blob: 36c24ca5a5c3b989d06b227194f87d04b9fb6936 [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrVkGpu.h"
#include "GrBackendSemaphore.h"
#include "GrBackendSurface.h"
#include "GrContextOptions.h"
#include "GrGeometryProcessor.h"
#include "GrGpuResourceCacheAccess.h"
#include "GrMesh.h"
#include "GrPipeline.h"
#include "GrRenderTargetPriv.h"
#include "GrTexturePriv.h"
#include "GrVkCommandBuffer.h"
#include "GrVkGpuCommandBuffer.h"
#include "GrVkImage.h"
#include "GrVkIndexBuffer.h"
#include "GrVkMemory.h"
#include "GrVkPipeline.h"
#include "GrVkPipelineState.h"
#include "GrVkRenderPass.h"
#include "GrVkResourceProvider.h"
#include "GrVkSemaphore.h"
#include "GrVkTexelBuffer.h"
#include "GrVkTexture.h"
#include "GrVkTextureRenderTarget.h"
#include "GrVkTransferBuffer.h"
#include "GrVkVertexBuffer.h"
#include "SkConvertPixels.h"
#include "SkMipMap.h"
#include "vk/GrVkInterface.h"
#include "vk/GrVkTypes.h"
#include "SkSLCompiler.h"
#if !defined(SK_BUILD_FOR_WIN)
#include <unistd.h>
#endif // !defined(SK_BUILD_FOR_WIN)
#define VK_CALL(X) GR_VK_CALL(this->vkInterface(), X)
#define VK_CALL_RET(RET, X) GR_VK_CALL_RET(this->vkInterface(), RET, X)
#define VK_CALL_ERRCHECK(X) GR_VK_CALL_ERRCHECK(this->vkInterface(), X)
#ifdef SK_ENABLE_VK_LAYERS
VKAPI_ATTR VkBool32 VKAPI_CALL DebugReportCallback(
VkDebugReportFlagsEXT flags,
VkDebugReportObjectTypeEXT objectType,
uint64_t object,
size_t location,
int32_t messageCode,
const char* pLayerPrefix,
const char* pMessage,
void* pUserData) {
if (flags & VK_DEBUG_REPORT_ERROR_BIT_EXT) {
SkDebugf("Vulkan error [%s]: code: %d: %s\n", pLayerPrefix, messageCode, pMessage);
return VK_TRUE; // skip further layers
} else if (flags & VK_DEBUG_REPORT_WARNING_BIT_EXT) {
SkDebugf("Vulkan warning [%s]: code: %d: %s\n", pLayerPrefix, messageCode, pMessage);
} else if (flags & VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT) {
SkDebugf("Vulkan perf warning [%s]: code: %d: %s\n", pLayerPrefix, messageCode, pMessage);
} else {
SkDebugf("Vulkan info/debug [%s]: code: %d: %s\n", pLayerPrefix, messageCode, pMessage);
}
return VK_FALSE;
}
#endif
sk_sp<GrGpu> GrVkGpu::Make(GrBackendContext backendContext, const GrContextOptions& options,
GrContext* context) {
const auto* backend = reinterpret_cast<const GrVkBackendContext*>(backendContext);
return Make(sk_ref_sp(backend), options, context);
}
sk_sp<GrGpu> GrVkGpu::Make(sk_sp<const GrVkBackendContext> backendContext,
const GrContextOptions& options, GrContext* context) {
if (!backendContext) {
return nullptr;
}
if (!backendContext->fInterface->validate(backendContext->fExtensions)) {
return nullptr;
}
return sk_sp<GrGpu>(new GrVkGpu(context, options, std::move(backendContext)));
}
////////////////////////////////////////////////////////////////////////////////
GrVkGpu::GrVkGpu(GrContext* context, const GrContextOptions& options,
sk_sp<const GrVkBackendContext> backendCtx)
: INHERITED(context)
, fBackendContext(std::move(backendCtx))
, fDevice(fBackendContext->fDevice)
, fQueue(fBackendContext->fQueue)
, fResourceProvider(this)
, fDisconnected(false) {
#ifdef SK_ENABLE_VK_LAYERS
fCallback = VK_NULL_HANDLE;
if (fBackendContext->fExtensions & kEXT_debug_report_GrVkExtensionFlag) {
// Setup callback creation information
VkDebugReportCallbackCreateInfoEXT callbackCreateInfo;
callbackCreateInfo.sType = VK_STRUCTURE_TYPE_DEBUG_REPORT_CREATE_INFO_EXT;
callbackCreateInfo.pNext = nullptr;
callbackCreateInfo.flags = VK_DEBUG_REPORT_ERROR_BIT_EXT |
VK_DEBUG_REPORT_WARNING_BIT_EXT |
//VK_DEBUG_REPORT_INFORMATION_BIT_EXT |
//VK_DEBUG_REPORT_DEBUG_BIT_EXT |
VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT;
callbackCreateInfo.pfnCallback = &DebugReportCallback;
callbackCreateInfo.pUserData = nullptr;
// Register the callback
GR_VK_CALL_ERRCHECK(this->vkInterface(),
CreateDebugReportCallbackEXT(fBackendContext->fInstance,
&callbackCreateInfo, nullptr, &fCallback));
}
#endif
fCompiler = new SkSL::Compiler();
fVkCaps.reset(new GrVkCaps(options, this->vkInterface(), fBackendContext->fPhysicalDevice,
fBackendContext->fFeatures, fBackendContext->fExtensions));
fCaps.reset(SkRef(fVkCaps.get()));
VK_CALL(GetPhysicalDeviceProperties(fBackendContext->fPhysicalDevice, &fPhysDevProps));
VK_CALL(GetPhysicalDeviceMemoryProperties(fBackendContext->fPhysicalDevice, &fPhysDevMemProps));
const VkCommandPoolCreateInfo cmdPoolInfo = {
VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO, // sType
nullptr, // pNext
VK_COMMAND_POOL_CREATE_TRANSIENT_BIT |
VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT, // CmdPoolCreateFlags
fBackendContext->fGraphicsQueueIndex, // queueFamilyIndex
};
GR_VK_CALL_ERRCHECK(this->vkInterface(), CreateCommandPool(fDevice, &cmdPoolInfo, nullptr,
&fCmdPool));
// must call this after creating the CommandPool
fResourceProvider.init();
fCurrentCmdBuffer = fResourceProvider.findOrCreatePrimaryCommandBuffer();
SkASSERT(fCurrentCmdBuffer);
fCurrentCmdBuffer->begin(this);
// set up our heaps
fHeaps[kLinearImage_Heap].reset(new GrVkHeap(this, GrVkHeap::kSubAlloc_Strategy, 16*1024*1024));
fHeaps[kOptimalImage_Heap].reset(new GrVkHeap(this, GrVkHeap::kSubAlloc_Strategy, 64*1024*1024));
fHeaps[kSmallOptimalImage_Heap].reset(new GrVkHeap(this, GrVkHeap::kSubAlloc_Strategy, 2*1024*1024));
fHeaps[kVertexBuffer_Heap].reset(new GrVkHeap(this, GrVkHeap::kSingleAlloc_Strategy, 0));
fHeaps[kIndexBuffer_Heap].reset(new GrVkHeap(this, GrVkHeap::kSingleAlloc_Strategy, 0));
fHeaps[kUniformBuffer_Heap].reset(new GrVkHeap(this, GrVkHeap::kSubAlloc_Strategy, 256*1024));
fHeaps[kTexelBuffer_Heap].reset(new GrVkHeap(this, GrVkHeap::kSingleAlloc_Strategy, 0));
fHeaps[kCopyReadBuffer_Heap].reset(new GrVkHeap(this, GrVkHeap::kSingleAlloc_Strategy, 0));
fHeaps[kCopyWriteBuffer_Heap].reset(new GrVkHeap(this, GrVkHeap::kSubAlloc_Strategy, 16*1024*1024));
}
void GrVkGpu::destroyResources() {
if (fCurrentCmdBuffer) {
fCurrentCmdBuffer->end(this);
fCurrentCmdBuffer->unref(this);
}
// wait for all commands to finish
fResourceProvider.checkCommandBuffers();
VkResult res = VK_CALL(QueueWaitIdle(fQueue));
// On windows, sometimes calls to QueueWaitIdle return before actually signalling the fences
// on the command buffers even though they have completed. This causes an assert to fire when
// destroying the command buffers. Currently this ony seems to happen on windows, so we add a
// sleep to make sure the fence signals.
