blob: d2180039e5b16fc35c4ec54cea92677e22b5a3bf [file] [log] [blame]
/*
* Copyright 2006 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkGlyph_DEFINED
#define SkGlyph_DEFINED
#include "include/core/SkPath.h"
#include "include/core/SkTypes.h"
#include "include/private/SkChecksum.h"
#include "include/private/SkFixed.h"
#include "include/private/SkTo.h"
#include "include/private/SkVx.h"
#include "src/core/SkMask.h"
#include "src/core/SkMathPriv.h"
class SkArenaAlloc;
class SkDrawable;
class SkScalerContext;
// -- SkPackedGlyphID ------------------------------------------------------------------------------
// A combination of SkGlyphID and sub-pixel position information.
struct SkPackedGlyphID {
inline static constexpr uint32_t kImpossibleID = ~0u;
enum {
// Lengths
kGlyphIDLen = 16u,
kSubPixelPosLen = 2u,
// Bit positions
kSubPixelX = 0u,
kGlyphID = kSubPixelPosLen,
kSubPixelY = kGlyphIDLen + kSubPixelPosLen,
kEndData = kGlyphIDLen + 2 * kSubPixelPosLen,
// Masks
kGlyphIDMask = (1u << kGlyphIDLen) - 1,
kSubPixelPosMask = (1u << kSubPixelPosLen) - 1,
kMaskAll = (1u << kEndData) - 1,
// Location of sub pixel info in a fixed pointer number.
kFixedPointBinaryPointPos = 16u,
kFixedPointSubPixelPosBits = kFixedPointBinaryPointPos - kSubPixelPosLen,
};
inline static const constexpr SkScalar kSubpixelRound =
1.f / (1u << (SkPackedGlyphID::kSubPixelPosLen + 1));
inline static const constexpr SkIPoint kXYFieldMask{kSubPixelPosMask << kSubPixelX,
kSubPixelPosMask << kSubPixelY};
struct Hash {
uint32_t operator() (SkPackedGlyphID packedID) const {
return packedID.hash();
}
};
constexpr explicit SkPackedGlyphID(SkGlyphID glyphID)
: fID{(uint32_t)glyphID << kGlyphID} { }
constexpr SkPackedGlyphID(SkGlyphID glyphID, SkFixed x, SkFixed y)
: fID {PackIDXY(glyphID, x, y)} { }
constexpr SkPackedGlyphID(SkGlyphID glyphID, uint32_t x, uint32_t y)
: fID {PackIDSubXSubY(glyphID, x, y)} { }
SkPackedGlyphID(SkGlyphID glyphID, SkPoint pt, SkIPoint mask)
: fID{PackIDSkPoint(glyphID, pt, mask)} { }
constexpr explicit SkPackedGlyphID(uint32_t v) : fID{v & kMaskAll} { }
constexpr SkPackedGlyphID() : fID{kImpossibleID} {}
bool operator==(const SkPackedGlyphID& that) const {
return fID == that.fID;
}
bool operator!=(const SkPackedGlyphID& that) const {
return !(*this == that);
}
bool operator<(SkPackedGlyphID that) const {
return this->fID < that.fID;
}
SkGlyphID glyphID() const {
return (fID >> kGlyphID) & kGlyphIDMask;
}
uint32_t value() const {
return fID;
}
SkFixed getSubXFixed() const {
return this->subToFixed(kSubPixelX);
}
SkFixed getSubYFixed() const {
return this->subToFixed(kSubPixelY);
}
uint32_t hash() const {
return SkChecksum::CheapMix(fID);
}
SkString dump() const {
SkString str;
str.appendf("glyphID: %d, x: %d, y:%d", glyphID(), getSubXFixed(), getSubYFixed());
return str;
}
SkString shortDump() const {
SkString str;
str.appendf("0x%x|%1d|%1d", this->glyphID(),
this->subPixelField(kSubPixelX),
this->subPixelField(kSubPixelY));
return str;
}
private:
static constexpr uint32_t PackIDSubXSubY(SkGlyphID glyphID, uint32_t x, uint32_t y) {
SkASSERT(x < (1u << kSubPixelPosLen));
SkASSERT(y < (1u << kSubPixelPosLen));
return (x << kSubPixelX) | (y << kSubPixelY) | (glyphID << kGlyphID);
}
// Assumptions: pt is properly rounded. mask is set for the x or y fields.
