blob: df367292708e26f58643350f3ef1deccd0173078 [file] [log] [blame]
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/ganesh/gl/GrGLCaps.h"
#include <algorithm>
#include <memory>
#include "include/gpu/GrContextOptions.h"
#include "src/core/SkCompressedDataUtils.h"
#include "src/core/SkMathPriv.h"
#include "src/core/SkTSearch.h"
#include "src/gpu/ganesh/GrBackendUtils.h"
#include "src/gpu/ganesh/GrProgramDesc.h"
#include "src/gpu/ganesh/GrShaderCaps.h"
#include "src/gpu/ganesh/GrSurfaceProxyPriv.h"
#include "src/gpu/ganesh/GrTextureProxyPriv.h"
#include "src/gpu/ganesh/SkGr.h"
#include "src/gpu/ganesh/gl/GrGLContext.h"
#include "src/gpu/ganesh/gl/GrGLRenderTarget.h"
#include "src/gpu/ganesh/gl/GrGLTexture.h"
#if defined(SK_BUILD_FOR_IOS)
#include <TargetConditionals.h>
#endif
GrGLCaps::GrGLCaps(const GrContextOptions& contextOptions,
const GrGLContextInfo& ctxInfo,
const GrGLInterface* glInterface) : INHERITED(contextOptions) {
fStandard = ctxInfo.standard();
fPackFlipYSupport = false;
fTextureUsageSupport = false;
fImagingSupport = false;
fVertexArrayObjectSupport = false;
fDebugSupport = false;
fES2CompatibilitySupport = false;
fDrawRangeElementsSupport = false;
fBaseVertexBaseInstanceSupport = false;
fIsCoreProfile = false;
fBindFragDataLocationSupport = false;
fRectangleTextureSupport = false;
fBindUniformLocationSupport = false;
fMipmapLevelControlSupport = false;
fMipmapLodControlSupport = false;
fDoManualMipmapping = false;
fClearToBoundaryValuesIsBroken = false;
fClearTextureSupport = false;
fDrawArraysBaseVertexIsBroken = false;
fDisallowTexSubImageForUnormConfigTexturesEverBoundToFBO = false;
fUseDrawInsteadOfAllRenderTargetWrites = false;
fRequiresCullFaceEnableDisableWhenDrawingLinesAfterNonLines = false;
fDontSetBaseOrMaxLevelForExternalTextures = false;
fNeverDisableColorWrites = false;
fMustSetAnyTexParameterToEnableMipmapping = false;
fAllowBGRA8CopyTexSubImage = false;
fDisallowDynamicMSAA = false;
fMustResetBlendFuncBetweenDualSourceAndDisable = false;
fBindTexture0WhenChangingTextureFBOMultisampleCount = false;
fRebindColorAttachmentAfterCheckFramebufferStatus = false;
fProgramBinarySupport = false;
fProgramParameterSupport = false;
fSamplerObjectSupport = false;
fUseSamplerObjects = false;
fTextureSwizzleSupport = false;
fTiledRenderingSupport = false;
fFBFetchRequiresEnablePerSample = false;
fSRGBWriteControl = false;
fSkipErrorChecks = false;
fSupportsProtected = false;
fShaderCaps = std::make_unique<GrShaderCaps>();
this->init(contextOptions, ctxInfo, glInterface);
}
static bool angle_backend_is_d3d(GrGLANGLEBackend backend) {
return backend == GrGLANGLEBackend::kD3D9 || backend == GrGLANGLEBackend::kD3D11;
}
void GrGLCaps::init(const GrContextOptions& contextOptions,
const GrGLContextInfo& ctxInfo,
const GrGLInterface* gli) {
GrGLStandard standard = ctxInfo.standard();
// standard can be unused (optimized away) if SK_ASSUME_GL_ES is set
sk_ignore_unused_variable(standard);
GrGLVersion version = ctxInfo.version();
if (GR_IS_GR_GL(standard)) {
GrGLint max;
GR_GL_GetIntegerv(gli, GR_GL_MAX_FRAGMENT_UNIFORM_COMPONENTS, &max);
fMaxFragmentUniformVectors = max / 4;
if (version >= GR_GL_VER(3, 2)) {
GrGLint profileMask;
GR_GL_GetIntegerv(gli, GR_GL_CONTEXT_PROFILE_MASK, &profileMask);
fIsCoreProfile = SkToBool(profileMask & GR_GL_CONTEXT_CORE_PROFILE_BIT);
}
} else if (GR_IS_GR_GL_ES(standard) || GR_IS_GR_WEBGL(standard)) {
GR_GL_GetIntegerv(gli, GR_GL_MAX_FRAGMENT_UNIFORM_VECTORS,
&fMaxFragmentUniformVectors);
}
if (fDriverBugWorkarounds.max_fragment_uniform_vectors_32) {
fMaxFragmentUniformVectors = std::min(fMaxFragmentUniformVectors, 32);
}
GR_GL_GetIntegerv(gli, GR_GL_MAX_VERTEX_ATTRIBS, &fMaxVertexAttributes);
if (GR_IS_GR_GL(standard)) {
fWritePixelsRowBytesSupport = true;
fReadPixelsRowBytesSupport = true;
fPackFlipYSupport = false;
} else if (GR_IS_GR_GL_ES(standard)) {
fWritePixelsRowBytesSupport =
version >= GR_GL_VER(3, 0) || ctxInfo.hasExtension("GL_EXT_unpack_subimage");
fReadPixelsRowBytesSupport =
version >= GR_GL_VER(3, 0) || ctxInfo.hasExtension("GL_NV_pack_subimage");
fPackFlipYSupport =
ctxInfo.hasExtension("GL_ANGLE_pack_reverse_row_order");
} else if (GR_IS_GR_WEBGL(standard)) {
// WebGL 2.0 has these
fWritePixelsRowBytesSupport = version >= GR_GL_VER(2, 0);
fReadPixelsRowBytesSupport = version >= GR_GL_VER(2, 0);
}
fTransferPixelsToRowBytesSupport = fWritePixelsRowBytesSupport;
if (fDriverBugWorkarounds.pack_parameters_workaround_with_pack_buffer) {
// In some cases drivers handle copying the last row incorrectly
// when using GL_PACK_ROW_LENGTH. Chromium handles this by iterating
// through every row and conditionally clobbering that value, but
// Skia already has a scratch buffer workaround when pack row length
// is not supported, so just use that.
fReadPixelsRowBytesSupport = false;
}
fTextureUsageSupport = GR_IS_GR_GL_ES(standard) &&
ctxInfo.hasExtension("GL_ANGLE_texture_usage");
if (GR_IS_GR_GL(standard)) {
fTextureBarrierSupport = version >= GR_GL_VER(4,5) ||
ctxInfo.hasExtension("GL_ARB_texture_barrier") ||
ctxInfo.hasExtension("GL_NV_texture_barrier");
} else if (GR_IS_GR_GL_ES(standard)) {
fTextureBarrierSupport = ctxInfo.hasExtension("GL_NV_texture_barrier");
} else if (GR_IS_GR_WEBGL(standard)) {
fTextureBarrierSupport = false;
}
if (GR_IS_GR_GL(standard)) {
fSampleLocationsSupport = version >= GR_GL_VER(3,2) ||
ctxInfo.hasExtension("GL_ARB_texture_multisample");
} else if (GR_IS_GR_GL_ES(standard)) {
fSampleLocationsSupport = version >= GR_GL_VER(3,1);
} else if (GR_IS_GR_WEBGL(standard)) {
fSampleLocationsSupport = false;
}
fImagingSupport = GR_IS_GR_GL(standard) &&
ctxInfo.hasExtension("GL_ARB_imaging");
if (((GR_IS_GR_GL(standard) && version >= GR_GL_VER(4,3)) ||
(GR_IS_GR_GL_ES(standard) && version >= GR_GL_VER(3,0)) ||
ctxInfo.hasExtension("GL_ARB_invalidate_subdata"))) {
fInvalidateFBType = kInvalidate_InvalidateFBType;
} else if (ctxInfo.hasExtension("GL_EXT_discard_framebuffer")) {
fInvalidateFBType = kDiscard_InvalidateFBType;
}
// For future reference on Desktop GL, GL_PRIMITIVE_RESTART_FIXED_INDEX appears in 4.3, and
// GL_PRIMITIVE_RESTART (where the client must call glPrimitiveRestartIndex) appears in 3.1.
if (GR_IS_GR_GL_ES(standard)) {
// Primitive restart can cause a 3x slowdown on Adreno. Enable conservatively.
// FIXME: Primitive restart would likely be a win on iOS if we had an enum value for it.
if (ctxInfo.vendor() == GrGLVendor::kARM) {
fUsePrimitiveRestart = version >= GR_GL_VER(3,0);
}
}
if (ctxInfo.vendor() == GrGLVendor::kARM ||
ctxInfo.vendor() == GrGLVendor::kImagination ||
ctxInfo.vendor() == GrGLVendor::kQualcomm ) {
fPreferFullscreenClears = true;
}
if (GR_IS_GR_GL(standard)) {
fVertexArrayObjectSupport = version >= GR_GL_VER(3, 0) ||
ctxInfo.hasExtension("GL_ARB_vertex_array_object") ||
ctxInfo.hasExtension("GL_APPLE_vertex_array_object");
} else if (GR_IS_GR_GL_ES(standard)) {
fVertexArrayObjectSupport = version >= GR_GL_VER(3, 0) ||
ctxInfo.hasExtension("GL_OES_vertex_array_object");
} else if (GR_IS_GR_WEBGL(standard)) {
fVertexArrayObjectSupport = version >= GR_GL_VER(2, 0) ||
ctxInfo.hasExtension("GL_OES_vertex_array_object") ||
ctxInfo.hasExtension("OES_vertex_array_object");
}
if (GR_IS_GR_GL(standard) && version >= GR_GL_VER(4,3)) {
fDebugSupport = true;
} else if (GR_IS_GR_GL_ES(standard)) {
fDebugSupport = ctxInfo.hasExtension("GL_KHR_debug");
} else if (GR_IS_GR_WEBGL(standard)) {
fDebugSupport = false;
}
if (GR_IS_GR_GL(standard)) {
fES2CompatibilitySupport = ctxInfo.hasExtension("GL_ARB_ES2_compatibility");
}
else if (GR_IS_GR_GL_ES(standard)) {
fES2CompatibilitySupport = true;
} else if (GR_IS_GR_WEBGL(standard)) {
fES2CompatibilitySupport = true;
}
if (GR_IS_GR_GL(standard)) {
fClientCanDisableMultisample = true;
} else if (GR_IS_GR_GL_ES(standard)) {
fClientCanDisableMultisample = ctxInfo.hasExtension("GL_EXT_multisample_compatibility");
} else if (GR_IS_GR_WEBGL(standard)) {
fClientCanDisableMultisample = false;
}
if (GR_IS_GR_GL(standard)) {
// 3.1 has draw_instanced but not instanced_arrays, for the time being we only care about
// instanced arrays, but we could make this more granular if we wanted
fDrawInstancedSupport =
version >= GR_GL_VER(3, 2) ||
(ctxInfo.hasExtension("GL_ARB_draw_instanced") &&
ctxInfo.hasExtension("GL_ARB_instanced_arrays"));
} else if (GR_IS_GR_GL_ES(standard)) {
fDrawInstancedSupport =
version >= GR_GL_VER(3, 0) ||
(ctxInfo.hasExtension("GL_EXT_draw_instanced") &&
ctxInfo.hasExtension("GL_EXT_instanced_arrays")) ||
ctxInfo.hasExtension("GL_ANGLE_instanced_arrays");
} else if (GR_IS_GR_WEBGL(standard)) {
// WebGL 2.0 has DrawArraysInstanced and drawElementsInstanced
fDrawInstancedSupport = version >= GR_GL_VER(2, 0);
}
if (GR_IS_GR_GL(standard)) {
if (version >= GR_GL_VER(3, 0)) {
fBindFragDataLocationSupport = true;
}
} else if (GR_IS_GR_GL_ES(standard)) {
if (version >= GR_GL_VER(3, 0) && ctxInfo.hasExtension("GL_EXT_blend_func_extended")) {
fBindFragDataLocationSupport = true;
}
} else if (GR_IS_GR_WEBGL(standard)) {
fBindFragDataLocationSupport = false;
}
fBindUniformLocationSupport = ctxInfo.hasExtension("GL_CHROMIUM_bind_uniform_location");
if (GR_IS_GR_GL(standard)) {
if (version >= GR_GL_VER(3, 1) || ctxInfo.hasExtension("GL_ARB_texture_rectangle") ||
ctxInfo.hasExtension("GL_ANGLE_texture_rectangle")) {
fRectangleTextureSupport = true;
}
} else if (GR_IS_GR_GL_ES(standard)) {
fRectangleTextureSupport = ctxInfo.hasExtension("GL_ARB_texture_rectangle") ||
ctxInfo.hasExtension("GL_ANGLE_texture_rectangle");
} else if (GR_IS_GR_WEBGL(standard)) {
fRectangleTextureSupport = false;
}
// GrCaps defaults fClampToBorderSupport to true, so disable when unsupported
if (GR_IS_GR_GL(standard)) {
// Clamp to border added in 1.3
if (version < GR_GL_VER(1, 3) && !ctxInfo.hasExtension("GL_ARB_texture_border_clamp")) {
fClampToBorderSupport = false;
}
} else if (GR_IS_GR_GL_ES(standard)) {
// GLES didn't have clamp to border until 3.2, but provides several alternative extensions
if (version < GR_GL_VER(3, 2) && !ctxInfo.hasExtension("GL_EXT_texture_border_clamp") &&
!ctxInfo.hasExtension("GL_NV_texture_border_clamp") &&
!ctxInfo.hasExtension("GL_OES_texture_border_clamp")) {
fClampToBorderSupport = false;
}
} else if (GR_IS_GR_WEBGL(standard)) {
// WebGL appears to only have REPEAT, CLAMP_TO_EDGE and MIRRORED_REPEAT
fClampToBorderSupport = false;
}
if (GR_IS_GR_GL(standard)) {
if (version >= GR_GL_VER(3,3) || ctxInfo.hasExtension("GL_ARB_texture_swizzle")) {
fTextureSwizzleSupport = true;
}
} else if (GR_IS_GR_GL_ES(standard)) {
if (version >= GR_GL_VER(3,0)) {
fTextureSwizzleSupport = true;
}
} else if (GR_IS_GR_WEBGL(standard)) {
fTextureSwizzleSupport = false;
}
if (GR_IS_GR_GL(standard)) {
fMipmapLevelControlSupport = true;
fMipmapLodControlSupport = true;
} else if (GR_IS_GR_GL_ES(standard)) {
if (version >= GR_GL_VER(3,0)) {
fMipmapLevelControlSupport = true;
fMipmapLodControlSupport = true;
}
} else if (GR_IS_GR_WEBGL(standard)) {
fMipmapLevelControlSupport = false;
fMipmapLodControlSupport = false;
}
if ((GR_IS_GR_GL_ES(standard) || GR_IS_GR_GL(standard)) &&
ctxInfo.hasExtension("GL_ARB_invalidate_subdata")) {
fInvalidateBufferType = InvalidateBufferType::kInvalidate;
} else if (!GR_IS_GR_WEBGL(standard) && !ctxInfo.isOverCommandBuffer()) {
// Chrome's command buffer will push an array of zeros to a buffer if null is passed to
// glBufferData (to avoid letting an application see uninitialized memory). This is
// expensive so we avoid it. WebGL spec explicitly disallows null values.
