blob: fef4bf418d277491188bdae4c90b60092c896c50 [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkImage_Lazy.h"
#include "SkBitmap.h"
#include "SkBitmapCache.h"
#include "SkCachedData.h"
#include "SkData.h"
#include "SkImageGenerator.h"
#include "SkImagePriv.h"
#include "SkNextID.h"
#if SK_SUPPORT_GPU
#include "GrContext.h"
#include "GrContextPriv.h"
#include "GrGpuResourcePriv.h"
#include "GrImageTextureMaker.h"
#include "GrResourceKey.h"
#include "GrProxyProvider.h"
#include "GrSamplerState.h"
#include "GrYUVProvider.h"
#include "SkGr.h"
#endif
// Ref-counted tuple(SkImageGenerator, SkMutex) which allows sharing one generator among N images
class SharedGenerator final : public SkNVRefCnt<SharedGenerator> {
public:
static sk_sp<SharedGenerator> Make(std::unique_ptr<SkImageGenerator> gen) {
return gen ? sk_sp<SharedGenerator>(new SharedGenerator(std::move(gen))) : nullptr;
}
// This is thread safe. It is a const field set in the constructor.
const SkImageInfo& getInfo() { return fGenerator->getInfo(); }
private:
explicit SharedGenerator(std::unique_ptr<SkImageGenerator> gen)
: fGenerator(std::move(gen)) {
SkASSERT(fGenerator);
}
friend class ScopedGenerator;
friend class SkImage_Lazy;
std::unique_ptr<SkImageGenerator> fGenerator;
SkMutex fMutex;
};
///////////////////////////////////////////////////////////////////////////////
SkImage_Lazy::Validator::Validator(sk_sp<SharedGenerator> gen, const SkIRect* subset,
sk_sp<SkColorSpace> colorSpace)
: fSharedGenerator(std::move(gen)) {
if (!fSharedGenerator) {
return;
}
// The following generator accessors are safe without acquiring the mutex (const getters).
// TODO: refactor to use a ScopedGenerator instead, for clarity.
const SkImageInfo& info = fSharedGenerator->fGenerator->getInfo();
if (info.isEmpty()) {
fSharedGenerator.reset();
return;
}
fUniqueID = fSharedGenerator->fGenerator->uniqueID();
const SkIRect bounds = SkIRect::MakeWH(info.width(), info.height());
if (subset) {
if (!bounds.contains(*subset)) {
fSharedGenerator.reset();
return;
}
if (*subset != bounds) {
// we need a different uniqueID since we really are a subset of the raw generator
fUniqueID = SkNextID::ImageID();
}
} else {
subset = &bounds;
}
fInfo = info.makeWH(subset->width(), subset->height());
fOrigin = SkIPoint::Make(subset->x(), subset->y());
if (colorSpace) {
fInfo = fInfo.makeColorSpace(colorSpace);
fUniqueID = SkNextID::ImageID();
}
}
///////////////////////////////////////////////////////////////////////////////
// Helper for exclusive access to a shared generator.
