blob: 934499832558c3910497881382cb92ce6a7ba157 [file] [log] [blame]
/*
* Copyright 2019 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "tools/gpu/YUVUtils.h"
#include "include/core/SkColorPriv.h"
#include "include/core/SkData.h"
#include "include/gpu/GrRecordingContext.h"
#include "include/gpu/GrYUVABackendTextures.h"
#include "src/codec/SkCodecImageGenerator.h"
#include "src/core/SkYUVAInfoLocation.h"
#include "src/core/SkYUVMath.h"
#include "src/gpu/GrDirectContextPriv.h"
#include "src/gpu/GrRecordingContextPriv.h"
#include "tools/gpu/ManagedBackendTexture.h"
namespace {
static SkPMColor convert_yuva_to_rgba(const float mtx[20], uint8_t yuva[4]) {
uint8_t y = yuva[0];
uint8_t u = yuva[1];
uint8_t v = yuva[2];
uint8_t a = yuva[3];
uint8_t r = SkTPin(SkScalarRoundToInt(mtx[ 0]*y + mtx[ 1]*u + mtx[ 2]*v + mtx[ 4]*255), 0, 255);
uint8_t g = SkTPin(SkScalarRoundToInt(mtx[ 5]*y + mtx[ 6]*u + mtx[ 7]*v + mtx[ 9]*255), 0, 255);
uint8_t b = SkTPin(SkScalarRoundToInt(mtx[10]*y + mtx[11]*u + mtx[12]*v + mtx[14]*255), 0, 255);
return SkPremultiplyARGBInline(a, r, g, b);
}
static uint8_t look_up(SkPoint normPt, const SkPixmap& pmap, SkColorChannel channel) {
SkASSERT(normPt.x() > 0 && normPt.x() < 1.0f);
SkASSERT(normPt.y() > 0 && normPt.y() < 1.0f);
int x = SkScalarFloorToInt(normPt.x() * pmap.width());
int y = SkScalarFloorToInt(normPt.y() * pmap.height());
auto ii = pmap.info().makeColorType(kRGBA_8888_SkColorType).makeWH(1, 1);
uint32_t pixel;
SkAssertResult(pmap.readPixels(ii, &pixel, sizeof(pixel), x, y));
int shift = static_cast<int>(channel) * 8;
return static_cast<uint8_t>((pixel >> shift) & 0xff);
}
class Generator : public SkImageGenerator {
public:
Generator(SkYUVAPixmaps pixmaps, sk_sp<SkColorSpace> cs)
: SkImageGenerator(SkImageInfo::Make(pixmaps.yuvaInfo().dimensions(),
kN32_SkColorType,
kPremul_SkAlphaType,
std::move(cs)))
, fPixmaps(std::move(pixmaps)) {}
protected:
bool onGetPixels(const SkImageInfo& info,
void* pixels,
size_t rowBytes,
const Options&) override {
if (kUnknown_SkColorType == fFlattened.colorType()) {
fFlattened.allocPixels(info);
SkASSERT(info == this->getInfo());
float mtx[20];
SkColorMatrix_YUV2RGB(fPixmaps.yuvaInfo().yuvColorSpace(), mtx);
SkYUVAInfo::YUVALocations yuvaLocations = fPixmaps.toYUVALocations();
SkASSERT(SkYUVAInfo::YUVALocation::AreValidLocations(yuvaLocations));
SkMatrix om = fPixmaps.yuvaInfo().originMatrix();
SkAssertResult(om.invert(&om));
float normX = 1.f/info.width();
float normY = 1.f/info.height();
if (SkEncodedOriginSwapsWidthHeight(fPixmaps.yuvaInfo().origin())) {
using std::swap;
swap(normX, normY);
}
for (int y = 0; y < info.height(); ++y) {
for (int x = 0; x < info.width(); ++x) {
SkPoint xy1 {(x + 0.5f),
(y + 0.5f)};
xy1 = om.mapPoint(xy1);
xy1.fX *= normX;
xy1.fY *= normY;
uint8_t yuva[4] = {0, 0, 0, 255};
for (auto c : {SkYUVAInfo::YUVAChannels::kY,
SkYUVAInfo::YUVAChannels::kU,
SkYUVAInfo::YUVAChannels::kV}) {
const auto& pmap = fPixmaps.plane(yuvaLocations[c].fPlane);
yuva[c] = look_up(xy1, pmap, yuvaLocations[c].fChannel);
}
auto [aPlane, aChan] = yuvaLocations[SkYUVAInfo::YUVAChannels::kA];
if (aPlane >= 0) {
const auto& pmap = fPixmaps.plane(aPlane);
yuva[3] = look_up(xy1, pmap, aChan);
}
// Making premul here.