//
// A sub-pixel field is a number on the interval [2^kSubPixel, 2^(kSubPixel + kSubPixelPosLen)).
// Where kSubPixel is either kSubPixelX or kSubPixelY. Given a number x on [0, 1) we can
// generate a sub-pixel field using:
// sub-pixel-field = x * 2^(kSubPixel + kSubPixelPosLen)
//
// We can generate the integer sub-pixel field by &-ing the integer part of sub-filed with the
// sub-pixel field mask.
// int-sub-pixel-field = int(sub-pixel-field) & (kSubPixelPosMask << kSubPixel)
//
// The last trick is to extend the range from [0, 1) to [0, 2). The extend range is
// necessary because the modulo 1 calculation (pt - floor(pt)) generates numbers on [-1, 1).
// This does not round (floor) properly when converting to integer. Adding one to the range
// causes truncation and floor to be the same. Coincidentally, masking to produce the field also
// removes the +1.
static uint32_t PackIDSkPoint(SkGlyphID glyphID, SkPoint pt, SkIPoint mask) {
#if 0
// TODO: why does this code not work on GCC 8.3 x86 Debug builds?
using namespace skvx;
using XY = Vec<2, float>;
using SubXY = Vec<2, int>;
const XY magic = {1.f * (1u << (kSubPixelPosLen + kSubPixelX)),
1.f * (1u << (kSubPixelPosLen + kSubPixelY))};
XY pos{pt.x(), pt.y()};
XY subPos = (pos - floor(pos)) + 1.0f;
SubXY sub = cast<int>(subPos * magic) & SubXY{mask.x(), mask.y()};
#else
const float magicX = 1.f * (1u << (kSubPixelPosLen + kSubPixelX)),
magicY = 1.f * (1u << (kSubPixelPosLen + kSubPixelY));
float x = pt.x(),
y = pt.y();
x = (x - floorf(x)) + 1.0f;
y = (y - floorf(y)) + 1.0f;
int sub[] = {
(int)(x * magicX) & mask.x(),
(int)(y * magicY) & mask.y(),
};
#endif
SkASSERT(sub[0] / (1u << kSubPixelX) < (1u << kSubPixelPosLen));
SkASSERT(sub[1] / (1u << kSubPixelY) < (1u << kSubPixelPosLen));
return (glyphID << kGlyphID) | sub[0] | sub[1];
}
static constexpr uint32_t PackIDXY(SkGlyphID glyphID, SkFixed x, SkFixed y) {
return PackIDSubXSubY(glyphID, FixedToSub(x), FixedToSub(y));
}
static constexpr uint32_t FixedToSub(SkFixed n) {
return ((uint32_t)n >> kFixedPointSubPixelPosBits) & kSubPixelPosMask;
}
constexpr uint32_t subPixelField(uint32_t subPixelPosBit) const {
return (fID >> subPixelPosBit) & kSubPixelPosMask;
}
constexpr SkFixed subToFixed(uint32_t subPixelPosBit) const {
uint32_t subPixelPosition = this->subPixelField(subPixelPosBit);
return subPixelPosition << kFixedPointSubPixelPosBits;
}
uint32_t fID;
};
// -- SkAxisAlignment ------------------------------------------------------------------------------
// SkAxisAlignment specifies the x component of a glyph's position is rounded when kX, and the y
// component is rounded when kY. If kNone then neither are rounded.
enum class SkAxisAlignment : uint32_t {
kNone,
kX,
kY,
};
// round and ignorePositionMask are used to calculate the subpixel position of a glyph.
// The per component (x or y) calculation is:
//
// subpixelOffset = (floor((viewportPosition + rounding) & mask) >> 14) & 3
//
// where mask is either 0 or ~0, and rounding is either
// 1/2 for non-subpixel or 1/8 for subpixel.