class SkImage_Lazy::ScopedGenerator {
public:
ScopedGenerator(const sk_sp<SharedGenerator>& gen)
: fSharedGenerator(gen)
, fAutoAquire(gen->fMutex) {}
SkImageGenerator* operator->() const {
fSharedGenerator->fMutex.assertHeld();
return fSharedGenerator->fGenerator.get();
}
operator SkImageGenerator*() const {
fSharedGenerator->fMutex.assertHeld();
return fSharedGenerator->fGenerator.get();
}
private:
const sk_sp<SharedGenerator>& fSharedGenerator;
SkAutoExclusive fAutoAquire;
};
///////////////////////////////////////////////////////////////////////////////
SkImage_Lazy::SkImage_Lazy(Validator* validator)
: INHERITED(validator->fInfo.width(), validator->fInfo.height(), validator->fUniqueID)
, fSharedGenerator(std::move(validator->fSharedGenerator))
, fInfo(validator->fInfo)
, fOrigin(validator->fOrigin) {
SkASSERT(fSharedGenerator);
fUniqueID = validator->fUniqueID;
}
SkImage_Lazy::~SkImage_Lazy() {
#if SK_SUPPORT_GPU
for (int i = 0; i < fUniqueKeyInvalidatedMessages.count(); ++i) {
SkMessageBus<GrUniqueKeyInvalidatedMessage>::Post(*fUniqueKeyInvalidatedMessages[i]);
}
fUniqueKeyInvalidatedMessages.deleteAll();
#endif
}
//////////////////////////////////////////////////////////////////////////////////////////////////
static bool generate_pixels(SkImageGenerator* gen, const SkPixmap& pmap, int originX, int originY) {
const int genW = gen->getInfo().width();
const int genH = gen->getInfo().height();
const SkIRect srcR = SkIRect::MakeWH(genW, genH);
const SkIRect dstR = SkIRect::MakeXYWH(originX, originY, pmap.width(), pmap.height());
if (!srcR.contains(dstR)) {
return false;
}
// If they are requesting a subset, we have to have a temp allocation for full image, and
// then copy the subset into their allocation
SkBitmap full;
SkPixmap fullPM;
const SkPixmap* dstPM = &pmap;
if (srcR != dstR) {
if (!full.tryAllocPixels(pmap.info().makeWH(genW, genH))) {
return false;
}
if (!full.peekPixels(&fullPM)) {
return false;
}
dstPM = &fullPM;
}
if (!gen->getPixels(dstPM->info(), dstPM->writable_addr(), dstPM->rowBytes())) {
return false;
}
if (srcR != dstR) {
if (!full.readPixels(pmap, originX, originY)) {
return false;
}
}
return true;
}
bool SkImage_Lazy::getROPixels(SkBitmap* bitmap, SkImage::CachingHint chint) const {
auto check_output_bitmap = [bitmap]() {
SkASSERT(bitmap->isImmutable());
SkASSERT(bitmap->getPixels());
(void)bitmap;
};
auto desc = SkBitmapCacheDesc::Make(this);
if (SkBitmapCache::Find(desc, bitmap)) {
check_output_bitmap();
return true;
}
if (SkImage::kAllow_CachingHint == chint) {
SkPixmap pmap;
SkBitmapCache::RecPtr cacheRec = SkBitmapCache::Alloc(desc, fInfo, &pmap);
if (!cacheRec ||
!generate_pixels(ScopedGenerator(fSharedGenerator), pmap,
fOrigin.x(), fOrigin.y())) {
return false;
}
SkBitmapCache::Add(std::move(cacheRec), bitmap);
this->notifyAddedToRasterCache();
} else {
if (!bitmap->tryAllocPixels(fInfo) ||
!generate_pixels(ScopedGenerator(fSharedGenerator), bitmap->pixmap(),
fOrigin.x(), fOrigin.y())) {
return false;
}
bitmap->setImmutable();
}
check_output_bitmap();
return true;
}
//////////////////////////////////////////////////////////////////////////////////////////////////
bool SkImage_Lazy::onReadPixels(const SkImageInfo& dstInfo, void* dstPixels, size_t dstRB,
int srcX, int srcY, CachingHint chint) const {
SkBitmap bm;
if (this->getROPixels(&bm, chint)) {
return bm.readPixels(dstInfo, dstPixels, dstRB, srcX, srcY);
}
return false;
}
sk_sp<SkData> SkImage_Lazy::onRefEncoded() const {
ScopedGenerator generator(fSharedGenerator);