fInvalidateBufferType = InvalidateBufferType::kNullData;
}
if (GR_IS_GR_GL(standard)) {
fClearTextureSupport = (version >= GR_GL_VER(4,4) ||
ctxInfo.hasExtension("GL_ARB_clear_texture"));
} else if (GR_IS_GR_GL_ES(standard)) {
fClearTextureSupport = ctxInfo.hasExtension("GL_EXT_clear_texture");
} else if (GR_IS_GR_WEBGL(standard)) {
fClearTextureSupport = false;
}
#if defined(SK_BUILD_FOR_ANDROID) && __ANDROID_API__ >= 26
fSupportsAHardwareBufferImages = true;
#endif
if (GR_IS_GR_GL(standard)) {
fSRGBWriteControl = version >= GR_GL_VER(3, 0) ||
ctxInfo.hasExtension("GL_ARB_framebuffer_sRGB") ||
ctxInfo.hasExtension("GL_EXT_framebuffer_sRGB");
} else if (GR_IS_GR_GL_ES(standard)) {
// ES through 3.2 requires EXT_srgb_write_control to support toggling
// sRGB writing for destinations.
fSRGBWriteControl = ctxInfo.hasExtension("GL_EXT_sRGB_write_control");
} // No WebGL support
fSkipErrorChecks = ctxInfo.isOverCommandBuffer();
if (GR_IS_GR_WEBGL(standard)) {
// Error checks are quite costly in webgl, especially in Chrome.
fSkipErrorChecks = true;
}
// When we are abandoning the context we cannot call into GL thus we should skip any sync work.
fMustSyncGpuDuringAbandon = false;
fSupportsProtected = [&]() {
if (!ctxInfo.hasExtension("GL_EXT_protected_textures")) {
return false;
}
GrGLint contextFlags;
GR_GL_GetIntegerv(gli, GR_GL_CONTEXT_FLAGS, &contextFlags);
return SkToBool(contextFlags & GR_GL_CONTEXT_FLAG_PROTECTED_CONTENT_BIT_EXT);
}();
/**************************************************************************
* GrShaderCaps fields
**************************************************************************/
// This must be called after fCoreProfile is set on the GrGLCaps
this->initGLSL(ctxInfo, gli);
GrShaderCaps* shaderCaps = fShaderCaps.get();
// Enable supported shader-related caps
if (GR_IS_GR_GL(standard)) {
shaderCaps->fDualSourceBlendingSupport =
(version >= GR_GL_VER(3, 3) ||
ctxInfo.hasExtension("GL_ARB_blend_func_extended")) &&
ctxInfo.glslGeneration() >= SkSL::GLSLGeneration::k130;
shaderCaps->fShaderDerivativeSupport = true;
shaderCaps->fIntegerSupport = version >= GR_GL_VER(3, 0) &&
ctxInfo.glslGeneration() >= SkSL::GLSLGeneration::k130;
shaderCaps->fNonsquareMatrixSupport =
ctxInfo.glslGeneration() >= SkSL::GLSLGeneration::k130;
shaderCaps->fInverseHyperbolicSupport =
ctxInfo.glslGeneration() >= SkSL::GLSLGeneration::k130;
} else if (GR_IS_GR_GL_ES(standard)) {
shaderCaps->fDualSourceBlendingSupport = ctxInfo.hasExtension("GL_EXT_blend_func_extended");
shaderCaps->fShaderDerivativeSupport = version >= GR_GL_VER(3, 0) ||
ctxInfo.hasExtension("GL_OES_standard_derivatives");
shaderCaps->fIntegerSupport =
// We use this value for GLSL ES 3.0.
version >= GR_GL_VER(3, 0) &&
ctxInfo.glslGeneration() >= SkSL::GLSLGeneration::k300es;
shaderCaps->fNonsquareMatrixSupport =
ctxInfo.glslGeneration() >= SkSL::GLSLGeneration::k300es;
shaderCaps->fInverseHyperbolicSupport =
ctxInfo.glslGeneration() >= SkSL::GLSLGeneration::k300es;
} else if (GR_IS_GR_WEBGL(standard)) {
shaderCaps->fShaderDerivativeSupport = version >= GR_GL_VER(2, 0) ||
ctxInfo.hasExtension("GL_OES_standard_derivatives") ||
ctxInfo.hasExtension("OES_standard_derivatives");
shaderCaps->fIntegerSupport = (version >= GR_GL_VER(2, 0));
shaderCaps->fNonsquareMatrixSupport =
ctxInfo.glslGeneration() >= SkSL::GLSLGeneration::k300es;
shaderCaps->fInverseHyperbolicSupport =
ctxInfo.glslGeneration() >= SkSL::GLSLGeneration::k300es;
}
if (ctxInfo.hasExtension("GL_NV_conservative_raster")) {
fConservativeRasterSupport = true;
}
if (GR_IS_GR_GL(standard)) {
fWireframeSupport = true;
}
if (GR_IS_GR_GL(standard)) {
shaderCaps->fRewriteSwitchStatements =
ctxInfo.glslGeneration() < SkSL::GLSLGeneration::k130; // introduced in GLSL 1.3
} else if (GR_IS_GR_GL_ES(standard)) {
shaderCaps->fRewriteSwitchStatements =
ctxInfo.glslGeneration() < SkSL::GLSLGeneration::k300es; // introduced in GLSL ES3
} else if (GR_IS_GR_WEBGL(standard)) {
shaderCaps->fRewriteSwitchStatements = version < GR_GL_VER(2, 0); // introduced in WebGL 2
}
// Protect ourselves against tracking huge amounts of texture state.
static const uint8_t kMaxSaneSamplers = 32;
GrGLint maxSamplers;
GR_GL_GetIntegerv(gli, GR_GL_MAX_TEXTURE_IMAGE_UNITS, &maxSamplers);
shaderCaps->fMaxFragmentSamplers = std::min<GrGLint>(kMaxSaneSamplers, maxSamplers);
// SGX and Mali GPUs have tiled architectures that have trouble with frequently changing VBOs.
// We've measured a performance increase using non-VBO vertex data for dynamic content on these
// GPUs. Perhaps we should read the renderer string and limit this decision to specific GPU
// families rather than basing it on the vendor alone.
// Angle doesn't support client side buffers. The Chrome command buffer blocks the use of client
// side buffers (but may emulate VBOs with them). Client side buffers are not allowed in core
// profiles.
if (GR_IS_GR_GL(standard) || GR_IS_GR_GL_ES(standard)) {
if (ctxInfo.angleBackend() == GrGLANGLEBackend::kUnknown &&
!ctxInfo.isOverCommandBuffer() &&
!fIsCoreProfile &&
(ctxInfo.vendor() == GrGLVendor::kARM ||
ctxInfo.vendor() == GrGLVendor::kImagination ||
ctxInfo.vendor() == GrGLVendor::kQualcomm)) {
fPreferClientSideDynamicBuffers = true;
}
} // No client side arrays in WebGL https://www.khronos.org/registry/webgl/specs/1.0/#6.2
if (!contextOptions.fAvoidStencilBuffers) {
// To reduce surface area, if we avoid stencil buffers, we also disable MSAA.
this->initFSAASupport(contextOptions, ctxInfo, gli);
this->initStencilSupport(ctxInfo);
}
// Setup blit framebuffer
if (GR_IS_GR_GL(standard)) {
if (version >= GR_GL_VER(3,0) ||
ctxInfo.hasExtension("GL_ARB_framebuffer_object") ||
ctxInfo.hasExtension("GL_EXT_framebuffer_blit")) {
fBlitFramebufferFlags = 0;
}
} else if (GR_IS_GR_GL_ES(standard)) {
if (version >= GR_GL_VER(3, 0) ||
ctxInfo.hasExtension("GL_NV_framebuffer_blit")) {
fBlitFramebufferFlags = kNoFormatConversionForMSAASrc_BlitFramebufferFlag |
kNoMSAADst_BlitFramebufferFlag |
kRectsMustMatchForMSAASrc_BlitFramebufferFlag;
} else if (ctxInfo.hasExtension("GL_CHROMIUM_framebuffer_multisample") ||
ctxInfo.hasExtension("GL_ANGLE_framebuffer_blit")) {
// The CHROMIUM extension uses the ANGLE version of glBlitFramebuffer and includes its
// limitations.
fBlitFramebufferFlags = kNoScalingOrMirroring_BlitFramebufferFlag |
kResolveMustBeFull_BlitFrambufferFlag |
kNoMSAADst_BlitFramebufferFlag |
kNoFormatConversion_BlitFramebufferFlag |
kRectsMustMatchForMSAASrc_BlitFramebufferFlag;
}
} // No WebGL 1.0 support for BlitFramebuffer
this->initBlendEqationSupport(ctxInfo);
if (GR_IS_GR_GL(standard)) {
fMapBufferFlags = kCanMap_MapFlag; // we require VBO support and the desktop VBO
// extension includes glMapBuffer.
if (version >= GR_GL_VER(3, 0) || ctxInfo.hasExtension("GL_ARB_map_buffer_range")) {
fMapBufferFlags |= kSubset_MapFlag;
fMapBufferType = kMapBufferRange_MapBufferType;
} else {
fMapBufferType = kMapBuffer_MapBufferType;
}
} else if (GR_IS_GR_GL_ES(standard)) {
// Unextended GLES2 doesn't have any buffer mapping.
fMapBufferFlags = kNone_MapFlags;
if (ctxInfo.hasExtension("GL_CHROMIUM_map_sub")) {
fMapBufferFlags = kCanMap_MapFlag | kSubset_MapFlag;
fMapBufferType = kChromium_MapBufferType;
} else if (version >= GR_GL_VER(3, 0) || ctxInfo.hasExtension("GL_EXT_map_buffer_range")) {
fMapBufferFlags = kCanMap_MapFlag | kSubset_MapFlag;
fMapBufferType = kMapBufferRange_MapBufferType;
} else if (ctxInfo.hasExtension("GL_OES_mapbuffer")) {
fMapBufferFlags = kCanMap_MapFlag;
fMapBufferType = kMapBuffer_MapBufferType;
}
} else if (GR_IS_GR_WEBGL(standard)) {
// explicitly removed https://www.khronos.org/registry/webgl/specs/2.0/#5.14
fMapBufferFlags = kNone_MapFlags;
}
// Buffers have more restrictions in WebGL than GLES. For example,
// https://www.khronos.org/registry/webgl/specs/latest/2.0/#BUFFER_OBJECT_BINDING
// We therefore haven't attempted to support mapping or transfers between buffers and surfaces
// or between buffers.
if (GR_IS_GR_GL(standard)) {
if (version >= GR_GL_VER(2, 1) || ctxInfo.hasExtension("GL_ARB_pixel_buffer_object") ||
ctxInfo.hasExtension("GL_EXT_pixel_buffer_object")) {
fTransferFromBufferToTextureSupport = true;
fTransferFromSurfaceToBufferSupport = true;
fTransferBufferType = TransferBufferType::kARB_PBO;
}
} else if (GR_IS_GR_GL_ES(standard)) {
if (version >= GR_GL_VER(3, 0) ||
(ctxInfo.hasExtension("GL_NV_pixel_buffer_object") &&
// GL_EXT_unpack_subimage needed to support subtexture rectangles
ctxInfo.hasExtension("GL_EXT_unpack_subimage"))) {
fTransferFromBufferToTextureSupport = true;
fTransferFromSurfaceToBufferSupport = true;
if (version < GR_GL_VER(3, 0)) {
fTransferBufferType = TransferBufferType::kNV_PBO;
} else {
fTransferBufferType = TransferBufferType::kARB_PBO;
}
// TODO: get transfer buffers working in Chrome
// } else if (ctxInfo.hasExtension("GL_CHROMIUM_pixel_transfer_buffer_object")) {
// fTransferFromBufferToTextureSupport = false;
// fTransferFromSurfaceToBufferSupport = false;
// fTransferBufferType = TransferBufferType::kChromium;
}
}
if (GR_IS_GR_GL(standard) &&
(version >= GR_GL_VER(3, 1) || ctxInfo.hasExtension("GL_ARB_copy_buffer"))) {
fTransferFromBufferToBufferSupport = true;
} else if (GR_IS_GR_GL_ES(standard) &&
(version >= GR_GL_VER(3, 0) || ctxInfo.hasExtension("GL_NV_copy_buffer"))) {
fTransferFromBufferToBufferSupport = true;
}
// On many GPUs, map memory is very expensive, so we effectively disable it here by setting the
// threshold to the maximum unless the client gives us a hint that map memory is cheap.
if (fBufferMapThreshold < 0) {
#if 0
// We think mapping on Chromium will be cheaper once we know ahead of time how much space
// we will use for all GrMeshDrawOps. Right now we might wind up mapping a large buffer and
// using a small subset.
fBufferMapThreshold = ctxInfo.isOverCommandBuffer() ? 0 : SK_MaxS32;
#else
fBufferMapThreshold = SK_MaxS32;
#endif
}
if (GR_IS_GR_GL(standard)) {
fNPOTTextureTileSupport = true;
fMipmapSupport = true;
fAnisoSupport = version >= GR_GL_VER(4,6) ||
ctxInfo.hasExtension("GL_ARB_texture_filter_anisotropic") ||
ctxInfo.hasExtension("GL_EXT_texture_filter_anisotropic");
} else if (GR_IS_GR_GL_ES(standard)) {
// Unextended ES2 supports NPOT textures with clamp_to_edge and non-mip filters only
// ES3 has no limitations.