#ifdef SK_DEBUG
if (this->vkCaps().mustSleepOnTearDown()) {
#if defined(SK_BUILD_FOR_WIN)
Sleep(10); // In milliseconds
#else
sleep(1); // In seconds
#endif
}
#endif
#ifdef SK_DEBUG
SkASSERT(VK_SUCCESS == res || VK_ERROR_DEVICE_LOST == res);
#endif
for (int i = 0; i < fSemaphoresToWaitOn.count(); ++i) {
fSemaphoresToWaitOn[i]->unref(this);
}
fSemaphoresToWaitOn.reset();
for (int i = 0; i < fSemaphoresToSignal.count(); ++i) {
fSemaphoresToSignal[i]->unref(this);
}
fSemaphoresToSignal.reset();
fCopyManager.destroyResources(this);
// must call this just before we destroy the command pool and VkDevice
fResourceProvider.destroyResources(VK_ERROR_DEVICE_LOST == res);
if (fCmdPool != VK_NULL_HANDLE) {
VK_CALL(DestroyCommandPool(fDevice, fCmdPool, nullptr));
}
#ifdef SK_ENABLE_VK_LAYERS
if (fCallback) {
VK_CALL(DestroyDebugReportCallbackEXT(fBackendContext->fInstance, fCallback, nullptr));
}
#endif
}
GrVkGpu::~GrVkGpu() {
if (!fDisconnected) {
this->destroyResources();
}
delete fCompiler;
}
void GrVkGpu::disconnect(DisconnectType type) {
INHERITED::disconnect(type);
if (!fDisconnected) {
if (DisconnectType::kCleanup == type) {
this->destroyResources();
} else {
fCurrentCmdBuffer->unrefAndAbandon();
for (int i = 0; i < fSemaphoresToWaitOn.count(); ++i) {
fSemaphoresToWaitOn[i]->unrefAndAbandon();
}
for (int i = 0; i < fSemaphoresToSignal.count(); ++i) {
fSemaphoresToSignal[i]->unrefAndAbandon();
}
fCopyManager.abandonResources();
// must call this just before we destroy the command pool and VkDevice
fResourceProvider.abandonResources();
}
fSemaphoresToWaitOn.reset();
fSemaphoresToSignal.reset();
#ifdef SK_ENABLE_VK_LAYERS
fCallback = VK_NULL_HANDLE;
#endif
fCurrentCmdBuffer = nullptr;
fCmdPool = VK_NULL_HANDLE;
fDisconnected = true;
}
}
///////////////////////////////////////////////////////////////////////////////
GrGpuRTCommandBuffer* GrVkGpu::createCommandBuffer(
GrRenderTarget* rt, GrSurfaceOrigin origin,
const GrGpuRTCommandBuffer::LoadAndStoreInfo& colorInfo,
const GrGpuRTCommandBuffer::StencilLoadAndStoreInfo& stencilInfo) {
return new GrVkGpuRTCommandBuffer(this, rt, origin, colorInfo, stencilInfo);
}
GrGpuTextureCommandBuffer* GrVkGpu::createCommandBuffer(GrTexture* texture,
GrSurfaceOrigin origin) {
return new GrVkGpuTextureCommandBuffer(this, texture, origin);
}
void GrVkGpu::submitCommandBuffer(SyncQueue sync) {
SkASSERT(fCurrentCmdBuffer);
fCurrentCmdBuffer->end(this);
fCurrentCmdBuffer->submitToQueue(this, fQueue, sync, fSemaphoresToSignal, fSemaphoresToWaitOn);
for (int i = 0; i < fSemaphoresToWaitOn.count(); ++i) {
fSemaphoresToWaitOn[i]->unref(this);
}
fSemaphoresToWaitOn.reset();
for (int i = 0; i < fSemaphoresToSignal.count(); ++i) {
fSemaphoresToSignal[i]->unref(this);
}
fSemaphoresToSignal.reset();
fResourceProvider.checkCommandBuffers();
// Release old command buffer and create a new one
fCurrentCmdBuffer->unref(this);
fCurrentCmdBuffer = fResourceProvider.findOrCreatePrimaryCommandBuffer();
SkASSERT(fCurrentCmdBuffer);
fCurrentCmdBuffer->begin(this);
}
///////////////////////////////////////////////////////////////////////////////
GrBuffer* GrVkGpu::onCreateBuffer(size_t size, GrBufferType type, GrAccessPattern accessPattern,
const void* data) {
GrBuffer* buff;
switch (type) {
case kVertex_GrBufferType:
SkASSERT(kDynamic_GrAccessPattern == accessPattern ||
kStatic_GrAccessPattern == accessPattern);
buff = GrVkVertexBuffer::Create(this, size, kDynamic_GrAccessPattern == accessPattern);
break;
case kIndex_GrBufferType:
SkASSERT(kDynamic_GrAccessPattern == accessPattern ||
kStatic_GrAccessPattern == accessPattern);
buff = GrVkIndexBuffer::Create(this, size, kDynamic_GrAccessPattern == accessPattern);
break;
case kXferCpuToGpu_GrBufferType:
SkASSERT(kDynamic_GrAccessPattern == accessPattern ||
kStream_GrAccessPattern == accessPattern);
buff = GrVkTransferBuffer::Create(this, size, GrVkBuffer::kCopyRead_Type);
break;
case kXferGpuToCpu_GrBufferType:
SkASSERT(kDynamic_GrAccessPattern == accessPattern ||
kStream_GrAccessPattern == accessPattern);
buff = GrVkTransferBuffer::Create(this, size, GrVkBuffer::kCopyWrite_Type);
break;
case kTexel_GrBufferType:
SkASSERT(kDynamic_GrAccessPattern == accessPattern ||
kStatic_GrAccessPattern == accessPattern);
buff = GrVkTexelBuffer::Create(this, size, kDynamic_GrAccessPattern == accessPattern);
break;
case kDrawIndirect_GrBufferType:
SK_ABORT("DrawIndirect Buffers not supported in vulkan backend.");
return nullptr;
default:
SK_ABORT("Unknown buffer type.");
return nullptr;
}
if (data && buff) {
buff->updateData(data, size);
}
return buff;
}
////////////////////////////////////////////////////////////////////////////////
bool GrVkGpu::onGetWritePixelsInfo(GrSurface* dstSurface, GrSurfaceOrigin dstOrigin,
int width, int height,
GrPixelConfig srcConfig, DrawPreference* drawPreference,
WritePixelTempDrawInfo* tempDrawInfo) {
GrRenderTarget* renderTarget = dstSurface->asRenderTarget();
// Start off assuming no swizzling
tempDrawInfo->fSwizzle = GrSwizzle::RGBA();
tempDrawInfo->fWriteConfig = srcConfig;
// These settings we will always want if a temp draw is performed. Initially set the config
// to srcConfig, though that may be modified if we decide to do a R/B swap
tempDrawInfo->fTempSurfaceDesc.fFlags = kNone_GrSurfaceFlags;
tempDrawInfo->fTempSurfaceDesc.fConfig = srcConfig;
tempDrawInfo->fTempSurfaceDesc.fWidth = width;
tempDrawInfo->fTempSurfaceDesc.fHeight = height;
tempDrawInfo->fTempSurfaceDesc.fSampleCnt = 1;
tempDrawInfo->fTempSurfaceDesc.fOrigin = kTopLeft_GrSurfaceOrigin;
if (dstSurface->config() == srcConfig) {
// We only support writing pixels to textures. Forcing a draw lets us write to pure RTs.
if (!dstSurface->asTexture()) {
ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference);
}
// If the dst is MSAA, we have to draw, or we'll just be writing to the resolve target.
if (renderTarget && renderTarget->numColorSamples() > 1) {
ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference);
}
return true;
}
// Any config change requires a draw
ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference);
bool configsAreRBSwaps = GrPixelConfigSwapRAndB(srcConfig) == dstSurface->config();
if (!this->vkCaps().isConfigTexturable(srcConfig) && configsAreRBSwaps) {
tempDrawInfo->fTempSurfaceDesc.fConfig = dstSurface->config();
tempDrawInfo->fSwizzle = GrSwizzle::BGRA();
tempDrawInfo->fWriteConfig = dstSurface->config();
}
return true;
}
bool GrVkGpu::onWritePixels(GrSurface* surface, GrSurfaceOrigin origin,
int left, int top, int width, int height,
GrPixelConfig config,
const GrMipLevel texels[], int mipLevelCount) {
GrVkTexture* vkTex = static_cast<GrVkTexture*>(surface->asTexture());
if (!vkTex) {
return false;
}
// Make sure we have at least the base level
if (!mipLevelCount || !texels[0].fPixels) {
return false;
}
// We assume Vulkan doesn't do sRGB <-> linear conversions when reading and writing pixels.