return generator->refEncodedData();
}
bool SkImage_Lazy::onIsValid(GrContext* context) const {
ScopedGenerator generator(fSharedGenerator);
return generator->isValid(context);
}
///////////////////////////////////////////////////////////////////////////////////////////////////
#if SK_SUPPORT_GPU
sk_sp<GrTextureProxy> SkImage_Lazy::asTextureProxyRef(GrContext* context,
const GrSamplerState& params,
SkScalar scaleAdjust[2]) const {
if (!context) {
return nullptr;
}
GrImageTextureMaker textureMaker(context, this, kAllow_CachingHint);
return textureMaker.refTextureProxyForParams(params, scaleAdjust);
}
#endif
sk_sp<SkImage> SkImage_Lazy::onMakeSubset(const SkIRect& subset) const {
SkASSERT(fInfo.bounds().contains(subset));
SkASSERT(fInfo.bounds() != subset);
const SkIRect generatorSubset = subset.makeOffset(fOrigin.x(), fOrigin.y());
Validator validator(fSharedGenerator, &generatorSubset, fInfo.refColorSpace());
return validator ? sk_sp<SkImage>(new SkImage_Lazy(&validator)) : nullptr;
}
sk_sp<SkImage> SkImage_Lazy::onMakeColorSpace(sk_sp<SkColorSpace> target) const {
SkAutoExclusive autoAquire(fOnMakeColorSpaceMutex);
if (fOnMakeColorSpaceTarget &&
SkColorSpace::Equals(target.get(), fOnMakeColorSpaceTarget.get())) {
return fOnMakeColorSpaceResult;
}
const SkIRect generatorSubset =
SkIRect::MakeXYWH(fOrigin.x(), fOrigin.y(), fInfo.width(), fInfo.height());
Validator validator(fSharedGenerator, &generatorSubset, target);
sk_sp<SkImage> result = validator ? sk_sp<SkImage>(new SkImage_Lazy(&validator)) : nullptr;
if (result) {
fOnMakeColorSpaceTarget = target;
fOnMakeColorSpaceResult = result;
}
return result;
}
sk_sp<SkImage> SkImage::MakeFromGenerator(std::unique_ptr<SkImageGenerator> generator,
const SkIRect* subset) {
SkImage_Lazy::Validator validator(SharedGenerator::Make(std::move(generator)), subset, nullptr);
return validator ? sk_make_sp<SkImage_Lazy>(&validator) : nullptr;
}
//////////////////////////////////////////////////////////////////////////////////////////////////
#if SK_SUPPORT_GPU
void SkImage_Lazy::makeCacheKeyFromOrigKey(const GrUniqueKey& origKey,
GrUniqueKey* cacheKey) const {
SkASSERT(!cacheKey->isValid());
if (origKey.isValid()) {
static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain();
GrUniqueKey::Builder builder(cacheKey, origKey, kDomain, 0, "Image");
}
}
class Generator_GrYUVProvider : public GrYUVProvider {
public:
Generator_GrYUVProvider(SkImageGenerator* gen) : fGen(gen) {}
private:
uint32_t onGetID() const override { return fGen->uniqueID(); }
bool onQueryYUVA8(SkYUVASizeInfo* sizeInfo,
SkYUVAIndex yuvaIndices[SkYUVAIndex::kIndexCount],
SkYUVColorSpace* colorSpace) const override {
return fGen->queryYUVA8(sizeInfo, yuvaIndices, colorSpace);
}
bool onGetYUVA8Planes(const SkYUVASizeInfo& sizeInfo,
const SkYUVAIndex yuvaIndices[SkYUVAIndex::kIndexCount],
void* planes[]) override {
return fGen->getYUVA8Planes(sizeInfo, yuvaIndices, planes);
}
SkImageGenerator* fGen;
typedef GrYUVProvider INHERITED;
};
static void set_key_on_proxy(GrProxyProvider* proxyProvider,
GrTextureProxy* proxy, GrTextureProxy* originalProxy,
const GrUniqueKey& key) {
if (key.isValid()) {
if (originalProxy && originalProxy->getUniqueKey().isValid()) {
SkASSERT(originalProxy->getUniqueKey() == key);
SkASSERT(GrMipMapped::kYes == proxy->mipMapped() &&
GrMipMapped::kNo == originalProxy->mipMapped());
// If we had an originalProxy with a valid key, that means there already is a proxy in
// the cache which matches the key, but it does not have mip levels and we require them.