struct SkGlyphPositionRoundingSpec {
SkGlyphPositionRoundingSpec(bool isSubpixel, SkAxisAlignment axisAlignment);
const SkVector halfAxisSampleFreq;
const SkIPoint ignorePositionMask;
const SkIPoint ignorePositionFieldMask;
private:
static SkVector HalfAxisSampleFreq(bool isSubpixel, SkAxisAlignment axisAlignment);
static SkIPoint IgnorePositionMask(bool isSubpixel, SkAxisAlignment axisAlignment);
static SkIPoint IgnorePositionFieldMask(bool isSubpixel, SkAxisAlignment axisAlignment);
};
class SkGlyphRect;
namespace skglyph {
SkGlyphRect rect_union(SkGlyphRect, SkGlyphRect);
SkGlyphRect rect_intersection(SkGlyphRect, SkGlyphRect);
} // namespace skglyph
// SkGlyphRect encodes rectangles with coordinates on [-32767, 32767]. It is specialized for
// rectangle union and intersection operations.
class SkGlyphRect {
public:
SkGlyphRect() = default;
SkGlyphRect(int16_t left, int16_t top, int16_t right, int16_t bottom)
: fRect{(int16_t)-left, (int16_t)-top, right, bottom} {
SkDEBUGCODE(const int32_t min = std::numeric_limits<int16_t>::min());
SkASSERT(left != min && top != min && right != min && bottom != min);
}
bool empty() const {
return -fRect[0] >= fRect[2] || -fRect[1] >= fRect[3];
}
SkRect rect() const {
return SkRect::MakeLTRB(-fRect[0], -fRect[1], fRect[2], fRect[3]);
}
SkIRect iRect() const {
return SkIRect::MakeLTRB(-fRect[0], -fRect[1], fRect[2], fRect[3]);
}
SkGlyphRect offset(int16_t x, int16_t y) const {
return SkGlyphRect{fRect + Storage{SkTo<int16_t>(-x), SkTo<int16_t>(-y), x, y}};
}
skvx::Vec<2, int16_t> leftTop() const { return -this->negLeftTop(); }
skvx::Vec<2, int16_t> rightBottom() const { return {fRect[2], fRect[3]}; }
skvx::Vec<2, int16_t> widthHeight() const { return this->rightBottom() + negLeftTop(); }
friend SkGlyphRect skglyph::rect_union(SkGlyphRect, SkGlyphRect);
friend SkGlyphRect skglyph::rect_intersection(SkGlyphRect, SkGlyphRect);
private:
skvx::Vec<2, int16_t> negLeftTop() const { return {fRect[0], fRect[1]}; }
using Storage = skvx::Vec<4, int16_t>;
SkGlyphRect(Storage rect) : fRect{rect} { }
Storage fRect;
};
namespace skglyph {
inline SkGlyphRect empty_rect() {
constexpr int16_t max = std::numeric_limits<int16_t>::max();
return {max, max, -max, -max};
}
inline SkGlyphRect full_rect() {
constexpr int16_t max = std::numeric_limits<int16_t>::max();
return {-max, -max, max, max};
}
inline SkGlyphRect rect_union(SkGlyphRect a, SkGlyphRect b) {
return skvx::max(a.fRect, b.fRect);
}
inline SkGlyphRect rect_intersection(SkGlyphRect a, SkGlyphRect b) {
return skvx::min(a.fRect, b.fRect);
}
} // namespace skglyph
class SkGlyph;
// SkGlyphDigest contains a digest of information for making GPU drawing decisions. It can be
// referenced instead of the glyph itself in many situations. In the remote glyphs cache the
// SkGlyphDigest is the only information that needs to be stored in the cache.
class SkGlyphDigest {
public:
// Default ctor is only needed for the hash table.
SkGlyphDigest() = default;
SkGlyphDigest(size_t index, const SkGlyph& glyph);
int index() const { return fIndex; }
bool isEmpty() const { return fIsEmpty; }
bool isColor() const { return fIsColor; }
bool canDrawAsMask() const { return fCanDrawAsMask; }
bool canDrawAsSDFT() const { return fCanDrawAsSDFT; }
uint16_t maxDimension() const {
return std::max(fWidth, fHeight);
}
private:
static_assert(SkPackedGlyphID::kEndData == 20);
struct {
uint32_t fIndex : SkPackedGlyphID::kEndData;
uint32_t fIsEmpty : 1;
uint32_t fIsColor : 1;
uint32_t fCanDrawAsMask : 1;
uint32_t fCanDrawAsSDFT : 1;
};
int16_t fLeft, fTop;
uint16_t fWidth, fHeight;
};
class SkGlyph {
public:
// SkGlyph() is used for testing.