*fFlattened.getAddr32(x, y) = convert_yuva_to_rgba(mtx, yuva);
}
}
}
return fFlattened.readPixels(info, pixels, rowBytes, 0, 0);
}
bool onQueryYUVAInfo(const SkYUVAPixmapInfo::SupportedDataTypes& types,
SkYUVAPixmapInfo* info) const override {
*info = fPixmaps.pixmapsInfo();
return info->isValid();
}
bool onGetYUVAPlanes(const SkYUVAPixmaps& pixmaps) override {
SkASSERT(pixmaps.yuvaInfo() == fPixmaps.yuvaInfo());
for (int i = 0; i < pixmaps.numPlanes(); ++i) {
SkASSERT(fPixmaps.plane(i).colorType() == pixmaps.plane(i).colorType());
SkASSERT(fPixmaps.plane(i).dimensions() == pixmaps.plane(i).dimensions());
SkASSERT(fPixmaps.plane(i).rowBytes() == pixmaps.plane(i).rowBytes());
fPixmaps.plane(i).readPixels(pixmaps.plane(i));
}
return true;
}
private:
SkYUVAPixmaps fPixmaps;
SkBitmap fFlattened;
};
} // anonymous namespace
namespace sk_gpu_test {
std::unique_ptr<LazyYUVImage> LazyYUVImage::Make(sk_sp<SkData> data,
GrMipmapped mipmapped,
sk_sp<SkColorSpace> cs) {
std::unique_ptr<LazyYUVImage> image(new LazyYUVImage());
if (image->reset(std::move(data), mipmapped, std::move(cs))) {
return image;
} else {
return nullptr;
}
}
std::unique_ptr<LazyYUVImage> LazyYUVImage::Make(SkYUVAPixmaps pixmaps,
GrMipmapped mipmapped,
sk_sp<SkColorSpace> cs) {
std::unique_ptr<LazyYUVImage> image(new LazyYUVImage());
if (image->reset(std::move(pixmaps), mipmapped, std::move(cs))) {
return image;
} else {
return nullptr;
}
}
sk_sp<SkImage> LazyYUVImage::refImage(GrRecordingContext* rContext, Type type) {
if (this->ensureYUVImage(rContext, type)) {
size_t idx = static_cast<size_t>(type);
SkASSERT(idx < SK_ARRAY_COUNT(fYUVImage));
return fYUVImage[idx];
} else {
return nullptr;
}
}
bool LazyYUVImage::reset(sk_sp<SkData> data, GrMipmapped mipmapped, sk_sp<SkColorSpace> cs) {
fMipmapped = mipmapped;
auto codec = SkCodecImageGenerator::MakeFromEncodedCodec(data);
if (!codec) {
return false;
}
SkYUVAPixmapInfo yuvaPixmapInfo;
if (!codec->queryYUVAInfo(SkYUVAPixmapInfo::SupportedDataTypes::All(), &yuvaPixmapInfo)) {
return false;
}
fPixmaps = SkYUVAPixmaps::Allocate(yuvaPixmapInfo);
if (!fPixmaps.isValid()) {
return false;
}
if (!codec->getYUVAPlanes(fPixmaps)) {
return false;
}
fColorSpace = std::move(cs);
// The SkPixmap data is fully configured now for MakeFromYUVAPixmaps once we get a GrContext
return true;
}
bool LazyYUVImage::reset(SkYUVAPixmaps pixmaps, GrMipmapped mipmapped, sk_sp<SkColorSpace> cs) {
if (!pixmaps.isValid()) {
return false;
}
fMipmapped = mipmapped;
if (pixmaps.ownsStorage()) {
fPixmaps = std::move(pixmaps);
} else {
fPixmaps = SkYUVAPixmaps::MakeCopy(std::move(pixmaps));
}
fColorSpace = std::move(cs);
// The SkPixmap data is fully configured now for MakeFromYUVAPixmaps once we get a GrContext
return true;
}
bool LazyYUVImage::ensureYUVImage(GrRecordingContext* rContext, Type type) {
size_t idx = static_cast<size_t>(type);
SkASSERT(idx < SK_ARRAY_COUNT(fYUVImage));
if (fYUVImage[idx] && fYUVImage[idx]->isValid(rContext)) {
return true; // Have already made a YUV image valid for this context.
}
// Try to make a new YUV image for this context.
switch (type) {
case Type::kFromPixmaps:
if (!rContext || rContext->abandoned()) {
return false;
}
fYUVImage[idx] = SkImage::MakeFromYUVAPixmaps(rContext,
fPixmaps,
fMipmapped,
/*limit to max tex size*/ false,
fColorSpace);
break;
case Type::kFromGenerator: {
// Make sure the generator has ownership of its backing planes.
auto generator = std::make_unique<Generator>(fPixmaps, fColorSpace);
fYUVImage[idx] = SkImage::MakeFromGenerator(std::move(generator));
break;
}
case Type::kFromTextures:
if (!rContext || rContext->abandoned()) {
return false;
}
if (fMipmapped == GrMipmapped::kYes) {
// If this becomes necessary we should invoke SkMipmapBuilder here to make mip
// maps from our src data (and then pass a pixmaps array to initialize the planar
// textures.
return false;
}
if (auto direct = rContext->asDirectContext()) {
sk_sp<sk_gpu_test::ManagedBackendTexture> mbets[SkYUVAInfo::kMaxPlanes];
GrBackendTexture textures[SkYUVAInfo::kMaxPlanes];
for (int i = 0; i < fPixmaps.numPlanes(); ++i) {
mbets[i] = sk_gpu_test::ManagedBackendTexture::MakeWithData(
direct,
fPixmaps.plane(i),
kTopLeft_GrSurfaceOrigin,
GrRenderable::kNo,
GrProtected::kNo);
if (mbets[i]) {
textures[i] = mbets[i]->texture();
} else {
return false;
}
}
GrYUVABackendTextures yuvaTextures(fPixmaps.yuvaInfo(),
textures,
kTopLeft_GrSurfaceOrigin);
if (!yuvaTextures.isValid()) {
return false;
}
void* planeRelContext =
sk_gpu_test::ManagedBackendTexture::MakeYUVAReleaseContext(mbets);
fYUVImage[idx] = SkImage::MakeFromYUVATextures(
direct,
yuvaTextures,
fColorSpace,
sk_gpu_test::ManagedBackendTexture::ReleaseProc,
planeRelContext);
}
}
return fYUVImage[idx] != nullptr;
}
} // namespace sk_gpu_test