// Thus we must remove the unique key from that proxy.
proxyProvider->removeUniqueKeyFromProxy(key, originalProxy);
}
proxyProvider->assignUniqueKeyToProxy(key, proxy);
}
}
sk_sp<SkCachedData> SkImage_Lazy::getPlanes(SkYUVASizeInfo* yuvaSizeInfo,
SkYUVAIndex yuvaIndices[SkYUVAIndex::kIndexCount],
SkYUVColorSpace* yuvColorSpace,
const void* planes[SkYUVASizeInfo::kMaxCount]) {
ScopedGenerator generator(fSharedGenerator);
Generator_GrYUVProvider provider(generator);
sk_sp<SkCachedData> data = provider.getPlanes(yuvaSizeInfo, yuvaIndices, yuvColorSpace, planes);
if (!data) {
return nullptr;
}
return data;
}
/*
* We have 4 ways to try to return a texture (in sorted order)
*
* 1. Check the cache for a pre-existing one
* 2. Ask the generator to natively create one
* 3. Ask the generator to return YUV planes, which the GPU can convert
* 4. Ask the generator to return RGB(A) data, which the GPU can convert
*/
sk_sp<GrTextureProxy> SkImage_Lazy::lockTextureProxy(
GrContext* ctx,
const GrUniqueKey& origKey,
SkImage::CachingHint chint,
bool willBeMipped,
GrTextureMaker::AllowedTexGenType genType) const {
// Values representing the various texture lock paths we can take. Used for logging the path
// taken to a histogram.
enum LockTexturePath {
kFailure_LockTexturePath,
kPreExisting_LockTexturePath,
kNative_LockTexturePath,
kCompressed_LockTexturePath, // Deprecated
kYUV_LockTexturePath,
kRGBA_LockTexturePath,
};
enum { kLockTexturePathCount = kRGBA_LockTexturePath + 1 };
// Build our texture key.
// Even though some proxies created here may have a specific origin and use that origin, we do
// not include that in the key. Since SkImages are meant to be immutable, a given SkImage will
// always have an associated proxy that is always one origin or the other. It never can change
// origins. Thus we don't need to include that info in the key iteself.
GrUniqueKey key;
this->makeCacheKeyFromOrigKey(origKey, &key);
GrProxyProvider* proxyProvider = ctx->contextPriv().proxyProvider();
sk_sp<GrTextureProxy> proxy;
// 1. Check the cache for a pre-existing one
if (key.isValid()) {
proxy = proxyProvider->findOrCreateProxyByUniqueKey(key, kTopLeft_GrSurfaceOrigin);
if (proxy) {
SK_HISTOGRAM_ENUMERATION("LockTexturePath", kPreExisting_LockTexturePath,
kLockTexturePathCount);
if (!willBeMipped || GrMipMapped::kYes == proxy->mipMapped()) {
return proxy;
}
}
}
// 2. Ask the generator to natively create one
if (!proxy) {
ScopedGenerator generator(fSharedGenerator);
if (GrTextureMaker::AllowedTexGenType::kCheap == genType &&
SkImageGenerator::TexGenType::kCheap != generator->onCanGenerateTexture()) {
return nullptr;
}
if ((proxy = generator->generateTexture(ctx, fInfo, fOrigin, willBeMipped))) {
SK_HISTOGRAM_ENUMERATION("LockTexturePath", kNative_LockTexturePath,
kLockTexturePathCount);
set_key_on_proxy(proxyProvider, proxy.get(), nullptr, key);
if (!willBeMipped || GrMipMapped::kYes == proxy->mipMapped()) {
*fUniqueKeyInvalidatedMessages.append() =
new GrUniqueKeyInvalidatedMessage(key, ctx->uniqueID());
return proxy;
}
}
}
// 3. Ask the generator to return YUV planes, which the GPU can convert. If we will be mipping
// the texture we fall through here and have the CPU generate the mip maps for us.
