(packedID, glyphBounds.leftTop(), digest.maskFormat());
} else {
// Assume whatever follows SDF doesn't care about the maximum rejected size.
rejected->reject(i);
}
}
return boundingRect.rect();
}
#endif
SkRect prepare_for_direct_mask_drawing(StrikeForGPU* strike,
const SkMatrix& positionMatrix,
SkDrawableGlyphBuffer* accepted,
SkSourceGlyphBuffer* rejected) {
const SkIPoint mask = strike->roundingSpec().ignorePositionFieldMask;
const SkPoint halfSampleFreq = strike->roundingSpec().halfAxisSampleFreq;
// Build up the mapping from source space to device space. Add the rounding constant
// halfSampleFreq, so we just need to floor to get the device result.
SkMatrix positionMatrixWithRounding = positionMatrix;
positionMatrixWithRounding.postTranslate(halfSampleFreq.x(), halfSampleFreq.y());
SkGlyphRect boundingRect = skglyph::empty_rect();
StrikeMutationMonitor m{strike};
for (auto [i, notSubPixelGlyphID, pos] : SkMakeEnumerate(accepted->input())) {
if (!SkScalarsAreFinite(pos.x(), pos.y())) {
continue;
}
const SkPoint mappedPos = positionMatrixWithRounding.mapPoint(pos);
const SkGlyphID glyphID = notSubPixelGlyphID.packedID().glyphID();
const SkPackedGlyphID packedGlyphID = SkPackedGlyphID{glyphID, mappedPos, mask};
const SkGlyphDigest digest = strike->digest(packedGlyphID);
if (digest.isEmpty()) {
continue;
}
if (digest.canDrawAsMask()) {
const SkPoint roundedPos{SkScalarFloorToScalar(mappedPos.x()),
SkScalarFloorToScalar(mappedPos.y())};
const SkGlyphRect glyphBounds = digest.bounds().offset(roundedPos);
boundingRect = skglyph::rect_union(boundingRect, glyphBounds);
accepted->accept(packedGlyphID, glyphBounds.leftTop(), digest.maskFormat());
} else {
rejected->reject(i);
}
}
return boundingRect.rect();
}
SkRect prepare_for_mask_drawing(StrikeForGPU* strike,
const SkMatrix& creationMatrix,
SkDrawableGlyphBuffer* accepted,
SkSourceGlyphBuffer* rejected) {
SkGlyphRect boundingRect = skglyph::empty_rect();
StrikeMutationMonitor m{strike};
for (auto [i, packedID, pos] : SkMakeEnumerate(accepted->input())) {
if (!SkScalarsAreFinite(pos.x(), pos.y())) {
continue;
}
SkGlyphDigest digest = strike->digest(packedID);
if (digest.isEmpty()) {
continue;
}
if (digest.canDrawAsMask()) {
SkPoint mappedPos = creationMatrix.mapPoint(pos);
const SkGlyphRect glyphBounds = digest.bounds().offset(mappedPos);
boundingRect = skglyph::rect_union(boundingRect, glyphBounds);
accepted->accept(packedID, glyphBounds.leftTop(), digest.maskFormat());
} else {
rejected->reject(i);
}
}
return boundingRect.rect();
}
SubRunContainerOwner SubRunContainer::MakeInAlloc(
const GlyphRunList& glyphRunList,
const SkMatrix& positionMatrix,
const SkPaint& runPaint,
SkStrikeDeviceInfo strikeDeviceInfo,
StrikeForGPUCacheInterface* strikeCache,
SubRunAllocator* alloc,
SubRunCreationBehavior creationBehavior,
const char* tag) {
SkASSERT(alloc != nullptr);
[[maybe_unused]] SkString msg;
if constexpr (kTrace) {
const uint64_t uniqueID = glyphRunList.uniqueID();
msg.appendf("\nStart glyph run processing");
if (tag != nullptr) {
msg.appendf(" for %s ", tag);
if (uniqueID != SK_InvalidUniqueID) {
msg.appendf(" uniqueID: %" PRIu64, uniqueID);
}
}
msg.appendf("\n matrix\n");
msg.appendf(" %7.3g %7.3g %7.3g\n %7.3g %7.3g %7.3g\n",
positionMatrix[0], positionMatrix[1], positionMatrix[2],
positionMatrix[3], positionMatrix[4], positionMatrix[5]);
}
SubRunContainerOwner container = alloc->makeUnique<SubRunContainer>(positionMatrix);
SkASSERT(strikeDeviceInfo.fSDFTControl != nullptr);
// If there is no SDFT description ignore all SubRuns.