fNPOTTextureTileSupport = version >= GR_GL_VER(3,0) ||
ctxInfo.hasExtension("GL_OES_texture_npot");
// ES2 supports MIP mapping for POT textures but our caps don't allow for limited MIP
// support. The OES extension or ES 3.0 allow for MIPS on NPOT textures. So, apparently,
// does the undocumented GL_IMG_texture_npot extension. This extension does not seem to
// to alllow arbitrary wrap modes, however.
fMipmapSupport = fNPOTTextureTileSupport || ctxInfo.hasExtension("GL_IMG_texture_npot");
fAnisoSupport = ctxInfo.hasExtension("GL_EXT_texture_filter_anisotropic");
} else if (GR_IS_GR_WEBGL(standard)) {
// Texture access works in the WebGL 2.0 API as in the OpenGL ES 3.0 API
fNPOTTextureTileSupport = version >= GR_GL_VER(2,0);
// All mipmapping and all wrapping modes are supported for non-power-of-
// two images [in WebGL 2.0].
fMipmapSupport = fNPOTTextureTileSupport;
fAnisoSupport = ctxInfo.hasExtension("GL_EXT_texture_filter_anisotropic") ||
ctxInfo.hasExtension("EXT_texture_filter_anisotropic");
}
if (fAnisoSupport) {
GR_GL_GetFloatv(gli, GR_GL_MAX_TEXTURE_MAX_ANISOTROPY, &fMaxTextureMaxAnisotropy);
}
GR_GL_GetIntegerv(gli, GR_GL_MAX_TEXTURE_SIZE, &fMaxTextureSize);
GR_GL_GetIntegerv(gli, GR_GL_MAX_RENDERBUFFER_SIZE, &fMaxRenderTargetSize);
fMaxPreferredRenderTargetSize = fMaxRenderTargetSize;
if (ctxInfo.vendor() == GrGLVendor::kARM) {
// On Mali G71, RT's above 4k have been observed to incur a performance cost.
fMaxPreferredRenderTargetSize = std::min(4096, fMaxPreferredRenderTargetSize);
}
fGpuTracingSupport = ctxInfo.hasExtension("GL_EXT_debug_marker");
// Disable scratch texture reuse on Mali and Adreno devices
fReuseScratchTextures = (ctxInfo.vendor() != GrGLVendor::kARM);
#if 0
fReuseScratchBuffers = ctxInfo.vendor() != GrGLVendor::kARM
ctxInfo.vendor() != GrGLVendor::kQualcomm;
#endif
if (ctxInfo.hasExtension("GL_EXT_window_rectangles")) {
GR_GL_GetIntegerv(gli, GR_GL_MAX_WINDOW_RECTANGLES, &fMaxWindowRectangles);
}
#ifdef SK_BUILD_FOR_WIN
// We're assuming that on Windows Chromium we're using D3D ANGLE.
bool isD3DANGLE = angle_backend_is_d3d(ctxInfo.angleBackend()) ||
ctxInfo.isOverCommandBuffer();
// On ANGLE deferring flushes can lead to GPU starvation
fPreferVRAMUseOverFlushes = !isD3DANGLE;
#endif
if (ctxInfo.isOverCommandBuffer()) {
fMustClearUploadedBufferData = true;
}
// In a WASM build on Firefox, we see warnings like
// WebGL warning: texSubImage2D: This operation requires zeroing texture data. This is slow.
// WebGL warning: texSubImage2D: Texture has not been initialized prior to a partial upload,
// forcing the browser to clear it. This may be slow.
// Setting the initial clear seems to make those warnings go away and offers a substantial
// boost in performance in Firefox. Chrome sees a more modest increase.
if (GR_IS_GR_WEBGL(standard)) {
fShouldInitializeTextures = true;
}
if (GR_IS_GR_GL(standard)) {
// ARB allows mixed size FBO attachments, EXT does not.
if (version >= GR_GL_VER(3, 0) ||
ctxInfo.hasExtension("GL_ARB_framebuffer_object")) {
fOversizedStencilSupport = true;
} else {
SkASSERT(ctxInfo.hasExtension("GL_EXT_framebuffer_object"));
}
} else if (GR_IS_GR_GL_ES(standard)) {
// ES 3.0 supports mixed size FBO attachments, 2.0 does not.
fOversizedStencilSupport = version >= GR_GL_VER(3, 0);
} else if (GR_IS_GR_WEBGL(standard)) {
// WebGL 1.0 has some constraints for FBO attachments:
// https://www.khronos.org/registry/webgl/specs/1.0/index.html#6.6
// These constraints "no longer apply in WebGL 2"
fOversizedStencilSupport = version >= GR_GL_VER(2, 0);
}
if (GR_IS_GR_GL(standard)) {
fBaseVertexBaseInstanceSupport = version >= GR_GL_VER(4,2) ||
ctxInfo.hasExtension("GL_ARB_base_instance");
if (fBaseVertexBaseInstanceSupport) {
fNativeDrawIndirectSupport = version >= GR_GL_VER(4,0) ||
ctxInfo.hasExtension("GL_ARB_draw_indirect");
if (version >= GR_GL_VER(4,3) || ctxInfo.hasExtension("GL_ARB_multi_draw_indirect")) {
fMultiDrawType = MultiDrawType::kMultiDrawIndirect;
}
}
fDrawRangeElementsSupport = version >= GR_GL_VER(2,0);
} else if (GR_IS_GR_GL_ES(standard)) {
if (ctxInfo.hasExtension("GL_ANGLE_base_vertex_base_instance")) {
fBaseVertexBaseInstanceSupport = true;
fNativeDrawIndirectSupport = true;
fMultiDrawType = MultiDrawType::kANGLEOrWebGL;
// The indirect structs need to reside in CPU memory for the ANGLE version.
fUseClientSideIndirectBuffers = true;
} else {
fBaseVertexBaseInstanceSupport = ctxInfo.hasExtension("GL_EXT_base_instance");
// Don't support indirect draws on ES. They don't allow VAO 0.
//
// "An INVALID_OPERATION error is generated if zero is bound to VERTEX_ARRAY_BINDING,
// DRAW_INDIRECT_BUFFER or to any enabled vertex array."
//
// https://www.khronos.org/registry/OpenGL/specs/es/3.1/es_spec_3.1.pdf
}
fDrawRangeElementsSupport = version >= GR_GL_VER(3,0);
} else if (GR_IS_GR_WEBGL(standard)) {
fBaseVertexBaseInstanceSupport = ctxInfo.hasExtension(
"WEBGL_draw_instanced_base_vertex_base_instance");
if (fBaseVertexBaseInstanceSupport && ctxInfo.hasExtension(
"GL_WEBGL_multi_draw_instanced_base_vertex_base_instance")) {
fNativeDrawIndirectSupport = true;
fMultiDrawType = MultiDrawType::kANGLEOrWebGL;
}
// The indirect structs need to reside in CPU memory for the WebGL version.
fUseClientSideIndirectBuffers = true;
fDrawRangeElementsSupport = version >= GR_GL_VER(2,0);
}
// We used to disable this as a correctness workaround (http://anglebug.com/4536). Now it is
// disabled because of poor performance (http://skbug.com/11998).
if (ctxInfo.angleBackend() == GrGLANGLEBackend::kD3D11) {
fBaseVertexBaseInstanceSupport = false;
fNativeDrawIndirectSupport = false;
fMultiDrawType = MultiDrawType::kNone;
}
// We prefer GL sync objects but also support NV_fence_sync. The former can be
// used to implements GrFence and GrSemaphore. The latter only implements GrFence.
// TODO: support CHROMIUM_sync_point and maybe KHR_fence_sync
if (GR_IS_GR_WEBGL(standard)) {
// Only in WebGL 2.0
fSemaphoreSupport = fFenceSyncSupport = version >= GR_GL_VER(2, 0);
fFenceType = FenceType::kSyncObject;
} else if (GR_IS_GR_GL(standard) &&
(version >= GR_GL_VER(3, 2) || ctxInfo.hasExtension("GL_ARB_sync"))) {
fSemaphoreSupport = fFenceSyncSupport = true;
fFenceType = FenceType::kSyncObject;
} else if (GR_IS_GR_GL_ES(standard) &&
(version >= GR_GL_VER(3, 0) || ctxInfo.hasExtension("GL_APPLE_sync"))) {
fSemaphoreSupport = fFenceSyncSupport = true;
fFenceType = FenceType::kSyncObject;
} else if (ctxInfo.hasExtension("GL_NV_fence")) {
// This extension can exist in GL and GL ES. We have it last because we prefer the
// standard GLsync object implementation which also supports GPU semaphore semantics.
fFenceSyncSupport = true;
fFenceType = FenceType::kNVFence;
}
// Safely moving textures between contexts requires semaphores.
fCrossContextTextureSupport = fSemaphoreSupport;
// Half float vertex attributes requires GL3 or ES3
// It can also work with OES_VERTEX_HALF_FLOAT, but that requires a different enum.
if (GR_IS_GR_GL(standard)) {
fHalfFloatVertexAttributeSupport = (version >= GR_GL_VER(3, 0));
} else if (GR_IS_GR_GL_ES(standard)) {
fHalfFloatVertexAttributeSupport = (version >= GR_GL_VER(3, 0));
} else if (GR_IS_GR_WEBGL(standard)) {
// This appears to be supported in 2.0, looking at the spec.
fHalfFloatVertexAttributeSupport = (version >= GR_GL_VER(2, 0));
}
fDynamicStateArrayGeometryProcessorTextureSupport = true;
if (GR_IS_GR_GL(standard)) {
fProgramBinarySupport = (version >= GR_GL_VER(4, 1));
fProgramParameterSupport = (version >= GR_GL_VER(4, 1));
} else if (GR_IS_GR_GL_ES(standard)) {
fProgramBinarySupport =
(version >= GR_GL_VER(3, 0)) || ctxInfo.hasExtension("GL_OES_get_program_binary");
fProgramParameterSupport = (version >= GR_GL_VER(3, 0));
} // Explicitly not supported in WebGL 2.0
// https://www.khronos.org/registry/webgl/specs/2.0/#5.4
if (fProgramBinarySupport) {
GrGLint count;
GR_GL_GetIntegerv(gli, GR_GL_NUM_PROGRAM_BINARY_FORMATS, &count);
if (count > 0) {
fProgramBinaryFormats.resize_back(count);
GR_GL_GetIntegerv(gli, GR_GL_PROGRAM_BINARY_FORMATS,
reinterpret_cast<GrGLint*>(fProgramBinaryFormats.data()));
} else {
fProgramBinarySupport = false;
}
}
if (GR_IS_GR_GL(standard)) {
fSamplerObjectSupport =
version >= GR_GL_VER(3,3) || ctxInfo.hasExtension("GL_ARB_sampler_objects");
} else if (GR_IS_GR_GL_ES(standard)) {
fSamplerObjectSupport = version >= GR_GL_VER(3,0);
} else if (GR_IS_GR_WEBGL(standard)) {
fSamplerObjectSupport = version >= GR_GL_VER(2,0);
}
// We currently use sampler objects whenever they are available.
fUseSamplerObjects = fSamplerObjectSupport;
if (GR_IS_GR_GL_ES(standard)) {
fTiledRenderingSupport = ctxInfo.hasExtension("GL_QCOM_tiled_rendering");
}
if (ctxInfo.vendor() == GrGLVendor::kARM) {
fShouldCollapseSrcOverToSrcWhenAble = true;
}
#ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK
if (ctxInfo.renderer() == GrGLRenderer::kPowerVRRogue) {
// https://b/195281495
// The TecnoSpark 3 Pro with a PowerVR GE8300 seems to have a steep dithering performance
// cliff in the Android Framework
fAvoidDithering = true;
}
#endif
FormatWorkarounds formatWorkarounds;
if (!contextOptions.fDisableDriverCorrectnessWorkarounds) {
this->applyDriverCorrectnessWorkarounds(ctxInfo, contextOptions, gli, shaderCaps,
&formatWorkarounds);
}
// Requires msaa support, ES compatibility have already been detected.
this->initFormatTable(ctxInfo, gli, formatWorkarounds);
this->finishInitialization(contextOptions);
// For now these two are equivalent but we could have dst read in shader via some other method.
shaderCaps->fDstReadInShaderSupport = shaderCaps->fFBFetchSupport;
}
const char* get_glsl_version_decl_string(GrGLStandard standard, SkSL::GLSLGeneration generation,
bool isCoreProfile) {
if (GR_IS_GR_GL(standard)) {
switch (generation) {
case SkSL::GLSLGeneration::k110:
return "#version 110\n";
case SkSL::GLSLGeneration::k130:
return "#version 130\n";
case SkSL::GLSLGeneration::k140:
return "#version 140\n";
case SkSL::GLSLGeneration::k150:
if (isCoreProfile) {
return "#version 150\n";
} else {
return "#version 150 compatibility\n";
}
case SkSL::GLSLGeneration::k330:
if (isCoreProfile) {
return "#version 330\n";
} else {
return "#version 330 compatibility\n";
}
case SkSL::GLSLGeneration::k400:
if (isCoreProfile) {
return "#version 400\n";
} else {
return "#version 400 compatibility\n";
}
case SkSL::GLSLGeneration::k420:
if (isCoreProfile) {
return "#version 420\n";
} else {
return "#version 420 compatibility\n";
}
default:
break;
}
} else if (GR_IS_GR_GL_ES(standard) || GR_IS_GR_WEBGL(standard)) {
switch (generation) {
case SkSL::GLSLGeneration::k100es:
return "#version 100\n";
case SkSL::GLSLGeneration::k300es:
return "#version 300 es\n";
case SkSL::GLSLGeneration::k310es:
return "#version 310 es\n";
case SkSL::GLSLGeneration::k320es:
return "#version 320 es\n";
default:
break;
}
}
return "<no version>";
}
bool is_float_fp32(const GrGLContextInfo& ctxInfo, const GrGLInterface* gli, GrGLenum precision) {
if (GR_IS_GR_GL(ctxInfo.standard()) &&
ctxInfo.version() < GR_GL_VER(4,1) &&
!ctxInfo.hasExtension("GL_ARB_ES2_compatibility")) {
// We're on a desktop GL that doesn't have precision info. Assume they're all 32bit float.
return true;
}
// glGetShaderPrecisionFormat doesn't accept GL_GEOMETRY_SHADER as a shader type. Hopefully the
// geometry shaders don't have lower precision than vertex and fragment.