constexpr SkGlyph() : SkGlyph{SkPackedGlyphID()} { }
SkGlyph(const SkGlyph&);
SkGlyph& operator=(const SkGlyph&);
SkGlyph(SkGlyph&&);
SkGlyph& operator=(SkGlyph&&);
~SkGlyph();
constexpr explicit SkGlyph(SkPackedGlyphID id) : fID{id} { }
SkVector advanceVector() const { return SkVector{fAdvanceX, fAdvanceY}; }
SkScalar advanceX() const { return fAdvanceX; }
SkScalar advanceY() const { return fAdvanceY; }
SkGlyphID getGlyphID() const { return fID.glyphID(); }
SkPackedGlyphID getPackedID() const { return fID; }
SkFixed getSubXFixed() const { return fID.getSubXFixed(); }
SkFixed getSubYFixed() const { return fID.getSubYFixed(); }
size_t rowBytes() const;
size_t rowBytesUsingFormat(SkMask::Format format) const;
// Call this to set all of the metrics fields to 0 (e.g. if the scaler
// encounters an error measuring a glyph). Note: this does not alter the
// fImage, fPath, fID, fMaskFormat fields.
void zeroMetrics();
SkMask mask() const;
SkMask mask(SkPoint position) const;
// Image
// If we haven't already tried to associate an image with this glyph
// (i.e. setImageHasBeenCalled() returns false), then use the
// SkScalerContext or const void* argument to set the image.
bool setImage(SkArenaAlloc* alloc, SkScalerContext* scalerContext);
bool setImage(SkArenaAlloc* alloc, const void* image);
// Merge the from glyph into this glyph using alloc to allocate image data. Return the number
// of bytes allocated. Copy the width, height, top, left, format, and image into this glyph
// making a copy of the image using the alloc.
size_t setMetricsAndImage(SkArenaAlloc* alloc, const SkGlyph& from);
// Returns true if the image has been set.
bool setImageHasBeenCalled() const {
return fImage != nullptr || this->isEmpty() || this->imageTooLarge();
}
// Return a pointer to the path if the image exists, otherwise return nullptr.
const void* image() const { SkASSERT(this->setImageHasBeenCalled()); return fImage; }
// Return the size of the image.
size_t imageSize() const;
// Path
// If we haven't already tried to associate a path to this glyph
// (i.e. setPathHasBeenCalled() returns false), then use the
// SkScalerContext or SkPath argument to try to do so. N.B. this
// may still result in no path being associated with this glyph,
// e.g. if you pass a null SkPath or the typeface is bitmap-only.
//
// This setPath() call is sticky... once you call it, the glyph
// stays in its state permanently, ignoring any future calls.
//
// Returns true if this is the first time you called setPath()
// and there actually is a path; call path() to get it.
bool setPath(SkArenaAlloc* alloc, SkScalerContext* scalerContext);
bool setPath(SkArenaAlloc* alloc, const SkPath* path, bool hairline);
// Returns true if that path has been set.
bool setPathHasBeenCalled() const { return fPathData != nullptr; }
// Return a pointer to the path if it exists, otherwise return nullptr. Only works if the
// path was previously set.
const SkPath* path() const;
bool pathIsHairline() const;
bool setDrawable(SkArenaAlloc* alloc, SkScalerContext* scalerContext);
bool setDrawable(SkArenaAlloc* alloc, sk_sp<SkDrawable> drawable);
bool setDrawableHasBeenCalled() const { return fDrawableData != nullptr; }
SkDrawable* drawable() const;
// Format
bool isColor() const { return fMaskFormat == SkMask::kARGB32_Format; }
SkMask::Format maskFormat() const { return fMaskFormat; }
size_t formatAlignment() const;
// Bounds
int maxDimension() const { return std::max(fWidth, fHeight); }
SkIRect iRect() const { return SkIRect::MakeXYWH(fLeft, fTop, fWidth, fHeight); }
SkRect rect() const { return SkRect::MakeXYWH(fLeft, fTop, fWidth, fHeight); }
SkGlyphRect glyphRect() const {
return {fLeft, fTop,
SkTo<int16_t>(fLeft + fWidth), SkTo<int16_t>(fTop + fHeight)};
}
int left() const { return fLeft; }
int top() const { return fTop; }
int width() const { return fWidth; }
int height() const { return fHeight; }
bool isEmpty() const {
// fHeight == 0 -> fWidth == 0;
SkASSERT(fHeight != 0 || fWidth == 0);
return fWidth == 0;
}
bool imageTooLarge() const { return fWidth >= kMaxGlyphWidth; }
// Make sure that the intercept information is on the glyph and return it, or return it if it
// already exists.