if (strikeDeviceInfo.fSDFTControl == nullptr) {
return container;
}
const SkSurfaceProps deviceProps = strikeDeviceInfo.fSurfaceProps;
const SkScalerContextFlags scalerContextFlags = strikeDeviceInfo.fScalerContextFlags;
#if !defined(SK_DISABLE_SDF_TEXT)
const SDFTControl SDFTControl = *strikeDeviceInfo.fSDFTControl;
#endif
auto bufferScope = SkSubRunBuffers::EnsureBuffers(glyphRunList);
auto [accepted, rejected] = bufferScope.buffers();
std::vector<SkPackedGlyphID> packedGlyphIDs;
SkSpan<SkPoint> positions;
// This rearranging of arrays is temporary until the updated buffer system is
// in place.
auto convertToGlyphIDs = [&](SkZip<SkGlyphVariant, SkPoint> good)
-> SkZip<SkPackedGlyphID, SkPoint> {
positions = good.get<1>();
packedGlyphIDs.resize(positions.size());
for (auto [packedGlyphID, variant] : SkMakeZip(packedGlyphIDs, good.get<0>())) {
packedGlyphID = variant.packedID();
}
return SkMakeZip(packedGlyphIDs, positions);
};
SkPoint glyphRunListLocation = glyphRunList.sourceBounds().center();
// Handle all the runs in the glyphRunList
for (auto& glyphRun : glyphRunList) {
rejected->setSource(glyphRun.source());
const SkFont& runFont = glyphRun.font();
SkScalar approximateDeviceTextSize =
// Since the positionMatrix has the origin prepended, use the plain
// sourceBounds from above.
SkFontPriv::ApproximateTransformedTextSize(runFont, positionMatrix,
glyphRunListLocation);
// Atlas mask cases - SDFT and direct mask
// Only consider using direct or SDFT drawing if not drawing hairlines and not too big.
if ((runPaint.getStyle() != SkPaint::kStroke_Style || runPaint.getStrokeWidth() != 0) &&
approximateDeviceTextSize < 512) {
#if !defined(SK_DISABLE_SDF_TEXT)
// SDFT case
if (SDFTControl.isSDFT(approximateDeviceTextSize, runPaint, positionMatrix)) {
// Process SDFT - This should be the .009% case.
const auto& [strikeSpec, strikeToSourceScale, matrixRange] =
SkStrikeSpec::MakeSDFT(
runFont, runPaint, deviceProps, positionMatrix,
glyphRunListLocation, SDFTControl);
if constexpr(kTrace) {
msg.appendf(" SDFT case:\n%s", strikeSpec.dump().c_str());
}
if (!SkScalarNearlyZero(strikeToSourceScale)) {
ScopedStrikeForGPU strike = strikeSpec.findOrCreateScopedStrike(strikeCache);
// The creationMatrix needs to scale the strike data when inverted and
// multiplied by the positionMatrix. The final CTM should be:
// [positionMatrix][scale by strikeToSourceScale],
// which should equal the following because of the transform during the vertex
// calculation,
// [positionMatrix][creationMatrix]^-1.
// So, the creation matrix needs to be
// [scale by 1/strikeToSourceScale].
SkMatrix creationMatrix =
SkMatrix::Scale(1.f/strikeToSourceScale, 1.f/strikeToSourceScale);
accepted->startSource(rejected->source());
if constexpr (kTrace) {
msg.appendf(" glyphs:(x,y):\n %s\n", accepted->dumpInput().c_str());
}
SkRect creationBounds =
prepare_for_SDFT_drawing(strike.get(), creationMatrix, accepted, rejected);
rejected->flipRejectsToSource();
if (creationBehavior == kAddSubRuns && !accepted->empty()) {
container->fSubRuns.append(SDFTSubRun::Make(
accepted->accepted(),
runFont,
strike->strikePromise(),
creationMatrix,
creationBounds,
matrixRange,
alloc));
}
}
}
#endif // !defined(SK_DISABLE_SDF_TEXT)
// Direct Mask case
// Handle all the directly mapped mask subruns.
if (!rejected->source().empty() && !positionMatrix.hasPerspective()) {
// Process masks including ARGB - this should be the 99.99% case.
// This will handle medium size emoji that are sharing the run with SDFT drawn text.
// If things are too big they will be passed along to the drawing of last resort
// below.