if (!proxy && !willBeMipped && !ctx->contextPriv().disableGpuYUVConversion()) {
const GrSurfaceDesc desc = GrImageInfoToSurfaceDesc(fInfo);
SkColorType colorType = fInfo.colorType();
GrBackendFormat format =
ctx->contextPriv().caps()->getBackendFormatFromColorType(colorType);
ScopedGenerator generator(fSharedGenerator);
Generator_GrYUVProvider provider(generator);
// The pixels in the texture will be in the generator's color space. If onMakeColorSpace
// has been called then this will not match this image's color space. To correct this, apply
// a color space conversion from the generator's color space to this image's color space.
SkColorSpace* generatorColorSpace = fSharedGenerator->fGenerator->getInfo().colorSpace();
SkColorSpace* thisColorSpace = fInfo.colorSpace();
// TODO: Update to create the mipped surface in the YUV generator and draw the base
// layer directly into the mipped surface.
proxy = provider.refAsTextureProxy(ctx, format, desc, generatorColorSpace, thisColorSpace);
if (proxy) {
SK_HISTOGRAM_ENUMERATION("LockTexturePath", kYUV_LockTexturePath,
kLockTexturePathCount);
set_key_on_proxy(proxyProvider, proxy.get(), nullptr, key);
*fUniqueKeyInvalidatedMessages.append() =
new GrUniqueKeyInvalidatedMessage(key, ctx->uniqueID());
return proxy;
}
}
// 4. Ask the generator to return RGB(A) data, which the GPU can convert
SkBitmap bitmap;
if (!proxy && this->getROPixels(&bitmap, chint)) {
if (willBeMipped) {
proxy = proxyProvider->createMipMapProxyFromBitmap(bitmap);
}
if (!proxy) {
proxy = GrUploadBitmapToTextureProxy(proxyProvider, bitmap);
}
if (proxy && (!willBeMipped || GrMipMapped::kYes == proxy->mipMapped())) {
SK_HISTOGRAM_ENUMERATION("LockTexturePath", kRGBA_LockTexturePath,
kLockTexturePathCount);
set_key_on_proxy(proxyProvider, proxy.get(), nullptr, key);
*fUniqueKeyInvalidatedMessages.append() =
new GrUniqueKeyInvalidatedMessage(key, ctx->uniqueID());
return proxy;
}
}
if (proxy) {
// We need a mipped proxy, but we either found a proxy earlier that wasn't mipped, generated
// a native non mipped proxy, or generated a non-mipped yuv proxy. Thus we generate a new
// mipped surface and copy the original proxy into the base layer. We will then let the gpu
// generate the rest of the mips.
SkASSERT(willBeMipped);
SkASSERT(GrMipMapped::kNo == proxy->mipMapped());
*fUniqueKeyInvalidatedMessages.append() =
new GrUniqueKeyInvalidatedMessage(key, ctx->uniqueID());
if (auto mippedProxy = GrCopyBaseMipMapToTextureProxy(ctx, proxy.get())) {
set_key_on_proxy(proxyProvider, mippedProxy.get(), proxy.get(), key);
return mippedProxy;
}
// We failed to make a mipped proxy with the base copied into it. This could have
// been from failure to make the proxy or failure to do the copy. Thus we will fall
// back to just using the non mipped proxy; See skbug.com/7094.
return proxy;
}
SK_HISTOGRAM_ENUMERATION("LockTexturePath", kFailure_LockTexturePath,
kLockTexturePathCount);
return nullptr;
}
///////////////////////////////////////////////////////////////////////////////////////////////////
#endif