if (GrPixelConfigIsSRGB(surface->config()) != GrPixelConfigIsSRGB(config)) {
return false;
}
bool success = false;
bool linearTiling = vkTex->isLinearTiled();
if (linearTiling) {
if (mipLevelCount > 1) {
SkDebugf("Can't upload mipmap data to linear tiled texture");
return false;
}
if (VK_IMAGE_LAYOUT_PREINITIALIZED != vkTex->currentLayout()) {
// Need to change the layout to general in order to perform a host write
vkTex->setImageLayout(this,
VK_IMAGE_LAYOUT_GENERAL,
VK_ACCESS_HOST_WRITE_BIT,
VK_PIPELINE_STAGE_HOST_BIT,
false);
this->submitCommandBuffer(kForce_SyncQueue);
}
success = this->uploadTexDataLinear(vkTex, origin, left, top, width, height, config,
texels[0].fPixels, texels[0].fRowBytes);
} else {
int currentMipLevels = vkTex->texturePriv().maxMipMapLevel() + 1;
if (mipLevelCount > currentMipLevels) {
if (!vkTex->reallocForMipmap(this, mipLevelCount)) {
return false;
}
}
success = this->uploadTexDataOptimal(vkTex, origin, left, top, width, height, config,
texels, mipLevelCount);
}
return success;
}
bool GrVkGpu::onTransferPixels(GrTexture* texture,
int left, int top, int width, int height,
GrPixelConfig config, GrBuffer* transferBuffer,
size_t bufferOffset, size_t rowBytes) {
// Vulkan only supports 4-byte aligned offsets
if (SkToBool(bufferOffset & 0x2)) {
return false;
}
GrVkTexture* vkTex = static_cast<GrVkTexture*>(texture);
if (!vkTex) {
return false;
}
GrVkTransferBuffer* vkBuffer = static_cast<GrVkTransferBuffer*>(transferBuffer);
if (!vkBuffer) {
return false;
}
// We assume Vulkan doesn't do sRGB <-> linear conversions when reading and writing pixels.
if (GrPixelConfigIsSRGB(texture->config()) != GrPixelConfigIsSRGB(config)) {
return false;
}
SkDEBUGCODE(
SkIRect subRect = SkIRect::MakeXYWH(left, top, width, height);
SkIRect bounds = SkIRect::MakeWH(texture->width(), texture->height());
SkASSERT(bounds.contains(subRect));
)
size_t bpp = GrBytesPerPixel(config);
if (rowBytes == 0) {
rowBytes = bpp*width;
}
// Set up copy region
VkBufferImageCopy region;
memset(&region, 0, sizeof(VkBufferImageCopy));
region.bufferOffset = bufferOffset;
region.bufferRowLength = (uint32_t)(rowBytes/bpp);
region.bufferImageHeight = 0;
region.imageSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 };
region.imageOffset = { left, top, 0 };
region.imageExtent = { (uint32_t)width, (uint32_t)height, 1 };
// Change layout of our target so it can be copied to
vkTex->setImageLayout(this,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_ACCESS_TRANSFER_WRITE_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
false);
// Copy the buffer to the image
fCurrentCmdBuffer->copyBufferToImage(this,
vkBuffer,
vkTex,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1,
&region);
vkTex->texturePriv().markMipMapsDirty();
return true;
}
void GrVkGpu::resolveImage(GrSurface* dst, GrSurfaceOrigin dstOrigin,
GrVkRenderTarget* src, GrSurfaceOrigin srcOrigin,
const SkIRect& srcRect, const SkIPoint& dstPoint) {
SkASSERT(dst);
SkASSERT(src && src->numColorSamples() > 1 && src->msaaImage());
if (this->vkCaps().mustSubmitCommandsBeforeCopyOp()) {
this->submitCommandBuffer(GrVkGpu::kSkip_SyncQueue);
}
// Flip rect if necessary
SkIRect srcVkRect = srcRect;
int32_t dstY = dstPoint.fY;
if (kBottomLeft_GrSurfaceOrigin == srcOrigin) {
SkASSERT(kBottomLeft_GrSurfaceOrigin == dstOrigin);
srcVkRect.fTop = src->height() - srcRect.fBottom;
srcVkRect.fBottom = src->height() - srcRect.fTop;
dstY = dst->height() - dstPoint.fY - srcVkRect.height();
}
VkImageResolve resolveInfo;
resolveInfo.srcSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 };
resolveInfo.srcOffset = { srcVkRect.fLeft, srcVkRect.fTop, 0 };
resolveInfo.dstSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 };
resolveInfo.dstOffset = { dstPoint.fX, dstY, 0 };
resolveInfo.extent = { (uint32_t)srcVkRect.width(), (uint32_t)srcVkRect.height(), 1 };
GrVkImage* dstImage;
GrRenderTarget* dstRT = dst->asRenderTarget();
if (dstRT) {
GrVkRenderTarget* vkRT = static_cast<GrVkRenderTarget*>(dstRT);
dstImage = vkRT;
} else {
SkASSERT(dst->asTexture());
dstImage = static_cast<GrVkTexture*>(dst->asTexture());
}
dstImage->setImageLayout(this,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_ACCESS_TRANSFER_WRITE_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
false);
src->msaaImage()->setImageLayout(this,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
VK_ACCESS_TRANSFER_READ_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
false);
fCurrentCmdBuffer->resolveImage(this, *src->msaaImage(), *dstImage, 1, &resolveInfo);
}
void GrVkGpu::internalResolveRenderTarget(GrRenderTarget* target, GrSurfaceOrigin origin,
bool requiresSubmit) {
if (target->needsResolve()) {
SkASSERT(target->numColorSamples() > 1);
GrVkRenderTarget* rt = static_cast<GrVkRenderTarget*>(target);
SkASSERT(rt->msaaImage());
const SkIRect& srcRect = rt->getResolveRect();
this->resolveImage(target, origin, rt, origin, srcRect,
SkIPoint::Make(srcRect.fLeft, srcRect.fTop));
rt->flagAsResolved();
if (requiresSubmit) {
this->submitCommandBuffer(kSkip_SyncQueue);
}
}
}
bool GrVkGpu::uploadTexDataLinear(GrVkTexture* tex, GrSurfaceOrigin texOrigin,
int left, int top, int width, int height,
GrPixelConfig dataConfig,
const void* data,
size_t rowBytes) {
SkASSERT(data);
SkASSERT(tex->isLinearTiled());
SkDEBUGCODE(
SkIRect subRect = SkIRect::MakeXYWH(left, top, width, height);
SkIRect bounds = SkIRect::MakeWH(tex->width(), tex->height());
SkASSERT(bounds.contains(subRect));
)
size_t bpp = GrBytesPerPixel(dataConfig);
size_t trimRowBytes = width * bpp;
if (!rowBytes) {
rowBytes = trimRowBytes;
}
SkASSERT(VK_IMAGE_LAYOUT_PREINITIALIZED == tex->currentLayout() ||
VK_IMAGE_LAYOUT_GENERAL == tex->currentLayout());
const VkImageSubresource subres = {
VK_IMAGE_ASPECT_COLOR_BIT,
0, // mipLevel
0, // arraySlice
};
VkSubresourceLayout layout;
VkResult err;
const GrVkInterface* interface = this->vkInterface();
GR_VK_CALL(interface, GetImageSubresourceLayout(fDevice,
tex->image(),
&subres,
&layout));
int texTop = kBottomLeft_GrSurfaceOrigin == texOrigin ? tex->height() - top - height : top;
const GrVkAlloc& alloc = tex->alloc();
VkDeviceSize offset = alloc.fOffset + texTop*layout.rowPitch + left*bpp;
VkDeviceSize offsetDiff = 0;
VkDeviceSize size = height*layout.rowPitch;
// For Noncoherent buffers we want to make sure the range that we map, both offset and size,
// are aligned to the nonCoherentAtomSize limit. We may have to move the initial offset back to
// meet the alignment requirements. So we track how far we move back and then adjust the mapped
// ptr back up so that this is opaque to the caller.
if (SkToBool(alloc.fFlags & GrVkAlloc::kNoncoherent_Flag)) {
VkDeviceSize alignment = this->physicalDeviceProperties().limits.nonCoherentAtomSize;
offsetDiff = offset & (alignment - 1);
offset = offset - offsetDiff;
// Make size of the map aligned to nonCoherentAtomSize
size = (size + alignment - 1) & ~(alignment - 1);
}
SkASSERT(offset >= alloc.fOffset);
SkASSERT(size <= alloc.fOffset + alloc.fSize);
void* mapPtr;
err = GR_VK_CALL(interface, MapMemory(fDevice, alloc.fMemory, offset, size, 0, &mapPtr));
if (err) {
return false;
}
mapPtr = reinterpret_cast<char*>(mapPtr) + offsetDiff;
if (kBottomLeft_GrSurfaceOrigin == texOrigin) {
// copy into buffer by rows
const char* srcRow = reinterpret_cast<const char*>(data);
char* dstRow = reinterpret_cast<char*>(mapPtr)+(height - 1)*layout.rowPitch;
for (int y = 0; y < height; y++) {
memcpy(dstRow, srcRow, trimRowBytes);
srcRow += rowBytes;
dstRow -= layout.rowPitch;
}
} else {
SkRectMemcpy(mapPtr, static_cast<size_t>(layout.rowPitch), data, rowBytes, trimRowBytes,
height);
}
GrVkMemory::FlushMappedAlloc(this, alloc, size);
GR_VK_CALL(interface, UnmapMemory(fDevice, alloc.fMemory));
return true;
}
bool GrVkGpu::uploadTexDataOptimal(GrVkTexture* tex, GrSurfaceOrigin texOrigin,
int left, int top, int width, int height,
GrPixelConfig dataConfig,
const GrMipLevel texels[], int mipLevelCount) {
SkASSERT(!tex->isLinearTiled());
// The assumption is either that we have no mipmaps, or that our rect is the entire texture
SkASSERT(1 == mipLevelCount ||
(0 == left && 0 == top && width == tex->width() && height == tex->height()));
// We assume that if the texture has mip levels, we either upload to all the levels or just the
// first.