SkStrikeSpec strikeSpec = SkStrikeSpec::MakeMask(
runFont, runPaint, deviceProps, scalerContextFlags, positionMatrix);
if constexpr (kTrace) {
msg.appendf(" Mask case:\n%s", strikeSpec.dump().c_str());
}
ScopedStrikeForGPU strike = strikeSpec.findOrCreateScopedStrike(strikeCache);
accepted->startSource(rejected->source());
if constexpr (kTrace) {
msg.appendf(" glyphs:(x,y):\n %s\n", accepted->dumpInput().c_str());
}
SkRect bounds =
prepare_for_direct_mask_drawing(
strike.get(), positionMatrix, accepted, rejected);
rejected->flipRejectsToSource();
if (creationBehavior == kAddSubRuns && !accepted->empty()) {
auto addGlyphsWithSameFormat =
[&](const SkZip<SkGlyphVariant, SkPoint>& acceptedGlyphsAndLocations,
MaskFormat format) {
container->fSubRuns.append(
DirectMaskSubRun::Make(bounds,
acceptedGlyphsAndLocations,
container->initialPosition(),
strike->strikePromise(),
format,
alloc));
};
add_multi_mask_format(addGlyphsWithSameFormat,
accepted->acceptedWithMaskFormat());
}
}
}
// Drawable case
// Handle all the drawable glyphs - usually large or perspective color glyphs.
if (!rejected->source().empty()) {
auto [strikeSpec, strikeToSourceScale] =
SkStrikeSpec::MakePath(runFont, runPaint, deviceProps, scalerContextFlags);
if constexpr (kTrace) {
msg.appendf(" Drawable case:\n%s", strikeSpec.dump().c_str());
}
if (!SkScalarNearlyZero(strikeToSourceScale)) {
ScopedStrikeForGPU strike = strikeSpec.findOrCreateScopedStrike(strikeCache);
accepted->startSource(rejected->source());
if constexpr (kTrace) {
msg.appendf(" glyphs:(x,y):\n %s\n", accepted->dumpInput().c_str());
}
strike->prepareForDrawableDrawing(accepted, rejected);
rejected->flipRejectsToSource();
if (creationBehavior == kAddSubRuns && !accepted->empty()) {
container->fSubRuns.append(make_drawable_sub_run<DrawableSubRun>(
convertToGlyphIDs(accepted->accepted()),
strikeToSourceScale,
strike->strikePromise(),
alloc));
}
}
}
// Path case
// Handle path subruns. Mainly, large or large perspective glyphs with no color.
if (!rejected->source().empty()) {
auto [strikeSpec, strikeToSourceScale] =
SkStrikeSpec::MakePath(runFont, runPaint, deviceProps, scalerContextFlags);
if constexpr (kTrace) {
msg.appendf(" Path case:\n%s", strikeSpec.dump().c_str());
}
if (!SkScalarNearlyZero(strikeToSourceScale)) {
ScopedStrikeForGPU strike = strikeSpec.findOrCreateScopedStrike(strikeCache);
accepted->startSource(rejected->source());
if constexpr (kTrace) {
msg.appendf(" glyphs:(x,y):\n %s\n", accepted->dumpInput().c_str());
}
strike->prepareForPathDrawing(accepted, rejected);
rejected->flipRejectsToSource();
if (creationBehavior == kAddSubRuns && !accepted->empty()) {
container->fSubRuns.append(
PathSubRun::Make(convertToGlyphIDs(accepted->accepted()),
has_some_antialiasing(runFont),
strikeToSourceScale,
strike->strikePromise(),
alloc));
}
}
}
// Drawing of last resort case
// Draw all the rest of the rejected glyphs from above. This scales out of the atlas to
// the screen, so quality will suffer. This mainly handles large color or perspective
// color not handled by Drawables.
if (!rejected->source().empty() && !SkScalarNearlyZero(approximateDeviceTextSize)) {
// Creation matrix will be changed below to meet the following criteria:
// * No perspective - the font scaler and the strikes can't handle perspective masks.
// * Fits atlas - creationMatrix will be conditioned so that the maximum glyph
// dimension for this run will be < kMaxBilerpAtlasDimension.
SkMatrix creationMatrix = positionMatrix;
// Condition creationMatrix for perspective.
if (creationMatrix.hasPerspective()) {
// Find a scale factor that reduces pixelation caused by keystoning.
SkPoint center = glyphRunList.sourceBounds().center();
SkScalar maxAreaScale = SkMatrixPriv::DifferentialAreaScale(creationMatrix, center);
SkScalar perspectiveFactor = 1;
if (SkScalarIsFinite(maxAreaScale) && !SkScalarNearlyZero(maxAreaScale)) {
perspectiveFactor = SkScalarSqrt(maxAreaScale);
}
// Masks can not be created in perspective. Create a non-perspective font with a
// scale that will support the perspective keystoning.
creationMatrix = SkMatrix::Scale(perspectiveFactor, perspectiveFactor);
}
// Reduce to make a one pixel border for the bilerp padding.
static const constexpr SkScalar kMaxBilerpAtlasDimension =
SkGlyphDigest::kSkSideTooBigForAtlas - 2;
// Get the raw glyph IDs to simulate device drawing to figure the maximum device
// dimension.