// * bounds - either end of the gap for the character.
// * scale, xPos - information about how wide the gap is.
// * array - accumulated gaps for many characters if not null.
// * count - the number of gaps.
void ensureIntercepts(const SkScalar bounds[2], SkScalar scale, SkScalar xPos,
SkScalar* array, int* count, SkArenaAlloc* alloc);
void setImage(void* image) { fImage = image; }
private:
// There are two sides to an SkGlyph, the scaler side (things that create glyph data) have
// access to all the fields. Scalers are assumed to maintain all the SkGlyph invariants. The
// consumer side has a tighter interface.
friend class RandomScalerContext;
friend class SkScalerContext;
friend class SkScalerContextProxy;
friend class SkScalerContext_Empty;
friend class SkScalerContext_FreeType;
friend class SkScalerContext_FreeType_Base;
friend class SkScalerContext_DW;
friend class SkScalerContext_GDI;
friend class SkScalerContext_Mac;
friend class SkStrikeClientImpl;
friend class SkTestScalerContext;
friend class SkTestSVGScalerContext;
friend class SkUserScalerContext;
friend class TestSVGTypeface;
friend class TestTypeface;
inline static constexpr uint16_t kMaxGlyphWidth = 1u << 13u;
// Support horizontal and vertical skipping strike-through / underlines.
// The caller walks the linked list looking for a match. For a horizontal underline,
// the fBounds contains the top and bottom of the underline. The fInterval pair contains the
// beginning and end of the intersection of the bounds and the glyph's path.
// If interval[0] >= interval[1], no intersection was found.
struct Intercept {
Intercept* fNext;
SkScalar fBounds[2]; // for horz underlines, the boundaries in Y
SkScalar fInterval[2]; // the outside intersections of the axis and the glyph
};
struct PathData {
Intercept* fIntercept{nullptr};
SkPath fPath;
bool fHasPath{false};
// A normal user-path will have patheffects applied to it and eventually become a dev-path.
// A dev-path is always a fill-path, except when it is hairline.
// The fPath is a dev-path, so sidecar the paths hairline status.
// This allows the user to avoid filling paths which should not be filled.
bool fHairline{false};
};
struct DrawableData {
Intercept* fIntercept{nullptr};
sk_sp<SkDrawable> fDrawable;
bool fHasDrawable{false};
};
size_t allocImage(SkArenaAlloc* alloc);
// path == nullptr indicates that there is no path.
void installPath(SkArenaAlloc* alloc, const SkPath* path, bool hairline);
// drawable == nullptr indicates that there is no path.
void installDrawable(SkArenaAlloc* alloc, sk_sp<SkDrawable> drawable);
// The width and height of the glyph mask.
uint16_t fWidth = 0,
fHeight = 0;
// The offset from the glyphs origin on the baseline to the top left of the glyph mask.
int16_t fTop = 0,
fLeft = 0;
// fImage must remain null if the glyph is empty or if width > kMaxGlyphWidth.
void* fImage = nullptr;
// Path data has tricky state. If the glyph isEmpty, then fPathData should always be nullptr,
// else if fPathData is not null, then a path has been requested. The fPath field of fPathData
// may still be null after the request meaning that there is no path for this glyph.
PathData* fPathData = nullptr;
DrawableData* fDrawableData = nullptr;
// The advance for this glyph.
float fAdvanceX = 0,
fAdvanceY = 0;
SkMask::Format fMaskFormat{SkMask::kBW_Format};
// Used by the SkScalerContext to pass state from generateMetrics to generateImage.
// Usually specifies which glyph representation was used to generate the metrics.
uint16_t fScalerContextBits = 0;
// An SkGlyph can be created with just a packedID, but generally speaking some glyph factory
// needs to actually fill out the glyph before it can be used as part of that system.
SkDEBUGCODE(bool fAdvancesBoundsFormatAndInitialPathDone{false};)
SkPackedGlyphID fID;
};
#endif