for (GrGLenum shader : {GR_GL_FRAGMENT_SHADER, GR_GL_VERTEX_SHADER}) {
GrGLint range[2];
GrGLint bits;
GR_GL_GetShaderPrecisionFormat(gli, shader, precision, range, &bits);
if (range[0] < 127 || range[1] < 127 || bits < 23) {
return false;
}
}
return true;
}
void GrGLCaps::initGLSL(const GrGLContextInfo& ctxInfo, const GrGLInterface* gli) {
GrGLStandard standard = ctxInfo.standard();
GrGLVersion version = ctxInfo.version();
/**************************************************************************
* Caps specific to GrShaderCaps
**************************************************************************/
GrShaderCaps* shaderCaps = fShaderCaps.get();
shaderCaps->fGLSLGeneration = ctxInfo.glslGeneration();
if (GR_IS_GR_GL_ES(standard)) {
// fFBFetchRequiresEnablePerSample is not a shader cap but is initialized below to keep it
// with related FB fetch logic.
if (ctxInfo.hasExtension("GL_EXT_shader_framebuffer_fetch")) {
shaderCaps->fFBFetchNeedsCustomOutput = (version >= GR_GL_VER(3, 0));
shaderCaps->fFBFetchSupport = true;
shaderCaps->fFBFetchColorName = "gl_LastFragData[0]";
shaderCaps->fFBFetchExtensionString = "GL_EXT_shader_framebuffer_fetch";
fFBFetchRequiresEnablePerSample = false;
} else if (ctxInfo.hasExtension("GL_NV_shader_framebuffer_fetch")) {
// Actually, we haven't seen an ES3.0 device with this extension yet, so we don't know.
shaderCaps->fFBFetchNeedsCustomOutput = false;
shaderCaps->fFBFetchSupport = true;
shaderCaps->fFBFetchColorName = "gl_LastFragData[0]";
shaderCaps->fFBFetchExtensionString = "GL_NV_shader_framebuffer_fetch";
fFBFetchRequiresEnablePerSample = false;
} else if (ctxInfo.hasExtension("GL_ARM_shader_framebuffer_fetch")) {
// The arm extension also requires an additional flag which we will set onResetContext.
shaderCaps->fFBFetchNeedsCustomOutput = false;
shaderCaps->fFBFetchSupport = true;
shaderCaps->fFBFetchColorName = "gl_LastFragColorARM";
shaderCaps->fFBFetchExtensionString = "GL_ARM_shader_framebuffer_fetch";
fFBFetchRequiresEnablePerSample = true;
}
shaderCaps->fUsesPrecisionModifiers = true;
} else if (GR_IS_GR_GL(standard)) {
if (ctxInfo.hasExtension("GL_EXT_shader_framebuffer_fetch")) {
shaderCaps->fFBFetchNeedsCustomOutput = (version >= GR_GL_VER(3, 0));
shaderCaps->fFBFetchSupport = true;
shaderCaps->fFBFetchColorName = "gl_LastFragData[0]";
shaderCaps->fFBFetchExtensionString = "GL_EXT_shader_framebuffer_fetch";
fFBFetchRequiresEnablePerSample = false;
}
} else if (GR_IS_GR_WEBGL(standard)) {
shaderCaps->fUsesPrecisionModifiers = true;
}
if (GR_IS_GR_GL(standard)) {
shaderCaps->fFlatInterpolationSupport =
ctxInfo.glslGeneration() >= SkSL::GLSLGeneration::k130;
} else if (GR_IS_GR_GL_ES(standard) || GR_IS_GR_WEBGL(standard)) {
shaderCaps->fFlatInterpolationSupport =
ctxInfo.glslGeneration() >= SkSL::GLSLGeneration::k300es;
} // not sure for WebGL
// Flat interpolation appears to be slow on Qualcomm GPUs (tested Adreno 405 and 530).
// Avoid on ANGLE too, it inserts a geometry shader into the pipeline to implement flat interp.
// Is this only true on ANGLE's D3D backends or also on the GL backend?
shaderCaps->fPreferFlatInterpolation = shaderCaps->fFlatInterpolationSupport &&
ctxInfo.vendor() != GrGLVendor::kQualcomm &&
!angle_backend_is_d3d(ctxInfo.angleBackend());
if (GR_IS_GR_GL(standard)) {
shaderCaps->fNoPerspectiveInterpolationSupport =
ctxInfo.glslGeneration() >= SkSL::GLSLGeneration::k130;
} else if (GR_IS_GR_GL_ES(standard)) {
if (ctxInfo.hasExtension("GL_NV_shader_noperspective_interpolation") &&
ctxInfo.glslGeneration() >= SkSL::GLSLGeneration::k300es) {
shaderCaps->fNoPerspectiveInterpolationSupport = true;
shaderCaps->fNoPerspectiveInterpolationExtensionString =
"GL_NV_shader_noperspective_interpolation";
}
} // Not sure for WebGL
if (GR_IS_GR_GL(standard)) {
shaderCaps->fSampleMaskSupport = ctxInfo.glslGeneration() >= SkSL::GLSLGeneration::k400;
} else if (GR_IS_GR_GL_ES(standard)) {
if (ctxInfo.glslGeneration() >= SkSL::GLSLGeneration::k320es) {
shaderCaps->fSampleMaskSupport = true;
} else if (ctxInfo.hasExtension("GL_OES_sample_variables")) {
shaderCaps->fSampleMaskSupport = true;
shaderCaps->fSampleVariablesExtensionString = "GL_OES_sample_variables";
}
}
shaderCaps->fVersionDeclString = get_glsl_version_decl_string(standard,
shaderCaps->fGLSLGeneration,
fIsCoreProfile);
if (GR_IS_GR_GL_ES(standard) || GR_IS_GR_WEBGL(standard)) {
if (SkSL::GLSLGeneration::k100es == shaderCaps->fGLSLGeneration) {
shaderCaps->fShaderDerivativeExtensionString = "GL_OES_standard_derivatives";
}
} // WebGL might have to check for OES_standard_derivatives
if (GR_IS_GR_GL_ES(standard)) {
shaderCaps->fSecondaryOutputExtensionString = "GL_EXT_blend_func_extended";
}
if (ctxInfo.hasExtension("GL_OES_EGL_image_external")) {
if (ctxInfo.glslGeneration() == SkSL::GLSLGeneration::k100es) {
shaderCaps->fExternalTextureSupport = true;
shaderCaps->fExternalTextureExtensionString = "GL_OES_EGL_image_external";
} else if (ctxInfo.hasExtension("GL_OES_EGL_image_external_essl3") ||
ctxInfo.hasExtension("OES_EGL_image_external_essl3")) {
// At least one driver has been found that has this extension without the "GL_" prefix.
shaderCaps->fExternalTextureSupport = true;
shaderCaps->fExternalTextureExtensionString = "GL_OES_EGL_image_external_essl3";
}
}
if (GR_IS_GR_GL(standard)) {
shaderCaps->fVertexIDSupport = true;
} else if (GR_IS_GR_GL_ES(standard) || GR_IS_GR_WEBGL(standard)) {
shaderCaps->fVertexIDSupport = ctxInfo.glslGeneration() >= SkSL::GLSLGeneration::k300es;
}
// isinf() exists in GLSL 1.3 and above, but hardware without proper IEEE support is allowed to
// always return false, so it's potentially meaningless. In GLSL 3.3 and GLSL ES3+, isinf() is
// required to actually identify infinite values. (GPUs are not required to _produce_ infinite
// values via operations like `num / 0.0` until GLSL 4.1.)
shaderCaps->fInfinitySupport = (ctxInfo.glslGeneration() >= SkSL::GLSLGeneration::k330);
if (GR_IS_GR_GL(standard)) {
shaderCaps->fNonconstantArrayIndexSupport = true;
} else if (GR_IS_GR_GL_ES(standard) || GR_IS_GR_WEBGL(standard)) {
shaderCaps->fNonconstantArrayIndexSupport =
(ctxInfo.glslGeneration() >= SkSL::GLSLGeneration::k300es);
}
if (GR_IS_GR_GL(standard)) {
shaderCaps->fBitManipulationSupport =
ctxInfo.glslGeneration() >= SkSL::GLSLGeneration::k400;
} else if (GR_IS_GR_GL_ES(standard) || GR_IS_GR_WEBGL(standard)) {
shaderCaps->fBitManipulationSupport =
ctxInfo.glslGeneration() >= SkSL::GLSLGeneration::k310es;
}
shaderCaps->fFloatIs32Bits = is_float_fp32(ctxInfo, gli, GR_GL_HIGH_FLOAT);
shaderCaps->fHalfIs32Bits = is_float_fp32(ctxInfo, gli, GR_GL_MEDIUM_FLOAT);
shaderCaps->fHasLowFragmentPrecision = ctxInfo.renderer() == GrGLRenderer::kMali4xx;
if (GR_IS_GR_GL(standard)) {
shaderCaps->fBuiltinFMASupport =
ctxInfo.glslGeneration() >= SkSL::GLSLGeneration::k400;
} else if (GR_IS_GR_GL_ES(standard)) {
shaderCaps->fBuiltinFMASupport =
ctxInfo.glslGeneration() >= SkSL::GLSLGeneration::k320es;
}
shaderCaps->fBuiltinDeterminantSupport = ctxInfo.glslGeneration() >= SkSL::GLSLGeneration::k150;
}
void GrGLCaps::initFSAASupport(const GrContextOptions& contextOptions,
const GrGLContextInfo& ctxInfo, const GrGLInterface* gli) {
if (GR_IS_GR_GL(ctxInfo.standard())) {
if (ctxInfo.version() >= GR_GL_VER(3,0) ||
ctxInfo.hasExtension("GL_ARB_framebuffer_object")) {
fMSFBOType = kStandard_MSFBOType;
} else if (ctxInfo.hasExtension("GL_EXT_framebuffer_multisample") &&
ctxInfo.hasExtension("GL_EXT_framebuffer_blit")) {
fMSFBOType = kStandard_MSFBOType;
}
} else if (GR_IS_GR_GL_ES(ctxInfo.standard())) {
// We prefer multisampled-render-to-texture extensions over ES3 MSAA because we've observed
// ES3 driver bugs on at least one device with a tiled GPU (N10).
if (ctxInfo.hasExtension("GL_EXT_multisampled_render_to_texture")) {
fMSFBOType = kES_EXT_MsToTexture_MSFBOType;
fMSAAResolvesAutomatically = true;
} else if (ctxInfo.hasExtension("GL_IMG_multisampled_render_to_texture")) {
fMSFBOType = kES_IMG_MsToTexture_MSFBOType;
fMSAAResolvesAutomatically = true;
} else if (ctxInfo.version() >= GR_GL_VER(3,0)) {
fMSFBOType = kStandard_MSFBOType;
} else if (ctxInfo.hasExtension("GL_CHROMIUM_framebuffer_multisample")) {
fMSFBOType = kStandard_MSFBOType;
} else if (ctxInfo.hasExtension("GL_ANGLE_framebuffer_multisample")) {
fMSFBOType = kStandard_MSFBOType;
} else if (ctxInfo.hasExtension("GL_APPLE_framebuffer_multisample")) {
fMSFBOType = kES_Apple_MSFBOType;
}
} else if (GR_IS_GR_WEBGL(ctxInfo.standard())) {
// No support in WebGL 1, but there is for 2.0
if (ctxInfo.version() >= GR_GL_VER(2,0)) {
fMSFBOType = kStandard_MSFBOType;
} else {
fMSFBOType = kNone_MSFBOType;
}
}
}
void GrGLCaps::initBlendEqationSupport(const GrGLContextInfo& ctxInfo) {
GrShaderCaps* shaderCaps = static_cast<GrShaderCaps*>(fShaderCaps.get());
bool layoutQualifierSupport = false;
if ((GR_IS_GR_GL(fStandard) && shaderCaps->fGLSLGeneration >= SkSL::GLSLGeneration::k140) ||
(GR_IS_GR_GL_ES(fStandard) && shaderCaps->fGLSLGeneration >= SkSL::GLSLGeneration::k300es)){
layoutQualifierSupport = true;
} else if (GR_IS_GR_WEBGL(fStandard)) {
return;
}
if (ctxInfo.hasExtension("GL_NV_blend_equation_advanced_coherent")) {
fBlendEquationSupport = kAdvancedCoherent_BlendEquationSupport;
shaderCaps->fAdvBlendEqInteraction = GrShaderCaps::kAutomatic_AdvBlendEqInteraction;
} else if (ctxInfo.hasExtension("GL_KHR_blend_equation_advanced_coherent") &&
layoutQualifierSupport) {
fBlendEquationSupport = kAdvancedCoherent_BlendEquationSupport;
shaderCaps->fAdvBlendEqInteraction = GrShaderCaps::kGeneralEnable_AdvBlendEqInteraction;
} else if (ctxInfo.hasExtension("GL_NV_blend_equation_advanced")) {
fBlendEquationSupport = kAdvanced_BlendEquationSupport;
shaderCaps->fAdvBlendEqInteraction = GrShaderCaps::kAutomatic_AdvBlendEqInteraction;
} else if (ctxInfo.hasExtension("GL_KHR_blend_equation_advanced") && layoutQualifierSupport) {
fBlendEquationSupport = kAdvanced_BlendEquationSupport;
shaderCaps->fAdvBlendEqInteraction = GrShaderCaps::kGeneralEnable_AdvBlendEqInteraction;
}
}
void GrGLCaps::initStencilSupport(const GrGLContextInfo& ctxInfo) {
// Build up list of legal stencil formats (though perhaps not supported on
// the particular gpu/driver) from most preferred to least.