SkASSERT(1 == mipLevelCount || mipLevelCount == (tex->texturePriv().maxMipMapLevel() + 1));
if (width == 0 || height == 0) {
return false;
}
SkASSERT(this->caps()->isConfigTexturable(tex->config()));
size_t bpp = GrBytesPerPixel(dataConfig);
// texels is const.
// But we may need to adjust the fPixels ptr based on the copyRect, or fRowBytes.
// Because of this we need to make a non-const shallow copy of texels.
SkAutoTMalloc<GrMipLevel> texelsShallowCopy;
if (mipLevelCount) {
texelsShallowCopy.reset(mipLevelCount);
memcpy(texelsShallowCopy.get(), texels, mipLevelCount*sizeof(GrMipLevel));
}
// Determine whether we need to flip when we copy into the buffer
bool flipY = (kBottomLeft_GrSurfaceOrigin == texOrigin && mipLevelCount);
SkTArray<size_t> individualMipOffsets(mipLevelCount);
individualMipOffsets.push_back(0);
size_t combinedBufferSize = width * bpp * height;
int currentWidth = width;
int currentHeight = height;
if (mipLevelCount > 0 && !texelsShallowCopy[0].fPixels) {
combinedBufferSize = 0;
}
// The alignment must be at least 4 bytes and a multiple of the bytes per pixel of the image
// config. This works with the assumption that the bytes in pixel config is always a power of 2.
SkASSERT((bpp & (bpp - 1)) == 0);
const size_t alignmentMask = 0x3 | (bpp - 1);
for (int currentMipLevel = 1; currentMipLevel < mipLevelCount; currentMipLevel++) {
currentWidth = SkTMax(1, currentWidth/2);
currentHeight = SkTMax(1, currentHeight/2);
if (texelsShallowCopy[currentMipLevel].fPixels) {
const size_t trimmedSize = currentWidth * bpp * currentHeight;
const size_t alignmentDiff = combinedBufferSize & alignmentMask;
if (alignmentDiff != 0) {
combinedBufferSize += alignmentMask - alignmentDiff + 1;
}
individualMipOffsets.push_back(combinedBufferSize);
combinedBufferSize += trimmedSize;
} else {
individualMipOffsets.push_back(0);
}
}
if (0 == combinedBufferSize) {
// We don't actually have any data to upload so just return success
return true;
}
// allocate buffer to hold our mip data
GrVkTransferBuffer* transferBuffer =
GrVkTransferBuffer::Create(this, combinedBufferSize, GrVkBuffer::kCopyRead_Type);
if(!transferBuffer) {
return false;
}
char* buffer = (char*) transferBuffer->map();
SkTArray<VkBufferImageCopy> regions(mipLevelCount);
currentWidth = width;
currentHeight = height;
int layerHeight = tex->height();
for (int currentMipLevel = 0; currentMipLevel < mipLevelCount; currentMipLevel++) {
if (texelsShallowCopy[currentMipLevel].fPixels) {
SkASSERT(1 == mipLevelCount || currentHeight == layerHeight);
const size_t trimRowBytes = currentWidth * bpp;
const size_t rowBytes = texelsShallowCopy[currentMipLevel].fRowBytes
? texelsShallowCopy[currentMipLevel].fRowBytes
: trimRowBytes;
// copy data into the buffer, skipping the trailing bytes
char* dst = buffer + individualMipOffsets[currentMipLevel];
const char* src = (const char*)texelsShallowCopy[currentMipLevel].fPixels;
if (flipY) {
src += (currentHeight - 1) * rowBytes;
for (int y = 0; y < currentHeight; y++) {
memcpy(dst, src, trimRowBytes);
src -= rowBytes;
dst += trimRowBytes;
}
} else {
SkRectMemcpy(dst, trimRowBytes, src, rowBytes, trimRowBytes, currentHeight);
}
VkBufferImageCopy& region = regions.push_back();
memset(&region, 0, sizeof(VkBufferImageCopy));
region.bufferOffset = transferBuffer->offset() + individualMipOffsets[currentMipLevel];
region.bufferRowLength = currentWidth;
region.bufferImageHeight = currentHeight;
region.imageSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, SkToU32(currentMipLevel), 0, 1 };
region.imageOffset = { left, flipY ? layerHeight - top - currentHeight : top, 0 };
region.imageExtent = { (uint32_t)currentWidth, (uint32_t)currentHeight, 1 };
}
currentWidth = SkTMax(1, currentWidth/2);
currentHeight = SkTMax(1, currentHeight/2);
layerHeight = currentHeight;
}
// no need to flush non-coherent memory, unmap will do that for us
transferBuffer->unmap();
// Change layout of our target so it can be copied to
tex->setImageLayout(this,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_ACCESS_TRANSFER_WRITE_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
false);
// Copy the buffer to the image
fCurrentCmdBuffer->copyBufferToImage(this,
transferBuffer,
tex,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
regions.count(),
regions.begin());
transferBuffer->unref();
if (1 == mipLevelCount) {
tex->texturePriv().markMipMapsDirty();
}
return true;
}
////////////////////////////////////////////////////////////////////////////////
sk_sp<GrTexture> GrVkGpu::onCreateTexture(const GrSurfaceDesc& desc, SkBudgeted budgeted,
const GrMipLevel texels[], int mipLevelCount) {
bool renderTarget = SkToBool(desc.fFlags & kRenderTarget_GrSurfaceFlag);
VkFormat pixelFormat;
if (!GrPixelConfigToVkFormat(desc.fConfig, &pixelFormat)) {
return nullptr;
}
if (!fVkCaps->isConfigTexturable(desc.fConfig)) {
return nullptr;
}
if (renderTarget && !fVkCaps->isConfigRenderable(desc.fConfig, false)) {
return nullptr;
}
VkImageUsageFlags usageFlags = VK_IMAGE_USAGE_SAMPLED_BIT;
if (renderTarget) {
usageFlags |= VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
}
// For now we will set the VK_IMAGE_USAGE_TRANSFER_DESTINATION_BIT and
// VK_IMAGE_USAGE_TRANSFER_SOURCE_BIT on every texture since we do not know whether or not we
// will be using this texture in some copy or not. Also this assumes, as is the current case,
// that all render targets in vulkan are also textures. If we change this practice of setting
// both bits, we must make sure to set the destination bit if we are uploading srcData to the
// texture.
usageFlags |= VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
// This ImageDesc refers to the texture that will be read by the client. Thus even if msaa is
// requested, this ImageDesc describes the resolved texture. Therefore we always have samples set
// to 1.