const SkSpan<const SkGlyphID> glyphs = rejected->source().get<0>();
// maxGlyphDimension always returns an integer even though the return type is SkScalar.
auto maxGlyphDimension = [&](const SkMatrix& m) {
const SkStrikeSpec strikeSpec = SkStrikeSpec::MakeTransformMask(
runFont, runPaint, deviceProps, scalerContextFlags, m);
const ScopedStrikeForGPU gaugingStrike =
strikeSpec.findOrCreateScopedStrike(strikeCache);
const SkScalar maxDimension =
find_maximum_glyph_dimension(gaugingStrike.get(), glyphs);
if (maxDimension == 0) {
// Text Scalers don't create glyphs with a dimension larger than 65535. For very
// large sizes, this will cause all the dimensions to go to zero. Use 65535 as
// the dimension.
// TODO: There is a problem where a small character (say .) and a large
// character (say M) are in the same run. If the run is scaled to be very
// large, then the M may return 0 because its dimensions are > 65535, but
// the small character produces regular result because its largest dimension
// is < 65535. This will create an improper scale factor causing the M to be
// too large to fit in the atlas. Tracked by skia:13714.
return 65535.0f;
}
return maxDimension;
};
// Condition the creationMatrix so that glyphs fit in the atlas.
for (SkScalar maxDimension = maxGlyphDimension(creationMatrix);
maxDimension <= 0 || kMaxBilerpAtlasDimension < maxDimension;
maxDimension = maxGlyphDimension(creationMatrix))
{
// The SkScalerContext has a limit of 65536 maximum dimension.
// reductionFactor will always be < 1 because
// maxDimension > kMaxBilerpAtlasDimension, and because maxDimension will always
// be an integer the reduction factor will always be at most 254 / 255.
SkScalar reductionFactor = kMaxBilerpAtlasDimension / maxDimension;
creationMatrix.postScale(reductionFactor, reductionFactor);
}
// Draw using the creationMatrix.
SkStrikeSpec strikeSpec = SkStrikeSpec::MakeTransformMask(
runFont, runPaint, deviceProps, scalerContextFlags, creationMatrix);
if constexpr (kTrace) {
msg.appendf("Transformed case:\n%s", strikeSpec.dump().c_str());
}
ScopedStrikeForGPU strike = strikeSpec.findOrCreateScopedStrike(strikeCache);
accepted->startSource(rejected->source());
if constexpr (kTrace) {
msg.appendf("glyphs:(x,y):\n %s\n", accepted->dumpInput().c_str());
}
SkRect creationBounds =
prepare_for_mask_drawing(strike.get(), creationMatrix, accepted, rejected);
rejected->flipRejectsToSource();
SkASSERT(rejected->source().empty());
if (creationBehavior == kAddSubRuns && !accepted->empty()) {
auto addGlyphsWithSameFormat =
[&](const SkZip<SkGlyphVariant, SkPoint>& acceptedGlyphsAndLocations,
MaskFormat format) {
container->fSubRuns.append(
TransformedMaskSubRun::Make(acceptedGlyphsAndLocations,
container->initialPosition(),
strike->strikePromise(),
creationMatrix,
creationBounds,
format,
alloc));
};
add_multi_mask_format(addGlyphsWithSameFormat,
accepted->acceptedWithMaskFormat());
}
}
}
if constexpr (kTrace) {
msg.appendf("End glyph run processing");
if (tag != nullptr) {
msg.appendf(" for %s ", tag);
}
SkDebugf("%s\n", msg.c_str());
}
return container;
}
#if SK_SUPPORT_GPU
void SubRunContainer::draw(SkCanvas* canvas,
const GrClip* clip,
const SkMatrixProvider& viewMatrix,
SkPoint drawOrigin,
const SkPaint& paint,
const SkRefCnt* subRunStorage,
skgpu::v1::SurfaceDrawContext* sdc) const {
for (auto& subRun : fSubRuns) {
subRun.draw(canvas, clip, viewMatrix, drawOrigin, paint, sk_ref_sp(subRunStorage), sdc);
}
}
#endif // SK_SUPPORT_GPU
#if defined(SK_GRAPHITE_ENABLED)
void SubRunContainer::draw(SkCanvas* canvas,
SkPoint drawOrigin,
const SkPaint& paint,
const SkRefCnt* subRunStorage,
skgpu::graphite::Device* device) const {
for (auto& subRun : fSubRuns) {
subRun.draw(canvas, drawOrigin, paint, sk_ref_sp(subRunStorage), device);
}
}
#endif
bool SubRunContainer::canReuse(const SkPaint& paint, const SkMatrix& positionMatrix) const {
for (const SubRun& subRun : fSubRuns) {
if (!subRun.canReuse(paint, positionMatrix)) {
return false;
}
}
return true;
}
} // namespace sktext::gpu