// We push back stencil formats onto the fStencilFormats array in order of most preferred to
// least preferred.
if (GR_IS_GR_GL(ctxInfo.standard())) {
bool supportsPackedDS =
ctxInfo.version() >= GR_GL_VER(3,0) ||
ctxInfo.hasExtension("GL_EXT_packed_depth_stencil") ||
ctxInfo.hasExtension("GL_ARB_framebuffer_object");
// S1 thru S16 formats are in GL 3.0+, EXT_FBO, and ARB_FBO since we
// require FBO support we can expect these are legal formats and don't
// check.
fStencilFormats.push_back() = GrGLFormat::kSTENCIL_INDEX8;
fStencilFormats.push_back() = GrGLFormat::kSTENCIL_INDEX16;
if (supportsPackedDS) {
fStencilFormats.push_back() = GrGLFormat::kDEPTH24_STENCIL8;
}
} else if (GR_IS_GR_GL_ES(ctxInfo.standard())) {
// ES2 has STENCIL_INDEX8 without extensions but requires extensions
// for other formats.
fStencilFormats.push_back() = GrGLFormat::kSTENCIL_INDEX8;
if (ctxInfo.version() >= GR_GL_VER(3,0) ||
ctxInfo.hasExtension("GL_OES_packed_depth_stencil")) {
fStencilFormats.push_back() = GrGLFormat::kDEPTH24_STENCIL8;
}
} else if (GR_IS_GR_WEBGL(ctxInfo.standard())) {
fStencilFormats.push_back() = GrGLFormat::kSTENCIL_INDEX8;
if (ctxInfo.version() >= GR_GL_VER(2,0)) {
fStencilFormats.push_back() = GrGLFormat::kDEPTH24_STENCIL8;
}
}
}
#ifdef SK_ENABLE_DUMP_GPU
#include "src/utils/SkJSONWriter.h"
static const char* multi_draw_type_name(GrGLCaps::MultiDrawType multiDrawType) {
switch (multiDrawType) {
case GrGLCaps::MultiDrawType::kNone : return "kNone";
case GrGLCaps::MultiDrawType::kMultiDrawIndirect : return "kMultiDrawIndirect";
case GrGLCaps::MultiDrawType::kANGLEOrWebGL : return "kMultiDrawIndirect";
}
SkUNREACHABLE;
}
void GrGLCaps::onDumpJSON(SkJSONWriter* writer) const {
// We are called by the base class, which has already called beginObject(). We choose to nest
// all of our caps information in a named sub-object.
writer->beginObject("GL caps");
writer->beginArray("Stencil Formats");
for (int i = 0; i < fStencilFormats.count(); ++i) {
writer->beginObject(nullptr, false);
writer->appendS32("stencil bits", GrGLFormatStencilBits(fStencilFormats[i]));
writer->appendS32("total bytes", GrGLFormatBytesPerBlock(fStencilFormats[i]));
writer->endObject();
}
writer->endArray();
auto msfboStr = [&] {
switch (fMSFBOType) {
case kNone_MSFBOType: return "None";
case kStandard_MSFBOType: return "Standard";
case kES_Apple_MSFBOType: return "Apple";
case kES_IMG_MsToTexture_MSFBOType: return "IMG MS To Texture";
case kES_EXT_MsToTexture_MSFBOType: return "EXT MS To Texture";
}
SkUNREACHABLE;
};
auto invalidateFBTypeStr = [&] {
switch (fInvalidateFBType) {
case kNone_InvalidateFBType: return "None";
case kDiscard_InvalidateFBType: return "Discard";
case kInvalidate_InvalidateFBType: return "Invalidate";
}
SkUNREACHABLE;
};
auto invalidateBufferTypeStr = [&] {
switch (fInvalidateBufferType) {
case InvalidateBufferType::kNone: return "None";
case InvalidateBufferType::kNullData: return "Null data hint";
case InvalidateBufferType::kInvalidate: return "Invalidate";
}
SkUNREACHABLE;
};
auto mapBufferTypeStr = [&] {
switch (fMapBufferType) {
case kNone_MapBufferType: return "None";
case kMapBuffer_MapBufferType: return "MapBuffer";
case kMapBufferRange_MapBufferType: return "MapBufferRange";
case kChromium_MapBufferType: return "Chromium";
}
SkUNREACHABLE;
};
writer->appendBool("Core Profile", fIsCoreProfile);
writer->appendCString("MSAA Type", msfboStr());
writer->appendCString("Invalidate FB Type", invalidateFBTypeStr());
writer->appendCString("Invalidate Buffer Type", invalidateBufferTypeStr());
writer->appendCString("Map Buffer Type", mapBufferTypeStr());
writer->appendCString("Multi Draw Type", multi_draw_type_name(fMultiDrawType));
writer->appendS32("Max FS Uniform Vectors", fMaxFragmentUniformVectors);
writer->appendBool("Pack Flip Y support", fPackFlipYSupport);
writer->appendBool("Texture Usage support", fTextureUsageSupport);
writer->appendBool("GL_ARB_imaging support", fImagingSupport);
writer->appendBool("Vertex array object support", fVertexArrayObjectSupport);
writer->appendBool("Debug support", fDebugSupport);
writer->appendBool("ES2 compatibility support", fES2CompatibilitySupport);
writer->appendBool("drawRangeElements support", fDrawRangeElementsSupport);
writer->appendBool("Base (vertex base) instance support", fBaseVertexBaseInstanceSupport);
writer->appendBool("Bind uniform location support", fBindUniformLocationSupport);
writer->appendBool("Rectangle texture support", fRectangleTextureSupport);
writer->appendBool("Mipmap LOD control support", fMipmapLodControlSupport);
writer->appendBool("Mipmap level control support", fMipmapLevelControlSupport);
writer->appendBool("Clear texture support", fClearTextureSupport);
writer->appendBool("Program binary support", fProgramBinarySupport);
writer->appendBool("Program parameters support", fProgramParameterSupport);
writer->appendBool("Sampler object support", fSamplerObjectSupport);
writer->appendBool("Using sampler objects", fUseSamplerObjects);
writer->appendBool("Texture swizzle support", fTextureSwizzleSupport);
writer->appendBool("Tiled rendering support", fTiledRenderingSupport);
writer->appendBool("FB fetch requires enable per sample", fFBFetchRequiresEnablePerSample);
writer->appendBool("sRGB Write Control", fSRGBWriteControl);
writer->appendBool("Intermediate texture for partial updates of unorm textures ever bound to FBOs",
fDisallowTexSubImageForUnormConfigTexturesEverBoundToFBO);
writer->appendBool("Intermediate texture for all updates of textures bound to FBOs",
fUseDrawInsteadOfAllRenderTargetWrites);
writer->appendBool("Max instances per draw without crashing (or zero)",
fMaxInstancesPerDrawWithoutCrashing);
writer->beginArray("formats");
for (int i = 0; i < kGrGLColorFormatCount; ++i) {
writer->beginObject(nullptr, false);
writer->appendHexU32("flags", fFormatTable[i].fFlags);
writer->appendHexU32("f_type", (uint32_t)fFormatTable[i].fFormatType);
writer->appendHexU32("c_internal", fFormatTable[i].fCompressedInternalFormat);
writer->appendHexU32("i_for_teximage", fFormatTable[i].fInternalFormatForTexImageOrStorage);
writer->appendHexU32("i_for_renderbuffer", fFormatTable[i].fInternalFormatForRenderbuffer);
writer->appendHexU32("default_ex_format", fFormatTable[i].fDefaultExternalFormat);
writer->appendHexU32("default_ex_type", fFormatTable[i].fDefaultExternalType);
writer->appendHexU32("default_color_type", (uint32_t)fFormatTable[i].fDefaultColorType);
writer->beginArray("surface color types");
for (int j = 0; j < fFormatTable[i].fColorTypeInfoCount; ++j) {
const auto& ctInfo = fFormatTable[i].fColorTypeInfos[j];
writer->beginObject(nullptr, false);
writer->appendHexU32("colorType", (uint32_t)ctInfo.fColorType);
writer->appendHexU32("flags", ctInfo.fFlags);
writer->beginArray("data color types");
for (int k = 0; k < ctInfo.fExternalIOFormatCount; ++k) {
const auto& ioInfo = ctInfo.fExternalIOFormats[k];
writer->beginObject(nullptr, false);
writer->appendHexU32("colorType", (uint32_t)ioInfo.fColorType);
writer->appendHexU32("ex_type", ioInfo.fExternalType);
writer->appendHexU32("ex_teximage", ioInfo.fExternalTexImageFormat);
writer->appendHexU32("ex_read", ioInfo.fExternalReadFormat);
writer->endObject();
}
writer->endArray();
writer->endObject();
}
writer->endArray();
writer->endObject();
}
writer->endArray();
writer->endObject();
}
#else
void GrGLCaps::onDumpJSON(SkJSONWriter* writer) const { }
#endif
void GrGLCaps::getTexImageExternalFormatAndType(GrGLFormat surfaceFormat, GrGLenum* externalFormat,
GrGLenum* externalType) const {
const auto& info = this->getFormatInfo(surfaceFormat);
*externalType = info.fDefaultExternalType;
*externalFormat = info.fDefaultExternalFormat;
}
void GrGLCaps::getTexSubImageDefaultFormatTypeAndColorType(GrGLFormat format,
GrGLenum* externalFormat,
GrGLenum* externalType,
GrColorType* colorType) const {
const auto& info = this->getFormatInfo(format);
*externalType = info.fDefaultExternalType;
*externalFormat = info.fDefaultExternalFormat;
*colorType = info.fDefaultColorType;
}
void GrGLCaps::getTexSubImageExternalFormatAndType(GrGLFormat surfaceFormat,
GrColorType surfaceColorType,
GrColorType memoryColorType,
GrGLenum* externalFormat,
GrGLenum* externalType) const {
this->getExternalFormat(surfaceFormat, surfaceColorType, memoryColorType,
kTexImage_ExternalFormatUsage, externalFormat, externalType);
}
void GrGLCaps::getReadPixelsFormat(GrGLFormat surfaceFormat, GrColorType surfaceColorType,
GrColorType memoryColorType, GrGLenum* externalFormat,
GrGLenum* externalType) const {
this->getExternalFormat(surfaceFormat, surfaceColorType, memoryColorType,
kReadPixels_ExternalFormatUsage, externalFormat, externalType);
}
void GrGLCaps::getExternalFormat(GrGLFormat surfaceFormat, GrColorType surfaceColorType,
GrColorType memoryColorType, ExternalFormatUsage usage,
GrGLenum* externalFormat, GrGLenum* externalType) const {
SkASSERT(externalFormat && externalType);
*externalFormat = this->getFormatInfo(surfaceFormat).externalFormat(
surfaceColorType, memoryColorType, usage);
*externalType = this->getFormatInfo(surfaceFormat).externalType(
surfaceColorType, memoryColorType);
}
void GrGLCaps::setStencilFormatIndexForFormat(GrGLFormat format, int index) {
SkASSERT(!this->hasStencilFormatBeenDeterminedForFormat(format));
this->getFormatInfo(format).fStencilFormatIndex =
index < 0 ? FormatInfo::kUnsupported_StencilFormatIndex : index;
}
void GrGLCaps::setColorTypeFormat(GrColorType colorType, GrGLFormat format) {
int idx = static_cast<int>(colorType);
SkASSERT(fColorTypeToFormatTable[idx] == GrGLFormat::kUnknown);
fColorTypeToFormatTable[idx] = format;
}
void GrGLCaps::initFormatTable(const GrGLContextInfo& ctxInfo, const GrGLInterface* gli,
const FormatWorkarounds& formatWorkarounds) {
GrGLStandard standard = ctxInfo.standard();
// standard can be unused (optimized away) if SK_ASSUME_GL_ES is set
sk_ignore_unused_variable(standard);
GrGLVersion version = ctxInfo.version();
uint32_t nonMSAARenderFlags = FormatInfo::kFBOColorAttachment_Flag;
uint32_t msaaRenderFlags = nonMSAARenderFlags;
if (kNone_MSFBOType != fMSFBOType) {
msaaRenderFlags |= FormatInfo::kFBOColorAttachmentWithMSAA_Flag;
}
bool texStorageSupported = false;
if (GR_IS_GR_GL(standard)) {
// The EXT version can apply to either GL or GLES.
texStorageSupported = version >= GR_GL_VER(4,2) ||
ctxInfo.hasExtension("GL_ARB_texture_storage") ||
ctxInfo.hasExtension("GL_EXT_texture_storage");
} else if (GR_IS_GR_GL_ES(standard)) {
texStorageSupported = version >= GR_GL_VER(3,0) ||
ctxInfo.hasExtension("GL_EXT_texture_storage");
} else if (GR_IS_GR_WEBGL(standard)) {
texStorageSupported = version >= GR_GL_VER(2,0);
}
if (fDriverBugWorkarounds.disable_texture_storage) {
texStorageSupported = false;
}
#ifdef SK_BUILD_FOR_ANDROID
// crbug.com/945506. Telemetry reported a memory usage regression for Android Go Chrome/WebView
// when using glTexStorage2D. This appears to affect OOP-R (so not just over command buffer).
if (!formatWorkarounds.fDontDisableTexStorageOnAndroid) {
texStorageSupported = false;
}
#endif
// ES 2.0 requires that the internal/external formats match so we can't use sized internal
// formats for glTexImage until ES 3.0. TODO: Support sized internal formats in WebGL2.
bool texImageSupportsSizedInternalFormat =
(GR_IS_GR_GL(standard) || (GR_IS_GR_GL_ES(standard) && version >= GR_GL_VER(3,0)));
// for now we don't support floating point MSAA on ES
uint32_t fpRenderFlags = (GR_IS_GR_GL(standard)) ? msaaRenderFlags : nonMSAARenderFlags;
for (int i = 0; i < kGrColorTypeCnt; ++i) {
fColorTypeToFormatTable[i] = GrGLFormat::kUnknown;
}
///////////////////////////////////////////////////////////////////////////
GrGLenum halfFloatType = GR_GL_HALF_FLOAT;
if ((GR_IS_GR_GL_ES(standard) && version < GR_GL_VER(3, 0)) ||
(GR_IS_GR_WEBGL(standard) && version < GR_GL_VER(2, 0))) {
halfFloatType = GR_GL_HALF_FLOAT_OES;
}
// Format: RGBA8
{
FormatInfo& info = this->getFormatInfo(GrGLFormat::kRGBA8);
info.fFormatType = FormatType::kNormalizedFixedPoint;
info.fInternalFormatForRenderbuffer = GR_GL_RGBA8;
info.fDefaultExternalFormat = GR_GL_RGBA;
info.fDefaultExternalType = GR_GL_UNSIGNED_BYTE;
info.fDefaultColorType = GrColorType::kRGBA_8888;
info.fFlags = FormatInfo::kTexturable_Flag | FormatInfo::kTransfers_Flag;
if (GR_IS_GR_GL(standard)) {
info.fFlags |= msaaRenderFlags;
} else if (GR_IS_GR_GL_ES(standard)) {
if (version >= GR_GL_VER(3,0) || ctxInfo.hasExtension("GL_OES_rgb8_rgba8") ||
ctxInfo.hasExtension("GL_ARM_rgba8")) {
info.fFlags |= msaaRenderFlags;
}
} else if (GR_IS_GR_WEBGL(standard)) {
info.fFlags |= msaaRenderFlags;
}
if (texStorageSupported) {
info.fFlags |= FormatInfo::kUseTexStorage_Flag;
info.fInternalFormatForTexImageOrStorage = GR_GL_RGBA8;
} else {
info.fInternalFormatForTexImageOrStorage =
texImageSupportsSizedInternalFormat ? GR_GL_RGBA8 : GR_GL_RGBA;
}
bool supportsBGRAColorType = GR_IS_GR_GL(standard) &&
(version >= GR_GL_VER(1, 2) || ctxInfo.hasExtension("GL_EXT_bgra"));
info.fColorTypeInfoCount = supportsBGRAColorType ? 3 : 2;
info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
int ctIdx = 0;
// Format: RGBA8, Surface: kRGBA_8888
{
auto& ctInfo = info.fColorTypeInfos[ctIdx++];
ctInfo.fColorType = GrColorType::kRGBA_8888;
ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
this->setColorTypeFormat(GrColorType::kRGBA_8888, GrGLFormat::kRGBA8);
// External IO ColorTypes:
ctInfo.fExternalIOFormatCount = 2;
ctInfo.fExternalIOFormats = std::make_unique<ColorTypeInfo::ExternalIOFormats[]>(
ctInfo.fExternalIOFormatCount);
int ioIdx = 0;
// Format: RGBA8, Surface: kRGBA_8888, Data: kRGBA_8888
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kRGBA_8888;
ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE;
ioFormat.fExternalTexImageFormat = GR_GL_RGBA;
ioFormat.fExternalReadFormat = GR_GL_RGBA;
}
// Format: RGBA8, Surface: kRGBA_8888, Data: kBGRA_8888
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kBGRA_8888;
ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE;
ioFormat.fExternalTexImageFormat = 0; // TODO: Enable this on non-ES GL
ioFormat.fExternalReadFormat =
formatWorkarounds.fDisallowBGRA8ReadPixels ? 0 : GR_GL_BGRA;
// Not guaranteed by ES/WebGL.