int mipLevels = !mipLevelCount ? 1 : mipLevelCount;
GrVkImage::ImageDesc imageDesc;
imageDesc.fImageType = VK_IMAGE_TYPE_2D;
imageDesc.fFormat = pixelFormat;
imageDesc.fWidth = desc.fWidth;
imageDesc.fHeight = desc.fHeight;
imageDesc.fLevels = mipLevels;
imageDesc.fSamples = 1;
imageDesc.fImageTiling = VK_IMAGE_TILING_OPTIMAL;
imageDesc.fUsageFlags = usageFlags;
imageDesc.fMemProps = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
GrMipMapsStatus mipMapsStatus = GrMipMapsStatus::kNotAllocated;
if (mipLevels > 1) {
mipMapsStatus = GrMipMapsStatus::kValid;
for (int i = 0; i < mipLevels; ++i) {
if (!texels[i].fPixels) {
mipMapsStatus = GrMipMapsStatus::kDirty;
break;
}
}
}
sk_sp<GrVkTexture> tex;
if (renderTarget) {
tex = GrVkTextureRenderTarget::CreateNewTextureRenderTarget(this, budgeted, desc,
imageDesc,
mipMapsStatus);
} else {
tex = GrVkTexture::CreateNewTexture(this, budgeted, desc, imageDesc,
mipMapsStatus);
}
if (!tex) {
return nullptr;
}
if (mipLevelCount) {
if (!this->uploadTexDataOptimal(tex.get(), desc.fOrigin, 0, 0, desc.fWidth, desc.fHeight,
desc.fConfig, texels, mipLevelCount)) {
tex->unref();
return nullptr;
}
}
if (desc.fFlags & kPerformInitialClear_GrSurfaceFlag) {
VkClearColorValue zeroClearColor;
memset(&zeroClearColor, 0, sizeof(zeroClearColor));
VkImageSubresourceRange range;
range.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
range.baseArrayLayer = 0;
range.baseMipLevel = 0;
range.layerCount = 1;
range.levelCount = 1;
tex->setImageLayout(this, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_ACCESS_TRANSFER_WRITE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, false);
this->currentCommandBuffer()->clearColorImage(this, tex.get(), &zeroClearColor, 1, &range);
}
return tex;
}
////////////////////////////////////////////////////////////////////////////////
void GrVkGpu::copyBuffer(GrVkBuffer* srcBuffer, GrVkBuffer* dstBuffer, VkDeviceSize srcOffset,
VkDeviceSize dstOffset, VkDeviceSize size) {
VkBufferCopy copyRegion;
copyRegion.srcOffset = srcOffset;
copyRegion.dstOffset = dstOffset;
copyRegion.size = size;
fCurrentCmdBuffer->copyBuffer(this, srcBuffer, dstBuffer, 1, &copyRegion);
}
bool GrVkGpu::updateBuffer(GrVkBuffer* buffer, const void* src,
VkDeviceSize offset, VkDeviceSize size) {
// Update the buffer
fCurrentCmdBuffer->updateBuffer(this, buffer, offset, size, src);
return true;
}
////////////////////////////////////////////////////////////////////////////////
static bool check_backend_texture(const GrBackendTexture& backendTex,
GrPixelConfig config) {
const GrVkImageInfo* info = backendTex.getVkImageInfo();
if (!info) {
return false;
}
if (VK_NULL_HANDLE == info->fImage || VK_NULL_HANDLE == info->fAlloc.fMemory) {
return false;
}
SkASSERT(GrVkFormatPixelConfigPairIsValid(info->fFormat, config));
return true;
}
sk_sp<GrTexture> GrVkGpu::onWrapBackendTexture(const GrBackendTexture& backendTex,
GrWrapOwnership ownership) {
if (!check_backend_texture(backendTex, backendTex.config())) {
return nullptr;
}
GrSurfaceDesc surfDesc;
surfDesc.fFlags = kNone_GrSurfaceFlags;
surfDesc.fOrigin = kTopLeft_GrSurfaceOrigin; // Not actually used in the following
surfDesc.fWidth = backendTex.width();
surfDesc.fHeight = backendTex.height();
surfDesc.fConfig = backendTex.config();
surfDesc.fSampleCnt = 1;
return GrVkTexture::MakeWrappedTexture(this, surfDesc, ownership, backendTex.getVkImageInfo());
}
sk_sp<GrTexture> GrVkGpu::onWrapRenderableBackendTexture(const GrBackendTexture& backendTex,
int sampleCnt,
GrWrapOwnership ownership) {
if (!check_backend_texture(backendTex, backendTex.config())) {
return nullptr;
}
GrSurfaceDesc surfDesc;
surfDesc.fFlags = kRenderTarget_GrSurfaceFlag;
surfDesc.fOrigin = kBottomLeft_GrSurfaceOrigin; // Not actually used in the following
surfDesc.fWidth = backendTex.width();
surfDesc.fHeight = backendTex.height();
surfDesc.fConfig = backendTex.config();
surfDesc.fSampleCnt = this->caps()->getSampleCount(sampleCnt, backendTex.config());
return GrVkTextureRenderTarget::MakeWrappedTextureRenderTarget(this, surfDesc, ownership,
backendTex.getVkImageInfo());
}
sk_sp<GrRenderTarget> GrVkGpu::onWrapBackendRenderTarget(const GrBackendRenderTarget& backendRT){
// Currently the Vulkan backend does not support wrapping of msaa render targets directly. In
// general this is not an issue since swapchain images in vulkan are never multisampled. Thus if
// you want a multisampled RT it is best to wrap the swapchain images and then let Skia handle
// creating and owning the MSAA images.
if (backendRT.sampleCnt() > 1) {
return nullptr;
}
const GrVkImageInfo* info = backendRT.getVkImageInfo();
if (!info) {
return nullptr;
}
if (VK_NULL_HANDLE == info->fImage) {
return nullptr;
}
GrSurfaceDesc desc;
desc.fFlags = kRenderTarget_GrSurfaceFlag;
desc.fOrigin = kBottomLeft_GrSurfaceOrigin; // Not actually used in the following
desc.fWidth = backendRT.width();
desc.fHeight = backendRT.height();
desc.fConfig = backendRT.config();
desc.fSampleCnt = 1;
sk_sp<GrVkRenderTarget> tgt = GrVkRenderTarget::MakeWrappedRenderTarget(this, desc, info);
if (tgt && backendRT.stencilBits()) {
if (!createStencilAttachmentForRenderTarget(tgt.get(), desc.fWidth, desc.fHeight)) {
return nullptr;
}
}
return tgt;
}
sk_sp<GrRenderTarget> GrVkGpu::onWrapBackendTextureAsRenderTarget(const GrBackendTexture& tex,
int sampleCnt) {
const GrVkImageInfo* info = tex.getVkImageInfo();
if (!info) {
return nullptr;
}
if (VK_NULL_HANDLE == info->fImage) {
return nullptr;
}
GrSurfaceDesc desc;
desc.fFlags = kRenderTarget_GrSurfaceFlag;
desc.fOrigin = kBottomLeft_GrSurfaceOrigin; // Not actually used in the following
desc.fWidth = tex.width();
desc.fHeight = tex.height();
desc.fConfig = tex.config();
desc.fSampleCnt = this->caps()->getSampleCount(sampleCnt, tex.config());
if (!desc.fSampleCnt) {
return nullptr;
}
sk_sp<GrVkRenderTarget> tgt = GrVkRenderTarget::MakeWrappedRenderTarget(this, desc, info);
return tgt;
}
void GrVkGpu::generateMipmap(GrVkTexture* tex, GrSurfaceOrigin texOrigin) {
// don't do anything for linearly tiled textures (can't have mipmaps)
if (tex->isLinearTiled()) {
SkDebugf("Trying to create mipmap for linear tiled texture");
return;
}
// determine if we can blit to and from this format
const GrVkCaps& caps = this->vkCaps();
if (!caps.configCanBeDstofBlit(tex->config(), false) ||
!caps.configCanBeSrcofBlit(tex->config(), false) ||
!caps.mipMapSupport()) {
return;
}
if (this->vkCaps().mustSubmitCommandsBeforeCopyOp()) {
this->submitCommandBuffer(kSkip_SyncQueue);
}
// We may need to resolve the texture first if it is also a render target
GrVkRenderTarget* texRT = static_cast<GrVkRenderTarget*>(tex->asRenderTarget());
if (texRT) {
this->internalResolveRenderTarget(texRT, texOrigin, false);
}
int width = tex->width();
int height = tex->height();
VkImageBlit blitRegion;
memset(&blitRegion, 0, sizeof(VkImageBlit));
// SkMipMap doesn't include the base level in the level count so we have to add 1
uint32_t levelCount = SkMipMap::ComputeLevelCount(tex->width(), tex->height()) + 1;
if (levelCount != tex->mipLevels()) {
const GrVkResource* oldResource = tex->resource();
oldResource->ref();
// grab handle to the original image resource
VkImage oldImage = tex->image();
// change the original image's layout so we can copy from it
tex->setImageLayout(this, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
VK_ACCESS_TRANSFER_READ_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, false);
if (!tex->reallocForMipmap(this, levelCount)) {
oldResource->unref(this);
return;
}
// change the new image's layout so we can blit to it
tex->setImageLayout(this, VK_IMAGE_LAYOUT_GENERAL,
VK_ACCESS_TRANSFER_WRITE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, false);
// Blit original image to top level of new image
blitRegion.srcSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 };
blitRegion.srcOffsets[0] = { 0, 0, 0 };
blitRegion.srcOffsets[1] = { width, height, 1 };
blitRegion.dstSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 };
blitRegion.dstOffsets[0] = { 0, 0, 0 };
blitRegion.dstOffsets[1] = { width, height, 1 };
fCurrentCmdBuffer->blitImage(this,
oldResource,
oldImage,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
tex->resource(),
tex->image(),
VK_IMAGE_LAYOUT_GENERAL,
1,
&blitRegion,
VK_FILTER_LINEAR);
oldResource->unref(this);
} else {
// change layout of the layers so we can write to them.
tex->setImageLayout(this, VK_IMAGE_LAYOUT_GENERAL,
VK_ACCESS_TRANSFER_WRITE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, false);
}
// setup memory barrier
SkASSERT(GrVkFormatIsSupported(tex->imageFormat()));
VkImageAspectFlags aspectFlags = VK_IMAGE_ASPECT_COLOR_BIT;
VkImageMemoryBarrier imageMemoryBarrier = {
VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, // sType
nullptr, // pNext
VK_ACCESS_TRANSFER_WRITE_BIT, // srcAccessMask
VK_ACCESS_TRANSFER_READ_BIT, // dstAccessMask
VK_IMAGE_LAYOUT_GENERAL, // oldLayout
VK_IMAGE_LAYOUT_GENERAL, // newLayout
VK_QUEUE_FAMILY_IGNORED, // srcQueueFamilyIndex
VK_QUEUE_FAMILY_IGNORED, // dstQueueFamilyIndex
tex->image(), // image
{ aspectFlags, 0, 1, 0, 1 } // subresourceRange
};
// Blit the miplevels
uint32_t mipLevel = 1;
while (mipLevel < levelCount) {
int prevWidth = width;
int prevHeight = height;
width = SkTMax(1, width / 2);
height = SkTMax(1, height / 2);
imageMemoryBarrier.subresourceRange.baseMipLevel = mipLevel - 1;
this->addImageMemoryBarrier(VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT,
false, &imageMemoryBarrier);
blitRegion.srcSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, mipLevel - 1, 0, 1 };
blitRegion.srcOffsets[0] = { 0, 0, 0 };
blitRegion.srcOffsets[1] = { prevWidth, prevHeight, 1 };
blitRegion.dstSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, mipLevel, 0, 1 };
blitRegion.dstOffsets[0] = { 0, 0, 0 };
blitRegion.dstOffsets[1] = { width, height, 1 };
fCurrentCmdBuffer->blitImage(this,
*tex,
*tex,
1,
&blitRegion,
VK_FILTER_LINEAR);
++mipLevel;
}
}
////////////////////////////////////////////////////////////////////////////////
GrStencilAttachment* GrVkGpu::createStencilAttachmentForRenderTarget(const GrRenderTarget* rt,
int width,
int height) {
SkASSERT(width >= rt->width());
SkASSERT(height >= rt->height());
int samples = rt->numStencilSamples();
const GrVkCaps::StencilFormat& sFmt = this->vkCaps().preferedStencilFormat();
GrVkStencilAttachment* stencil(GrVkStencilAttachment::Create(this,
width,
height,
samples,
sFmt));
fStats.incStencilAttachmentCreates();
return stencil;
}
////////////////////////////////////////////////////////////////////////////////
bool copy_testing_data(GrVkGpu* gpu, void* srcData, const GrVkAlloc& alloc, size_t bufferOffset,
size_t srcRowBytes, size_t dstRowBytes, int h) {
// For Noncoherent buffers we want to make sure the range that we map, both offset and size,
// are aligned to the nonCoherentAtomSize limit. We may have to move the initial offset back to
// meet the alignment requirements. So we track how far we move back and then adjust the mapped
// ptr back up so that this is opaque to the caller.
VkDeviceSize mapSize = dstRowBytes * h;
VkDeviceSize mapOffset = alloc.fOffset + bufferOffset;
VkDeviceSize offsetDiff = 0;
if (SkToBool(alloc.fFlags & GrVkAlloc::kNoncoherent_Flag)) {
VkDeviceSize alignment = gpu->physicalDeviceProperties().limits.nonCoherentAtomSize;
offsetDiff = mapOffset & (alignment - 1);
mapOffset = mapOffset - offsetDiff;
// Make size of the map aligned to nonCoherentAtomSize
mapSize = (mapSize + alignment - 1) & ~(alignment - 1);
}
SkASSERT(mapOffset >= alloc.fOffset);
SkASSERT(mapSize + mapOffset <= alloc.fOffset + alloc.fSize);
void* mapPtr;
VkResult err = GR_VK_CALL(gpu->vkInterface(), MapMemory(gpu->device(),
alloc.fMemory,
mapOffset,
mapSize,
0,
&mapPtr));
mapPtr = reinterpret_cast<char*>(mapPtr) + offsetDiff;
if (err) {
return false;
}
if (srcData) {
// If there is no padding on dst we can do a single memcopy.
// This assumes the srcData comes in with no padding.
SkRectMemcpy(mapPtr, static_cast<size_t>(dstRowBytes),
srcData, srcRowBytes, srcRowBytes, h);
} else {
// If there is no srcdata we always copy 0's into the textures so that it is initialized
// with some data.
if (srcRowBytes == static_cast<size_t>(dstRowBytes)) {
memset(mapPtr, 0, srcRowBytes * h);
} else {
for (int i = 0; i < h; ++i) {
memset(mapPtr, 0, srcRowBytes);
mapPtr = SkTAddOffset<void>(mapPtr, static_cast<size_t>(dstRowBytes));
}
}
}
GrVkMemory::FlushMappedAlloc(gpu, alloc, mapSize);
GR_VK_CALL(gpu->vkInterface(), UnmapMemory(gpu->device(), alloc.fMemory));
return true;
}
GrBackendTexture GrVkGpu::createTestingOnlyBackendTexture(void* srcData, int w, int h,
GrPixelConfig config,
bool isRenderTarget,
GrMipMapped mipMapped) {
VkFormat pixelFormat;
if (!GrPixelConfigToVkFormat(config, &pixelFormat)) {
return GrBackendTexture(); // invalid
}
bool linearTiling = false;
if (!fVkCaps->isConfigTexturable(config)) {
return GrBackendTexture(); // invalid
}
if (isRenderTarget && !fVkCaps->isConfigRenderable(config, false)) {
return GrBackendTexture(); // invalid
}
// Currently we don't support uploading pixel data when mipped.
if (srcData && GrMipMapped::kYes == mipMapped) {
return GrBackendTexture(); // invalid
}
if (fVkCaps->isConfigTexturableLinearly(config) &&
(!isRenderTarget || fVkCaps->isConfigRenderableLinearly(config, false)) &&
GrMipMapped::kNo == mipMapped) {
linearTiling = true;
}
VkImageUsageFlags usageFlags = VK_IMAGE_USAGE_SAMPLED_BIT;
usageFlags |= VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
usageFlags |= VK_IMAGE_USAGE_TRANSFER_DST_BIT;
if (isRenderTarget) {
usageFlags |= VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
}
VkImage image = VK_NULL_HANDLE;
GrVkAlloc alloc;
VkImageTiling imageTiling = linearTiling ? VK_IMAGE_TILING_LINEAR : VK_IMAGE_TILING_OPTIMAL;
VkImageLayout initialLayout = (VK_IMAGE_TILING_LINEAR == imageTiling)
? VK_IMAGE_LAYOUT_PREINITIALIZED
: VK_IMAGE_LAYOUT_UNDEFINED;
// Create Image
VkSampleCountFlagBits vkSamples;
if (!GrSampleCountToVkSampleCount(1, &vkSamples)) {
return GrBackendTexture(); // invalid
}
// Figure out the number of mip levels.
uint32_t mipLevels = 1;
if (GrMipMapped::kYes == mipMapped) {
mipLevels = SkMipMap::ComputeLevelCount(w, h) + 1;
}
const VkImageCreateInfo imageCreateInfo = {
VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, // sType
nullptr, // pNext
0, // VkImageCreateFlags
VK_IMAGE_TYPE_2D, // VkImageType
pixelFormat, // VkFormat
{ (uint32_t) w, (uint32_t) h, 1 }, // VkExtent3D
mipLevels, // mipLevels
1, // arrayLayers
vkSamples, // samples
imageTiling, // VkImageTiling
usageFlags, // VkImageUsageFlags
VK_SHARING_MODE_EXCLUSIVE, // VkSharingMode
0, // queueFamilyCount
0, // pQueueFamilyIndices
initialLayout // initialLayout
};
GR_VK_CALL_ERRCHECK(this->vkInterface(), CreateImage(this->device(), &imageCreateInfo, nullptr, &image));
if (!GrVkMemory::AllocAndBindImageMemory(this, image, linearTiling, &alloc)) {
VK_CALL(DestroyImage(this->device(), image, nullptr));
return GrBackendTexture(); // invalid
}
// We need to declare these early so that we can delete them at the end outside of the if block.