ioFormat.fRequiresImplementationReadQuery = !GR_IS_GR_GL(standard);
}
}
// Format: RGBA8, Surface: kBGRA_8888
if (supportsBGRAColorType) {
auto& ctInfo = info.fColorTypeInfos[ctIdx++];
ctInfo.fColorType = GrColorType::kBGRA_8888;
ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
this->setColorTypeFormat(GrColorType::kBGRA_8888, GrGLFormat::kRGBA8);
// External IO ColorTypes:
ctInfo.fExternalIOFormatCount = 2;
ctInfo.fExternalIOFormats = std::make_unique<ColorTypeInfo::ExternalIOFormats[]>(
ctInfo.fExternalIOFormatCount);
int ioIdx = 0;
// Format: RGBA8, Surface: kBGRA_8888, Data: kBGRA_8888
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kBGRA_8888;
ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE;
ioFormat.fExternalTexImageFormat = GR_GL_BGRA;
ioFormat.fExternalReadFormat =
formatWorkarounds.fDisallowBGRA8ReadPixels ? 0 : GR_GL_BGRA;
// Not guaranteed by ES/WebGL.
ioFormat.fRequiresImplementationReadQuery = !GR_IS_GR_GL(standard);
}
// Format: RGBA8, Surface: kBGRA_8888, Data: kRGBA_8888
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kRGBA_8888;
ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE;
ioFormat.fExternalTexImageFormat = 0;
ioFormat.fExternalReadFormat = GR_GL_RGBA;
}
}
// Format: RGBA8, Surface: kRGB_888x
{
auto& ctInfo = info.fColorTypeInfos[ctIdx++];
ctInfo.fColorType = GrColorType::kRGB_888x;
ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag;
ctInfo.fReadSwizzle = skgpu::Swizzle::RGB1();
// External IO ColorTypes:
ctInfo.fExternalIOFormatCount = 1;
ctInfo.fExternalIOFormats = std::make_unique<ColorTypeInfo::ExternalIOFormats[]>(
ctInfo.fExternalIOFormatCount);
int ioIdx = 0;
// Format: RGBA8, Surface: kRGB_888x, Data: kRGBA_888x
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kRGB_888x;
ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE;
ioFormat.fExternalTexImageFormat = GR_GL_RGBA;
ioFormat.fExternalReadFormat = GR_GL_RGBA;
}
}
}
// Format: R8
{
FormatInfo& info = this->getFormatInfo(GrGLFormat::kR8);
info.fFormatType = FormatType::kNormalizedFixedPoint;
info.fInternalFormatForRenderbuffer = GR_GL_R8;
info.fDefaultExternalFormat = GR_GL_RED;
info.fDefaultExternalType = GR_GL_UNSIGNED_BYTE;
info.fDefaultColorType = GrColorType::kR_8;
bool r8Support = false;
if (GR_IS_GR_GL(standard)) {
r8Support = version >= GR_GL_VER(3, 0) || ctxInfo.hasExtension("GL_ARB_texture_rg");
} else if (GR_IS_GR_GL_ES(standard)) {
r8Support = version >= GR_GL_VER(3, 0) || ctxInfo.hasExtension("GL_EXT_texture_rg");
} else if (GR_IS_GR_WEBGL(standard)) {
r8Support = ctxInfo.version() >= GR_GL_VER(2, 0);
}
if (formatWorkarounds.fDisallowR8ForPowerVRSGX54x) {
r8Support = false;
}
if (r8Support) {
info.fFlags |= FormatInfo::kTexturable_Flag
| FormatInfo::kTransfers_Flag
| msaaRenderFlags;
}
if (texStorageSupported) {
info.fFlags |= FormatInfo::kUseTexStorage_Flag;
info.fInternalFormatForTexImageOrStorage = GR_GL_R8;
} else {
info.fInternalFormatForTexImageOrStorage =
texImageSupportsSizedInternalFormat ? GR_GL_R8 : GR_GL_RED;
}
if (r8Support) {
info.fColorTypeInfoCount = 3;
info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
int ctIdx = 0;
// Format: R8, Surface: kR_8
{
auto& ctInfo = info.fColorTypeInfos[ctIdx++];
ctInfo.fColorType = GrColorType::kR_8;
ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
this->setColorTypeFormat(GrColorType::kR_8, GrGLFormat::kR8);
// External IO ColorTypes:
ctInfo.fExternalIOFormatCount = 2;
ctInfo.fExternalIOFormats = std::make_unique<ColorTypeInfo::ExternalIOFormats[]>(
ctInfo.fExternalIOFormatCount);
int ioIdx = 0;
// Format: R8, Surface: kR_8, Data: kR_8
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kR_8;
ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE;
ioFormat.fExternalTexImageFormat = GR_GL_RED;
ioFormat.fExternalReadFormat = GR_GL_RED;
// Not guaranteed by ES/WebGL.
ioFormat.fRequiresImplementationReadQuery = !GR_IS_GR_GL(standard);
}
// Format: R8, Surface: kR_8, Data: kR_8xxx
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kR_8xxx;
ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE;
ioFormat.fExternalTexImageFormat = 0;
ioFormat.fExternalReadFormat = GR_GL_RGBA;
}
}
// Format: R8, Surface: kAlpha_8
{
auto& ctInfo = info.fColorTypeInfos[ctIdx++];
ctInfo.fColorType = GrColorType::kAlpha_8;
ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
ctInfo.fReadSwizzle = skgpu::Swizzle("000r");
ctInfo.fWriteSwizzle = skgpu::Swizzle("a000");
this->setColorTypeFormat(GrColorType::kAlpha_8, GrGLFormat::kR8);
// External IO ColorTypes:
ctInfo.fExternalIOFormatCount = 2;
ctInfo.fExternalIOFormats = std::make_unique<ColorTypeInfo::ExternalIOFormats[]>(
ctInfo.fExternalIOFormatCount);
int ioIdx = 0;
// Format: R8, Surface: kAlpha_8, Data: kAlpha_8
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kAlpha_8;
ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE;
ioFormat.fExternalTexImageFormat = GR_GL_RED;
ioFormat.fExternalReadFormat = GR_GL_RED;
// Not guaranteed by ES/WebGL.
ioFormat.fRequiresImplementationReadQuery = !GR_IS_GR_GL(standard);
}
// Format: R8, Surface: kAlpha_8, Data: kAlpha_8xxx
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kAlpha_8xxx;
ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE;
ioFormat.fExternalTexImageFormat = 0;
ioFormat.fExternalReadFormat = GR_GL_RGBA;
}
}
// Format: R8, Surface: kGray_8
{
auto& ctInfo = info.fColorTypeInfos[ctIdx++];
ctInfo.fColorType = GrColorType::kGray_8;
ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag;
ctInfo.fReadSwizzle = skgpu::Swizzle("rrr1");
this->setColorTypeFormat(GrColorType::kGray_8, GrGLFormat::kR8);
// External IO ColorTypes:
ctInfo.fExternalIOFormatCount = 2;
ctInfo.fExternalIOFormats = std::make_unique<ColorTypeInfo::ExternalIOFormats[]>(
ctInfo.fExternalIOFormatCount);
int ioIdx = 0;
// Format: R8, Surface: kGray_8, Data: kGray_8
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kGray_8;
ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE;
ioFormat.fExternalTexImageFormat = GR_GL_RED;
ioFormat.fExternalReadFormat = GR_GL_RED;
// Not guaranteed by ES/WebGL.
ioFormat.fRequiresImplementationReadQuery = !GR_IS_GR_GL(standard);
}
// Format: R8, Surface: kGray_8, Data: kGray_8xxx
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kGray_8xxx;
ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE;
ioFormat.fExternalTexImageFormat = 0;
ioFormat.fExternalReadFormat = GR_GL_RGBA;
}
}
}
}
// Format: ALPHA8
{
bool alpha8IsValidForGL = GR_IS_GR_GL(standard) &&
(!fIsCoreProfile || version <= GR_GL_VER(3, 0));
bool alpha8IsValidForGLES = GR_IS_GR_GL_ES(standard);
bool alpha8IsValidForWebGL = GR_IS_GR_WEBGL(standard);
FormatInfo& info = this->getFormatInfo(GrGLFormat::kALPHA8);
info.fFormatType = FormatType::kNormalizedFixedPoint;
// GL_EXT_texture_storage adds GL_ALPHA8 for texture storage. However, ES3 has glTexStorage
// but does not have GL_ALPHA8 (and requires a sized internal format for glTexStorage).
// WebGL never has GL_ALPHA8.
bool alpha8SizedEnumSupported =
alpha8IsValidForGL ||
(alpha8IsValidForGLES && ctxInfo.hasExtension("GL_EXT_texture_storage"));
bool alpha8TexStorageSupported = alpha8SizedEnumSupported && texStorageSupported;
bool alpha8IsRenderable = false;
if (alpha8IsValidForGL) {
// Core profile removes ALPHA8 support.
// OpenGL 3.0+ (and GL_ARB_framebuffer_object) supports ALPHA8 as renderable.
alpha8IsRenderable = ctxInfo.version() >= GR_GL_VER(3, 0) ||
ctxInfo.hasExtension("GL_ARB_framebuffer_object");
}
info.fInternalFormatForRenderbuffer = GR_GL_ALPHA8;
info.fDefaultExternalFormat = GR_GL_ALPHA;
info.fDefaultExternalType = GR_GL_UNSIGNED_BYTE;
info.fDefaultColorType = GrColorType::kAlpha_8;
if (alpha8IsValidForGL || alpha8IsValidForGLES || alpha8IsValidForWebGL) {
info.fFlags = FormatInfo::kTexturable_Flag | FormatInfo::kTransfers_Flag;
}
if (alpha8IsRenderable && alpha8IsValidForGL) {
// We will use ALPHA8 to create MSAA renderbuffers.
SkASSERT(alpha8SizedEnumSupported);
info.fFlags |= msaaRenderFlags;
}
if (alpha8TexStorageSupported) {
info.fFlags |= FormatInfo::kUseTexStorage_Flag;
info.fInternalFormatForTexImageOrStorage = GR_GL_ALPHA8;
} else {
// Even if GL_ALPHA8 is added to ES by GL_EXT_texture_storage it doesn't become legal
// for glTexImage2D.
if (!GR_IS_GR_GL_ES(standard) && texImageSupportsSizedInternalFormat &&
alpha8SizedEnumSupported) {
info.fInternalFormatForTexImageOrStorage = GR_GL_ALPHA8;
} else {
info.fInternalFormatForTexImageOrStorage = GR_GL_ALPHA;
}
}
if (alpha8IsValidForGL || alpha8IsValidForGLES || alpha8IsValidForWebGL) {
info.fColorTypeInfoCount = 1;
info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
int ctIdx = 0;
// Format: ALPHA8, Surface: kAlpha_8
{
if (alpha8IsValidForGL || alpha8IsValidForGLES || alpha8IsValidForWebGL) {
auto& ctInfo = info.fColorTypeInfos[ctIdx++];
ctInfo.fColorType = GrColorType::kAlpha_8;
ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag |
ColorTypeInfo::kRenderable_Flag;
int idx = static_cast<int>(GrColorType::kAlpha_8);
if (fColorTypeToFormatTable[idx] == GrGLFormat::kUnknown) {
this->setColorTypeFormat(GrColorType::kAlpha_8, GrGLFormat::kALPHA8);
}
// External IO ColorTypes:
ctInfo.fExternalIOFormatCount = 2;
ctInfo.fExternalIOFormats = std::make_unique<ColorTypeInfo::ExternalIOFormats[]>(
ctInfo.fExternalIOFormatCount);
int ioIdx = 0;
// Format: ALPHA8, Surface: kAlpha_8, Data: kAlpha_8
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kAlpha_8;
ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE;
ioFormat.fExternalTexImageFormat = GR_GL_ALPHA;
ioFormat.fExternalReadFormat = GR_GL_ALPHA;
// Not guaranteed by ES/WebGL.
ioFormat.fRequiresImplementationReadQuery = !GR_IS_GR_GL(standard);
}
// Format: ALPHA8, Surface: kAlpha_8, Data: kRGBA_8888
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kRGBA_8888;
ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE;
ioFormat.fExternalTexImageFormat = 0;
ioFormat.fExternalReadFormat = GR_GL_RGBA;
}
}
}
}
}
// Format: LUMINANCE8
{
FormatInfo& info = this->getFormatInfo(GrGLFormat::kLUMINANCE8);
info.fFormatType = FormatType::kNormalizedFixedPoint;
info.fInternalFormatForRenderbuffer = GR_GL_LUMINANCE8;
info.fDefaultExternalFormat = GR_GL_LUMINANCE;
info.fDefaultExternalType = GR_GL_UNSIGNED_BYTE;
info.fDefaultColorType = GrColorType::kGray_8;
bool lum8Supported = false;
bool lum8SizedFormatSupported = false;
if (GR_IS_GR_GL(standard) && !fIsCoreProfile) {
lum8Supported = true;
lum8SizedFormatSupported = true;
} else if (GR_IS_GR_GL_ES(standard)) {
lum8Supported = true;
// Even on ES3 this extension is required to define LUMINANCE8.