GrVkAlloc bufferAlloc;
VkBuffer buffer = VK_NULL_HANDLE;
VkResult err;
const VkCommandBufferAllocateInfo cmdInfo = {
VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO, // sType
nullptr, // pNext
fCmdPool, // commandPool
VK_COMMAND_BUFFER_LEVEL_PRIMARY, // level
1 // bufferCount
};
VkCommandBuffer cmdBuffer;
err = VK_CALL(AllocateCommandBuffers(fDevice, &cmdInfo, &cmdBuffer));
if (err) {
GrVkMemory::FreeImageMemory(this, false, alloc);
VK_CALL(DestroyImage(fDevice, image, nullptr));
return GrBackendTexture(); // invalid
}
VkCommandBufferBeginInfo cmdBufferBeginInfo;
memset(&cmdBufferBeginInfo, 0, sizeof(VkCommandBufferBeginInfo));
cmdBufferBeginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
cmdBufferBeginInfo.pNext = nullptr;
cmdBufferBeginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;
cmdBufferBeginInfo.pInheritanceInfo = nullptr;
err = VK_CALL(BeginCommandBuffer(cmdBuffer, &cmdBufferBeginInfo));
SkASSERT(!err);
size_t bpp = GrBytesPerPixel(config);
size_t rowCopyBytes = bpp * w;
if (linearTiling) {
const VkImageSubresource subres = {
VK_IMAGE_ASPECT_COLOR_BIT,
0, // mipLevel
0, // arraySlice
};
VkSubresourceLayout layout;
VK_CALL(GetImageSubresourceLayout(fDevice, image, &subres, &layout));
if (!copy_testing_data(this, srcData, alloc, 0, rowCopyBytes,
static_cast<size_t>(layout.rowPitch), h)) {
GrVkMemory::FreeImageMemory(this, true, alloc);
VK_CALL(DestroyImage(fDevice, image, nullptr));
VK_CALL(EndCommandBuffer(cmdBuffer));
VK_CALL(FreeCommandBuffers(fDevice, fCmdPool, 1, &cmdBuffer));
return GrBackendTexture(); // invalid
}
} else {
SkASSERT(w && h);
SkTArray<size_t> individualMipOffsets(mipLevels);
individualMipOffsets.push_back(0);
size_t combinedBufferSize = w * bpp * h;
int currentWidth = w;
int currentHeight = h;
// The alignment must be at least 4 bytes and a multiple of the bytes per pixel of the image
// config. This works with the assumption that the bytes in pixel config is always a power
// of 2.
SkASSERT((bpp & (bpp - 1)) == 0);
const size_t alignmentMask = 0x3 | (bpp - 1);
for (uint32_t currentMipLevel = 1; currentMipLevel < mipLevels; currentMipLevel++) {
currentWidth = SkTMax(1, currentWidth/2);
currentHeight = SkTMax(1, currentHeight/2);
const size_t trimmedSize = currentWidth * bpp * currentHeight;
const size_t alignmentDiff = combinedBufferSize & alignmentMask;
if (alignmentDiff != 0) {
combinedBufferSize += alignmentMask - alignmentDiff + 1;
}
individualMipOffsets.push_back(combinedBufferSize);
combinedBufferSize += trimmedSize;
}
VkBufferCreateInfo bufInfo;
memset(&bufInfo, 0, sizeof(VkBufferCreateInfo));
bufInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bufInfo.flags = 0;
bufInfo.size = combinedBufferSize;
bufInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
bufInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
bufInfo.queueFamilyIndexCount = 0;
bufInfo.pQueueFamilyIndices = nullptr;
err = VK_CALL(CreateBuffer(fDevice, &bufInfo, nullptr, &buffer));
if (err) {
GrVkMemory::FreeImageMemory(this, false, alloc);
VK_CALL(DestroyImage(fDevice, image, nullptr));
VK_CALL(EndCommandBuffer(cmdBuffer));
VK_CALL(FreeCommandBuffers(fDevice, fCmdPool, 1, &cmdBuffer));
return GrBackendTexture(); // invalid
}
if (!GrVkMemory::AllocAndBindBufferMemory(this, buffer, GrVkBuffer::kCopyRead_Type,
true, &bufferAlloc)) {
GrVkMemory::FreeImageMemory(this, false, alloc);
VK_CALL(DestroyImage(fDevice, image, nullptr));
VK_CALL(DestroyBuffer(fDevice, buffer, nullptr));
VK_CALL(EndCommandBuffer(cmdBuffer));
VK_CALL(FreeCommandBuffers(fDevice, fCmdPool, 1, &cmdBuffer));
return GrBackendTexture(); // invalid
}
currentWidth = w;
currentHeight = h;
for (uint32_t currentMipLevel = 0; currentMipLevel < mipLevels; currentMipLevel++) {
SkASSERT(0 == currentMipLevel || !srcData);
size_t currentRowBytes = bpp * currentWidth;
size_t bufferOffset = individualMipOffsets[currentMipLevel];
if (!copy_testing_data(this, srcData, bufferAlloc, bufferOffset,
currentRowBytes, currentRowBytes, currentHeight)) {
GrVkMemory::FreeImageMemory(this, false, alloc);
VK_CALL(DestroyImage(fDevice, image, nullptr));
GrVkMemory::FreeBufferMemory(this, GrVkBuffer::kCopyRead_Type, bufferAlloc);
VK_CALL(DestroyBuffer(fDevice, buffer, nullptr));
VK_CALL(EndCommandBuffer(cmdBuffer));
VK_CALL(FreeCommandBuffers(fDevice, fCmdPool, 1, &cmdBuffer));
return GrBackendTexture(); // invalid
}
currentWidth = SkTMax(1, currentWidth/2);
currentHeight = SkTMax(1, currentHeight/2);
}
// Set image layout and add barrier
VkImageMemoryBarrier barrier;
memset(&barrier, 0, sizeof(VkImageMemoryBarrier));
barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
barrier.pNext = nullptr;
barrier.srcAccessMask = GrVkMemory::LayoutToSrcAccessMask(initialLayout);
barrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
barrier.oldLayout = initialLayout;
barrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.image = image;
barrier.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, mipLevels, 0 , 1};
VK_CALL(CmdPipelineBarrier(cmdBuffer,
GrVkMemory::LayoutToPipelineStageFlags(initialLayout),
VK_PIPELINE_STAGE_TRANSFER_BIT,
0,
0, nullptr,
0, nullptr,
1, &barrier));
initialLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
SkTArray<VkBufferImageCopy> regions(mipLevels);
currentWidth = w;
currentHeight = h;
for (uint32_t currentMipLevel = 0; currentMipLevel < mipLevels; currentMipLevel++) {
// Submit copy command
VkBufferImageCopy& region = regions.push_back();
memset(&region, 0, sizeof(VkBufferImageCopy));
region.bufferOffset = individualMipOffsets[currentMipLevel];
region.bufferRowLength = currentWidth;
region.bufferImageHeight = currentHeight;
region.imageSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 };
region.imageOffset = { 0, 0, 0 };
region.imageExtent = { (uint32_t)currentWidth, (uint32_t)currentHeight, 1 };
currentWidth = SkTMax(1, currentWidth/2);
currentHeight = SkTMax(1, currentHeight/2);
}
VK_CALL(CmdCopyBufferToImage(cmdBuffer, buffer, image, initialLayout, regions.count(),
regions.begin()));
}
// Change Image layout to shader read since if we use this texture as a borrowed textures within
// Ganesh we require that its layout be set to that
VkImageMemoryBarrier barrier;
memset(&barrier, 0, sizeof(VkImageMemoryBarrier));
barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
barrier.pNext = nullptr;
barrier.srcAccessMask = GrVkMemory::LayoutToSrcAccessMask(initialLayout);
barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
barrier.oldLayout = initialLayout;
barrier.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.image = image;
barrier.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, mipLevels, 0 , 1};
VK_CALL(CmdPipelineBarrier(cmdBuffer,
GrVkMemory::LayoutToPipelineStageFlags(initialLayout),
VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT,
0,
0, nullptr,
0, nullptr,
1, &barrier));
// End CommandBuffer
err = VK_CALL(EndCommandBuffer(cmdBuffer));
SkASSERT(!err);
// Create Fence for queue
VkFence fence;
VkFenceCreateInfo fenceInfo;
memset(&fenceInfo, 0, sizeof(VkFenceCreateInfo));
fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
err = VK_CALL(CreateFence(fDevice, &fenceInfo, nullptr, &fence));
SkASSERT(!err);
VkSubmitInfo submitInfo;
memset(&submitInfo, 0, sizeof(VkSubmitInfo));
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submitInfo.pNext = nullptr;
submitInfo.waitSemaphoreCount = 0;
submitInfo.pWaitSemaphores = nullptr;
submitInfo.pWaitDstStageMask = 0;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &cmdBuffer;
submitInfo.signalSemaphoreCount = 0;
submitInfo.pSignalSemaphores = nullptr;