lum8SizedFormatSupported = ctxInfo.hasExtension("GL_EXT_texture_storage");
} else if (GR_IS_GR_WEBGL(standard)) {
lum8Supported = true;
}
if (lum8Supported) {
info.fFlags = FormatInfo::kTexturable_Flag | FormatInfo::kTransfers_Flag;
}
if (texStorageSupported && lum8SizedFormatSupported) {
info.fFlags |= FormatInfo::kUseTexStorage_Flag;
info.fInternalFormatForTexImageOrStorage = GR_GL_LUMINANCE8;
} else if (texImageSupportsSizedInternalFormat && lum8SizedFormatSupported) {
info.fInternalFormatForTexImageOrStorage = GR_GL_LUMINANCE8;
} else {
info.fInternalFormatForTexImageOrStorage = GR_GL_LUMINANCE;
}
// We are not enabling attaching to an FBO for LUMINANCE8 mostly because of confusion in the
// spec. For GLES it does not seem to ever support LUMINANCE8 being color-renderable. For GL
// versions less than 3.0 it is provided by GL_ARB_framebuffer_object. However, the original
// version of that extension did not add LUMINANCE8, but was added in a later revsion. So
// even the presence of that extension does not guarantee support. GL 3.0 and higher (core
// or compatibility) do not list LUMINANCE8 as color-renderable (which is strange since the
// GL_ARB_framebuffer_object extension was meant to bring 3.0 functionality to lower
// versions).
if (lum8Supported) {
info.fColorTypeInfoCount = 1;
info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
int ctIdx = 0;
// Format: LUMINANCE8, Surface: kGray_8
{
auto& ctInfo = info.fColorTypeInfos[ctIdx++];
ctInfo.fColorType = GrColorType::kGray_8;
ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag;
int idx = static_cast<int>(GrColorType::kGray_8);
if (fColorTypeToFormatTable[idx] == GrGLFormat::kUnknown) {
this->setColorTypeFormat(GrColorType::kGray_8, GrGLFormat::kLUMINANCE8);
}
// External IO ColorTypes:
ctInfo.fExternalIOFormatCount = 2;
ctInfo.fExternalIOFormats = std::make_unique<ColorTypeInfo::ExternalIOFormats[]>(
ctInfo.fExternalIOFormatCount);
int ioIdx = 0;
// Format: LUMINANCE8, Surface: kGray_8, Data: kGray_8
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kGray_8;
ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE;
ioFormat.fExternalTexImageFormat = GR_GL_LUMINANCE;
ioFormat.fExternalReadFormat = 0;
}
// Format: LUMINANCE8, Surface: kGray_8, Data: kRGBA_8888
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kRGBA_8888;
ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE;
ioFormat.fExternalTexImageFormat = 0;
ioFormat.fExternalReadFormat = GR_GL_RGBA;
}
}
}
}
// Format: LUMINANCE8_ALPHA8
{
FormatInfo& info = this->getFormatInfo(GrGLFormat::kLUMINANCE8_ALPHA8);
info.fFormatType = FormatType::kNormalizedFixedPoint;
info.fInternalFormatForRenderbuffer = GR_GL_LUMINANCE8_ALPHA8;
info.fDefaultExternalFormat = GR_GL_LUMINANCE_ALPHA;
info.fDefaultExternalType = GR_GL_UNSIGNED_BYTE;
info.fDefaultColorType = GrColorType::kGrayAlpha_88;
bool la8Supported = false;
bool la8SizedFormatSupported = false;
if (GR_IS_GR_GL(standard) && !fIsCoreProfile) {
la8Supported = true;
la8SizedFormatSupported = true;
} else if (GR_IS_GR_GL_ES(standard)) {
la8Supported = true;
// Even on ES3 this extension is required to define LUMINANCE8_ALPHA8.
la8SizedFormatSupported = ctxInfo.hasExtension("GL_EXT_texture_storage");
} else if (GR_IS_GR_WEBGL(standard)) {
la8Supported = true;
}
if (la8Supported) {
info.fFlags = FormatInfo::kTexturable_Flag | FormatInfo::kTransfers_Flag;
}
if (texStorageSupported && la8SizedFormatSupported) {
info.fFlags |= FormatInfo::kUseTexStorage_Flag;
info.fInternalFormatForTexImageOrStorage = GR_GL_LUMINANCE8_ALPHA8;
} else if (texImageSupportsSizedInternalFormat && la8SizedFormatSupported) {
info.fInternalFormatForTexImageOrStorage = GR_GL_LUMINANCE8_ALPHA8;
} else {
info.fInternalFormatForTexImageOrStorage = GR_GL_LUMINANCE_ALPHA;
}
// See note in LUMINANCE8 section about not attaching to framebuffers.
if (la8Supported) {
info.fColorTypeInfoCount = 1;
info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
int ctIdx = 0;
// Format: LUMINANCE8_ALPHA8, Surface: kGrayAlpha_88
{
auto& ctInfo = info.fColorTypeInfos[ctIdx++];
ctInfo.fColorType = GrColorType::kGrayAlpha_88;
ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag;
int idx = static_cast<int>(GrColorType::kGrayAlpha_88);
if (fColorTypeToFormatTable[idx] == GrGLFormat::kUnknown) {
this->setColorTypeFormat(GrColorType::kGrayAlpha_88,
GrGLFormat::kLUMINANCE8_ALPHA8);
}
// External IO ColorTypes:
ctInfo.fExternalIOFormatCount = 2;
ctInfo.fExternalIOFormats = std::make_unique<ColorTypeInfo::ExternalIOFormats[]>(
ctInfo.fExternalIOFormatCount);
int ioIdx = 0;
// Format: LUMINANCE8, Surface: kGrayAlpha_88, Data: kGrayAlpha_88
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kGrayAlpha_88;
ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE;
ioFormat.fExternalTexImageFormat = GR_GL_LUMINANCE_ALPHA;
ioFormat.fExternalReadFormat = 0;
}
// Format: LUMINANCE8, Surface: kGrayAlpha_88, Data: kRGBA_8888
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kRGBA_8888;
ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE;
ioFormat.fExternalTexImageFormat = 0;
ioFormat.fExternalReadFormat = GR_GL_RGBA;
}
}
}
}
// Format: BGRA8
{
FormatInfo& info = this->getFormatInfo(GrGLFormat::kBGRA8);
info.fFormatType = FormatType::kNormalizedFixedPoint;
info.fDefaultExternalFormat = GR_GL_BGRA;
info.fDefaultExternalType = GR_GL_UNSIGNED_BYTE;
info.fDefaultColorType = GrColorType::kBGRA_8888;
GrGLenum bgraTexImageFormat;
// If BGRA is supported as an internal format it must always be specified to glTex[Sub]Image
// as a base format. Which base format depends on which extension is used.
if (ctxInfo.hasExtension("GL_EXT_texture_format_BGRA8888")) {
// GL_EXT_texture_format_BGRA8888:
// This extension adds GL_BGRA as an unsized internal format. However, it is
// written against ES 2.0 and therefore doesn't define a GL_BGRA8 as ES 2.0 doesn't
// have sized internal formats. See later where we check for tex storage BGRA8
// support.
bgraTexImageFormat = GR_GL_BGRA;
} else {
// GL_APPLE_texture_format_BGRA8888:
// ES 2.0: the extension makes BGRA an external format but not an internal format.
// ES 3.0: the extension explicitly states GL_BGRA8 is not a valid internal format
// for glTexImage (just for glTexStorage).
bgraTexImageFormat = GR_GL_RGBA;
}
// TexStorage requires using a sized internal format and BGRA8 is only supported if we have
// the GL_APPLE_texture_format_BGRA8888 extension or if we have GL_EXT_texture_storage and
// GL_EXT_texture_format_BGRA8888.
bool supportsBGRATexStorage = false;
if (GR_IS_GR_GL_ES(standard)) {
if (ctxInfo.hasExtension("GL_EXT_texture_format_BGRA8888")) {
// The GL_EXT_texture_format_BGRA8888 extension adds BGRA color renderbuffer support
// for ES 2.0. The extension adds BGRA to the supported renerable formats in table
// 4.5. In ES 2.0. All the extensions that add multisample support, all reference
// table 4.5 as the formats that are supported. Thus we can use msaaRenderFlags.
// Additionally, the renderable support was added in a later revision of the
// extension. So it is possible for older drivers to support the extension but only
// an early revision of it without renderable support. We have no way of
// distinguishing between the two and assume renderable.
info.fFlags = FormatInfo::kTexturable_Flag
| FormatInfo::kTransfers_Flag;
// Only enable BGRA msaa if we know we're going through Angle. The spec for
// GL_EXT_texture_format_BGRA8888 was updated in 2016 to add support for GL_BGRA_EXT
// as a sized, renderable format. But we may end up running on old drivers written
// against earlier version of the spec. Also the interactions between all these
// extensions are very suibtle and it wouldn't be hard for a driver to mess them up.
// We are confident that Angle does it as we expect. Our non-angle test bots do seem
// to pass and draw correctly so we could consider enabling this more broadly in the
// future.
if (ctxInfo.angleBackend() != GrGLANGLEBackend::kUnknown) {
// Angle incorrectly requires GL_BGRA8_EXT for the interalFormat for both ES2
// and ES3 even though this extension does not define that value. The extension
// only defines GL_BGRA_EXT as an internal format.
info.fInternalFormatForRenderbuffer = GR_GL_BGRA8;
info.fFlags |= msaaRenderFlags;
} else {
// It is not clear what the correct format to use on ES3 is. This extension only
// defines GL_BGRA_EXT. That is definitely the correct thing to use on ES2, but
// its unclear whether that is valid in ES3 or if it wants something like
// GL_BGRA8_EXT (which is only defined in the apple extenstion). For now we set
// everything to use BGRA since its the only explicitly defined value. Until we
// enable MSAA for non-angle this is a moot point.
info.fInternalFormatForRenderbuffer = GR_GL_BGRA;
info.fFlags |= nonMSAARenderFlags;
}
// GL_EXT_texture storage has defined interactions with
// GL_EXT_texture_format_BGRA8888. However, ES3 supports glTexStorage but
// without GL_EXT_texture_storage it does not allow the BGRA8 sized internal format.
if (ctxInfo.hasExtension("GL_EXT_texture_storage") &&
!formatWorkarounds.fDisableBGRATextureStorageForIntelWindowsES) {
supportsBGRATexStorage = true;
}
} else if (ctxInfo.hasExtension("GL_APPLE_texture_format_BGRA8888")) {
// This APPLE extension introduces complexity on ES2. It leaves the internal format
// as RGBA, but allows BGRA as the external format. From testing, it appears that
// the driver remembers the external format when the texture is created (with
// TexImage). If you then try to upload data in the other swizzle (with
// TexSubImage), it fails. We could work around this, but it adds even more state
// tracking to code that is already too tricky. Instead, we opt not to support BGRA
// on ES2 with this extension. This also side-steps some ambiguous interactions with
// the texture storage extension.
if (version >= GR_GL_VER(3,0)) {
// The APPLE extension doesn't explicitly make this renderable, but
// internally it appears to use RGBA8, which we'll patch up below.
info.fFlags = FormatInfo::kTexturable_Flag
| FormatInfo::kTransfers_Flag
| msaaRenderFlags;
// The GL_APPLE_texture_format_BGRA8888 does not add support for BGRA color
// renderbuffers at all so we use RGBA here.
info.fInternalFormatForRenderbuffer = GR_GL_RGBA8;
supportsBGRATexStorage = true;
}
}
}
if (texStorageSupported && supportsBGRATexStorage) {
info.fFlags |= FormatInfo::kUseTexStorage_Flag;
info.fInternalFormatForTexImageOrStorage = GR_GL_BGRA8;
} else {
info.fInternalFormatForTexImageOrStorage = bgraTexImageFormat;
}
if (SkToBool(info.fFlags & FormatInfo::kTexturable_Flag)) {
info.fColorTypeInfoCount = 1;
info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
int ctIdx = 0;
// Format: BGRA8, Surface: kBGRA_8888
{
auto& ctInfo = info.fColorTypeInfos[ctIdx++];
ctInfo.fColorType = GrColorType::kBGRA_8888;
ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
this->setColorTypeFormat(GrColorType::kBGRA_8888, GrGLFormat::kBGRA8);
// External IO ColorTypes:
ctInfo.fExternalIOFormatCount = 2;
ctInfo.fExternalIOFormats = std::make_unique<ColorTypeInfo::ExternalIOFormats[]>(
ctInfo.fExternalIOFormatCount);
int ioIdx = 0;
// Format: BGRA8, Surface: kBGRA_8888, Data: kBGRA_8888
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kBGRA_8888;
ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE;
ioFormat.fExternalTexImageFormat = GR_GL_BGRA;
ioFormat.fExternalReadFormat = 0;
ioFormat.fExternalReadFormat =
formatWorkarounds.fDisallowBGRA8ReadPixels ? 0 : GR_GL_BGRA;
// Not guaranteed by ES/WebGL.
ioFormat.fRequiresImplementationReadQuery = !GR_IS_GR_GL(standard);
}
// Format: BGRA8, Surface: kBGRA_8888, Data: kRGBA_8888
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kRGBA_8888;
ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE;
ioFormat.fExternalTexImageFormat = 0;
ioFormat.fExternalReadFormat = GR_GL_RGBA;
}
}
}
}
// Format: RGB565
{
FormatInfo& info = this->getFormatInfo(GrGLFormat::kRGB565);
info.fFormatType = FormatType::kNormalizedFixedPoint;
info.fInternalFormatForRenderbuffer = GR_GL_RGB565;
info.fDefaultExternalFormat = GR_GL_RGB;
info.fDefaultExternalType = GR_GL_UNSIGNED_SHORT_5_6_5;
info.fDefaultColorType = GrColorType::kBGR_565;
if (GR_IS_GR_GL(standard)) {
if (version >= GR_GL_VER(4, 2) || ctxInfo.hasExtension("GL_ARB_ES2_compatibility")) {
info.fFlags = FormatInfo::kTexturable_Flag
| FormatInfo::kTransfers_Flag
| msaaRenderFlags;
}
} else if (GR_IS_GR_GL_ES(standard)) {
info.fFlags = FormatInfo::kTexturable_Flag
| FormatInfo::kTransfers_Flag
| msaaRenderFlags;
} else if (GR_IS_GR_WEBGL(standard)) {
info.fFlags = FormatInfo::kTexturable_Flag
| FormatInfo::kTransfers_Flag
| msaaRenderFlags;
}
// 565 is not a sized internal format on desktop GL. So on desktop with
// 565 we always use an unsized internal format to let the system pick
// the best sized format to convert the 565 data to. Since TexStorage
// only allows sized internal formats we disallow it.
//
// TODO: As of 4.2, regular GL supports 565. This logic is due for an
// update.
if (texStorageSupported && GR_IS_GR_GL_ES(standard)) {
info.fFlags |= FormatInfo::kUseTexStorage_Flag;
info.fInternalFormatForTexImageOrStorage = GR_GL_RGB565;
} else {
info.fInternalFormatForTexImageOrStorage =
texImageSupportsSizedInternalFormat ? GR_GL_RGB565 : GR_GL_RGB;
}
if (SkToBool(info.fFlags &FormatInfo::kTexturable_Flag)) {
info.fColorTypeInfoCount = 1;
info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
int ctIdx = 0;
// Format: RGB565, Surface: kBGR_565
{
auto& ctInfo = info.fColorTypeInfos[ctIdx++];
ctInfo.fColorType = GrColorType::kBGR_565;
ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
this->setColorTypeFormat(GrColorType::kBGR_565, GrGLFormat::kRGB565);
// External IO ColorTypes:
ctInfo.fExternalIOFormatCount = 2;
ctInfo.fExternalIOFormats = std::make_unique<ColorTypeInfo::ExternalIOFormats[]>(
ctInfo.fExternalIOFormatCount);
int ioIdx = 0;
// Format: RGB565, Surface: kBGR_565, Data: kBGR_565
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kBGR_565;
ioFormat.fExternalType = GR_GL_UNSIGNED_SHORT_5_6_5;
ioFormat.fExternalTexImageFormat = GR_GL_RGB;
ioFormat.fExternalReadFormat = GR_GL_RGB;
// Not guaranteed by ES/WebGL.
ioFormat.fRequiresImplementationReadQuery = !GR_IS_GR_GL(standard);
}
// Format: RGB565, Surface: kBGR_565, Data: kRGBA_8888
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kRGBA_8888;
ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE;
ioFormat.fExternalTexImageFormat = 0;
ioFormat.fExternalReadFormat = GR_GL_RGBA;
}
}
}
}
// Format: RGBA16F
{
FormatInfo& info = this->getFormatInfo(GrGLFormat::kRGBA16F);
info.fFormatType = FormatType::kFloat;
info.fInternalFormatForRenderbuffer = GR_GL_RGBA16F;
info.fDefaultExternalFormat = GR_GL_RGBA;
info.fDefaultExternalType = halfFloatType;
info.fDefaultColorType = GrColorType::kRGBA_F16;
bool rgba16FTextureSupport = false;
bool rgba16FRenderTargetSupport = false;
if (GR_IS_GR_GL(standard)) {
if (version >= GR_GL_VER(3, 0)) {
rgba16FTextureSupport = true;
rgba16FRenderTargetSupport = true;
} else if (ctxInfo.hasExtension("GL_ARB_texture_float")) {
rgba16FTextureSupport = true;
}
} else if (GR_IS_GR_GL_ES(standard)) {
if (version >= GR_GL_VER(3, 0)) {
rgba16FTextureSupport = true;
rgba16FRenderTargetSupport =
version >= GR_GL_VER(3, 2) ||
ctxInfo.hasExtension("GL_EXT_color_buffer_half_float") ||
ctxInfo.hasExtension("GL_EXT_color_buffer_float");
} else if (ctxInfo.hasExtension("GL_OES_texture_half_float") &&
ctxInfo.hasExtension("GL_OES_texture_half_float_linear")) {
rgba16FTextureSupport = true;
rgba16FRenderTargetSupport = ctxInfo.hasExtension("GL_EXT_color_buffer_half_float");
}
} else if (GR_IS_GR_WEBGL(standard)) {
if (version >= GR_GL_VER(2, 0)) {
rgba16FTextureSupport = true;
rgba16FRenderTargetSupport =
ctxInfo.hasExtension("GL_EXT_color_buffer_half_float") ||
ctxInfo.hasExtension("EXT_color_buffer_half_float") ||
ctxInfo.hasExtension("GL_EXT_color_buffer_float") ||
ctxInfo.hasExtension("EXT_color_buffer_float");
} else if ((ctxInfo.hasExtension("GL_OES_texture_half_float") ||
ctxInfo.hasExtension("OES_texture_half_float")) &&
(ctxInfo.hasExtension("GL_OES_texture_half_float_linear") ||
ctxInfo.hasExtension("OES_texture_half_float_linear"))) {
rgba16FTextureSupport = true;
// We don't check for EXT_color_buffer_float as it's only defined for WebGL 2.
rgba16FRenderTargetSupport =
ctxInfo.hasExtension("GL_EXT_color_buffer_half_float") ||
ctxInfo.hasExtension("EXT_color_buffer_half_float");
}
}
if (rgba16FTextureSupport) {
info.fFlags = FormatInfo::kTexturable_Flag | FormatInfo::kTransfers_Flag;
if (rgba16FRenderTargetSupport) {
info.fFlags |= fpRenderFlags;
}
}
if (texStorageSupported && !formatWorkarounds.fDisableRGBA16FTexStorageForCrBug1008003) {
info.fFlags |= FormatInfo::kUseTexStorage_Flag;
info.fInternalFormatForTexImageOrStorage = GR_GL_RGBA16F;
} else {
info.fInternalFormatForTexImageOrStorage =
texImageSupportsSizedInternalFormat ? GR_GL_RGBA16F : GR_GL_RGBA;
}
if (rgba16FTextureSupport) {
uint32_t flags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
info.fColorTypeInfoCount = 2;
info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
int ctIdx = 0;
// Format: RGBA16F, Surface: kRGBA_F16
{
auto& ctInfo = info.fColorTypeInfos[ctIdx++];
ctInfo.fColorType = GrColorType::kRGBA_F16;
ctInfo.fFlags = flags;
this->setColorTypeFormat(GrColorType::kRGBA_F16, GrGLFormat::kRGBA16F);
// External IO ColorTypes:
ctInfo.fExternalIOFormatCount = 2;
ctInfo.fExternalIOFormats = std::make_unique<ColorTypeInfo::ExternalIOFormats[]>(
ctInfo.fExternalIOFormatCount);
int ioIdx = 0;
// Format: RGBA16F, Surface: kRGBA_F16, Data: kRGBA_F16
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kRGBA_F16;
ioFormat.fExternalType = halfFloatType;
ioFormat.fExternalTexImageFormat = GR_GL_RGBA;
ioFormat.fExternalReadFormat = GR_GL_RGBA;
// Not guaranteed by ES/WebGL.
ioFormat.fRequiresImplementationReadQuery = !GR_IS_GR_GL(standard);
}
// Format: RGBA16F, Surface: kRGBA_F16, Data: kRGBA_F32
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kRGBA_F32;
ioFormat.fExternalType = GR_GL_FLOAT;
ioFormat.fExternalTexImageFormat = 0;
ioFormat.fExternalReadFormat = GR_GL_RGBA;
}
}
// Format: RGBA16F, Surface: kRGBA_F16_Clamped
{
auto& ctInfo = info.fColorTypeInfos[ctIdx++];
ctInfo.fColorType = GrColorType::kRGBA_F16_Clamped;
ctInfo.fFlags = flags;
this->setColorTypeFormat(GrColorType::kRGBA_F16_Clamped, GrGLFormat::kRGBA16F);
// External IO ColorTypes:
ctInfo.fExternalIOFormatCount = 2;
ctInfo.fExternalIOFormats = std::make_unique<ColorTypeInfo::ExternalIOFormats[]>(
ctInfo.fExternalIOFormatCount);
int ioIdx = 0;
// Format: RGBA16F, Surface: kRGBA_F16_Clamped, Data: kRGBA_F16_Clamped
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kRGBA_F16_Clamped;
ioFormat.fExternalType = halfFloatType;
ioFormat.fExternalTexImageFormat = GR_GL_RGBA;
ioFormat.fExternalReadFormat = GR_GL_RGBA;
// Not guaranteed by ES/WebGL.
ioFormat.fRequiresImplementationReadQuery = !GR_IS_GR_GL(standard);
}
// Format: RGBA16F, Surface: kRGBA_F16_Clamped, Data: kRGBA_F32
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kRGBA_F32;
ioFormat.fExternalType = GR_GL_FLOAT;
ioFormat.fExternalTexImageFormat = 0;
ioFormat.fExternalReadFormat = GR_GL_RGBA;
}
}
}
}
// Format: R16F
{
FormatInfo& info = this->getFormatInfo(GrGLFormat::kR16F);
info.fFormatType = FormatType::kFloat;
info.fInternalFormatForRenderbuffer = GR_GL_R16F;
info.fDefaultExternalFormat = GR_GL_RED;
info.fDefaultExternalType = halfFloatType;
info.fDefaultColorType = GrColorType::kR_F16;
bool r16FTextureSupport = false;
bool r16FRenderTargetSupport = false;
if (GR_IS_GR_GL(standard)) {
if (version >= GR_GL_VER(3, 0) || ctxInfo.hasExtension("GL_ARB_texture_rg")) {
r16FTextureSupport = true;
r16FRenderTargetSupport = true;
}
} else if (GR_IS_GR_GL_ES(standard)) {
// It seems possible that a combination of GL_EXT_texture_rg and
// GL_EXT_color_buffer_half_float might add this format to ES 2.0 but it is not entirely
// clear. The latter mentions interaction but that may only be for renderbuffers as
// neither adds the texture format explicitly.
// GL_OES_texture_format_half_float makes no reference to RED formats.
if (version >= GR_GL_VER(3, 0)) {
r16FTextureSupport = true;
r16FRenderTargetSupport = version >= GR_GL_VER(3, 2) ||
ctxInfo.hasExtension("GL_EXT_color_buffer_float") ||
ctxInfo.hasExtension("GL_EXT_color_buffer_half_float");
}
} else if (GR_IS_GR_WEBGL(standard)) {
if (version >= GR_GL_VER(2, 0)) {
r16FTextureSupport = true;
r16FRenderTargetSupport = ctxInfo.hasExtension("GL_EXT_color_buffer_float") ||
ctxInfo.hasExtension("EXT_color_buffer_float");
}
}
if (r16FTextureSupport) {
info.fFlags = FormatInfo::kTexturable_Flag | FormatInfo::kTransfers_Flag;
if (r16FRenderTargetSupport) {
info.fFlags |= fpRenderFlags;
}
}
if (texStorageSupported) {
info.fFlags |= FormatInfo::kUseTexStorage_Flag;
info.fInternalFormatForTexImageOrStorage = GR_GL_R16F;
} else {
info.fInternalFormatForTexImageOrStorage =
texImageSupportsSizedInternalFormat ? GR_GL_R16F : GR_GL_RED;
}
if (r16FTextureSupport) {
// Format: R16F, Surface: kAlpha_F16
info.fColorTypeInfoCount = 1;
info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
int ctIdx = 0;
{
auto& ctInfo = info.fColorTypeInfos[ctIdx++];
ctInfo.fColorType = GrColorType::kAlpha_F16;
ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
ctInfo.fReadSwizzle = skgpu::Swizzle("000r");
ctInfo.fWriteSwizzle = skgpu::Swizzle("a000");
this->setColorTypeFormat(GrColorType::kAlpha_F16, GrGLFormat::kR16F);
// External IO ColorTypes:
ctInfo.fExternalIOFormatCount = 2;
ctInfo.fExternalIOFormats = std::make_unique<ColorTypeInfo::ExternalIOFormats[]>(
ctInfo.fExternalIOFormatCount);
int ioIdx = 0;
// Format: R16F, Surface: kAlpha_F16, Data: kAlpha_F16
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kAlpha_F16;
ioFormat.fExternalType = halfFloatType;
ioFormat.fExternalTexImageFormat = GR_GL_RED;
ioFormat.fExternalReadFormat = GR_GL_RED;
// Not guaranteed by ES/WebGL.
ioFormat.fRequiresImplementationReadQuery = !GR_IS_GR_GL(standard);
}
// Format: R16F, Surface: kAlpha_F16, Data: kAlpha_F32xxx
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kAlpha_F32xxx;
ioFormat.fExternalType = GR_GL_FLOAT;
ioFormat.fExternalTexImageFormat = 0;
ioFormat.fExternalReadFormat = GR_GL_RGBA;
}
}
}
}
// Format: LUMINANCE16F
{
// NOTE: We disallow lum16f on ES devices if linear filtering modes are not
// supported. This is for simplicity, but a more granular approach is possible.
bool lum16FSupported = false;
bool lum16FSizedFormatSupported = false;
if (GR_IS_GR_GL(standard)) {
if (!fIsCoreProfile && ctxInfo.hasExtension("GL_ARB_texture_float")) {
lum16FSupported = true;
lum16FSizedFormatSupported = true;
}
} else if (GR_IS_GR_GL_ES(standard)) {
if (ctxInfo.hasExtension("GL_OES_texture_half_float_linear") &&
ctxInfo.hasExtension("GL_OES_texture_half_float")) {
lum16FSupported = true;
// Even on ES3 this extension is required to define LUMINANCE16F.
lum16FSizedFormatSupported = ctxInfo.hasExtension("GL_EXT_texture_storage");
}
} // No WebGL support
if (formatWorkarounds.fDisableLuminance16F) {
lum16FSupported = false;
}
FormatInfo& info = this->getFormatInfo(GrGLFormat::kLUMINANCE16F);
info.fFormatType = FormatType::kFloat;
info.fInternalFormatForRenderbuffer = GR_GL_LUMINANCE16F;
info.fDefaultExternalFormat = GR_GL_LUMINANCE;
info.fDefaultExternalType = halfFloatType;
info.fDefaultColorType = GrColorType::kGray_F16;
if (lum16FSupported) {
info.fFlags = FormatInfo::kTexturable_Flag | FormatInfo::kTransfers_Flag;
if (texStorageSupported && lum16FSizedFormatSupported) {
info.fFlags |= FormatInfo::kUseTexStorage_Flag;
info.fInternalFormatForTexImageOrStorage = GR_GL_LUMINANCE16F;
} else if (texImageSupportsSizedInternalFormat && lum16FSizedFormatSupported) {
info.fInternalFormatForTexImageOrStorage = GR_GL_LUMINANCE16F;
} else {
info.fInternalFormatForTexImageOrStorage = GR_GL_LUMINANCE;
}
info.fColorTypeInfoCount = 1;