err = VK_CALL(QueueSubmit(this->queue(), 1, &submitInfo, fence));
SkASSERT(!err);
err = VK_CALL(WaitForFences(fDevice, 1, &fence, true, UINT64_MAX));
if (VK_TIMEOUT == err) {
GrVkMemory::FreeImageMemory(this, false, alloc);
VK_CALL(DestroyImage(fDevice, image, nullptr));
GrVkMemory::FreeBufferMemory(this, GrVkBuffer::kCopyRead_Type, bufferAlloc);
VK_CALL(DestroyBuffer(fDevice, buffer, nullptr));
VK_CALL(FreeCommandBuffers(fDevice, fCmdPool, 1, &cmdBuffer));
VK_CALL(DestroyFence(fDevice, fence, nullptr));
SkDebugf("Fence failed to signal: %d\n", err);
SK_ABORT("failing");
}
SkASSERT(!err);
// Clean up transfer resources
if (buffer != VK_NULL_HANDLE) { // workaround for an older NVidia driver crash
GrVkMemory::FreeBufferMemory(this, GrVkBuffer::kCopyRead_Type, bufferAlloc);
VK_CALL(DestroyBuffer(fDevice, buffer, nullptr));
}
VK_CALL(FreeCommandBuffers(fDevice, fCmdPool, 1, &cmdBuffer));
VK_CALL(DestroyFence(fDevice, fence, nullptr));
GrVkImageInfo info;
info.fImage = image;
info.fAlloc = alloc;
info.fImageTiling = imageTiling;
info.fImageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
info.fFormat = pixelFormat;
info.fLevelCount = mipLevels;
return GrBackendTexture(w, h, info);
}
bool GrVkGpu::isTestingOnlyBackendTexture(const GrBackendTexture& tex) const {
SkASSERT(kVulkan_GrBackend == tex.fBackend);
const GrVkImageInfo* backend = tex.getVkImageInfo();
if (backend && backend->fImage && backend->fAlloc.fMemory) {
VkMemoryRequirements req;
memset(&req, 0, sizeof(req));
GR_VK_CALL(this->vkInterface(), GetImageMemoryRequirements(fDevice,
backend->fImage,
&req));
// TODO: find a better check
// This will probably fail with a different driver
return (req.size > 0) && (req.size <= 8192 * 8192);
}
return false;
}
void GrVkGpu::deleteTestingOnlyBackendTexture(GrBackendTexture* tex, bool abandon) {
SkASSERT(kVulkan_GrBackend == tex->fBackend);
const GrVkImageInfo* info = tex->getVkImageInfo();
if (info && !abandon) {
// something in the command buffer may still be using this, so force submit
this->submitCommandBuffer(kForce_SyncQueue);
GrVkImage::DestroyImageInfo(this, const_cast<GrVkImageInfo*>(info));
}
}
////////////////////////////////////////////////////////////////////////////////
void GrVkGpu::addMemoryBarrier(VkPipelineStageFlags srcStageMask,
VkPipelineStageFlags dstStageMask,
bool byRegion,
VkMemoryBarrier* barrier) const {
SkASSERT(fCurrentCmdBuffer);
fCurrentCmdBuffer->pipelineBarrier(this,
srcStageMask,
dstStageMask,
byRegion,
GrVkCommandBuffer::kMemory_BarrierType,
barrier);
}
void GrVkGpu::addBufferMemoryBarrier(VkPipelineStageFlags srcStageMask,
VkPipelineStageFlags dstStageMask,
bool byRegion,
VkBufferMemoryBarrier* barrier) const {
SkASSERT(fCurrentCmdBuffer);
fCurrentCmdBuffer->pipelineBarrier(this,
srcStageMask,
dstStageMask,
byRegion,
GrVkCommandBuffer::kBufferMemory_BarrierType,
barrier);
}
void GrVkGpu::addImageMemoryBarrier(VkPipelineStageFlags srcStageMask,
VkPipelineStageFlags dstStageMask,
bool byRegion,
VkImageMemoryBarrier* barrier) const {
SkASSERT(fCurrentCmdBuffer);
fCurrentCmdBuffer->pipelineBarrier(this,
srcStageMask,
dstStageMask,
byRegion,
GrVkCommandBuffer::kImageMemory_BarrierType,
barrier);
}
void GrVkGpu::onFinishFlush(bool insertedSemaphore) {
// Submit the current command buffer to the Queue. Whether we inserted semaphores or not does
// not effect what we do here.
this->submitCommandBuffer(kSkip_SyncQueue);
}
void GrVkGpu::clearStencil(GrRenderTarget* target, int clearValue) {
if (!target) {
return;
}
GrStencilAttachment* stencil = target->renderTargetPriv().getStencilAttachment();
GrVkStencilAttachment* vkStencil = (GrVkStencilAttachment*)stencil;
VkClearDepthStencilValue vkStencilColor;
vkStencilColor.depth = 0.0f;
vkStencilColor.stencil = clearValue;
vkStencil->setImageLayout(this,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_ACCESS_TRANSFER_WRITE_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
false);
VkImageSubresourceRange subRange;
memset(&subRange, 0, sizeof(VkImageSubresourceRange));
subRange.aspectMask = VK_IMAGE_ASPECT_STENCIL_BIT;
subRange.baseMipLevel = 0;
subRange.levelCount = 1;
subRange.baseArrayLayer = 0;
subRange.layerCount = 1;
// TODO: I imagine that most times we want to clear a stencil it will be at the beginning of a
// draw. Thus we should look into using the load op functions on the render pass to clear out
// the stencil there.
fCurrentCmdBuffer->clearDepthStencilImage(this, vkStencil, &vkStencilColor, 1, &subRange);
}
inline bool can_copy_image(const GrSurface* dst, GrSurfaceOrigin dstOrigin,
const GrSurface* src, GrSurfaceOrigin srcOrigin,
const GrVkGpu* gpu) {
const GrRenderTarget* dstRT = dst->asRenderTarget();
const GrRenderTarget* srcRT = src->asRenderTarget();
if (dstRT && srcRT) {
if (srcRT->numColorSamples() != dstRT->numColorSamples()) {
return false;
}
} else if (dstRT) {
if (dstRT->numColorSamples() > 1) {
return false;
}
} else if (srcRT) {
if (srcRT->numColorSamples() > 1) {
return false;
}
}
// We require that all vulkan GrSurfaces have been created with transfer_dst and transfer_src
// as image usage flags.
if (srcOrigin == dstOrigin &&
GrBytesPerPixel(src->config()) == GrBytesPerPixel(dst->config())) {
return true;
}
return false;
}
void GrVkGpu::copySurfaceAsCopyImage(GrSurface* dst, GrSurfaceOrigin dstOrigin,
GrSurface* src, GrSurfaceOrigin srcOrigin,
GrVkImage* dstImage,
GrVkImage* srcImage,
const SkIRect& srcRect,
const SkIPoint& dstPoint) {
SkASSERT(can_copy_image(dst, dstOrigin, src, srcOrigin, this));
// These flags are for flushing/invalidating caches and for the dst image it doesn't matter if
// the cache is flushed since it is only being written to.
dstImage->setImageLayout(this,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_ACCESS_TRANSFER_WRITE_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
false);
srcImage->setImageLayout(this,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
VK_ACCESS_TRANSFER_READ_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
false);
// Flip rect if necessary
SkIRect srcVkRect = srcRect;
int32_t dstY = dstPoint.fY;
if (kBottomLeft_GrSurfaceOrigin == srcOrigin) {
SkASSERT(kBottomLeft_GrSurfaceOrigin == dstOrigin);
srcVkRect.fTop = src->height() - srcRect.fBottom;
srcVkRect.fBottom = src->height() - srcRect.fTop;
dstY = dst->height() - dstPoint.fY - srcVkRect.height();
}
VkImageCopy copyRegion;
memset(&copyRegion, 0, sizeof(VkImageCopy));
copyRegion.srcSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 };
copyRegion.srcOffset = { srcVkRect.fLeft, srcVkRect.fTop, 0 };
copyRegion.dstSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 };
copyRegion.dstOffset = { dstPoint.fX, dstY, 0 };
copyRegion.extent = { (uint32_t)srcVkRect.width(), (uint32_t)srcVkRect.height(), 1 };
fCurrentCmdBuffer->copyImage(this,
srcImage,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
dstImage,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1,
&copyRegion);
SkIRect dstRect = SkIRect::MakeXYWH(dstPoint.fX, dstPoint.fY,
srcRect.width(), srcRect.height());
this->didWriteToSurface(dst, &dstRect);
}
inline bool can_copy_as_blit(const GrSurface* dst,
const GrSurface* src,
const GrVkImage* dstImage,
const GrVkImage* srcImage,
const GrVkGpu* gpu) {
// We require that all vulkan GrSurfaces have been created with transfer_dst and transfer_src
// as image usage flags.
const GrVkCaps& caps = gpu->vkCaps();
if (!caps.configCanBeDstofBlit(dst->config(), dstImage->isLinearTiled()) ||
!caps.configCanBeSrcofBlit(src->config(), srcImage->isLinearTiled())) {
return false;
}
// We cannot blit images that are multisampled. Will need to figure out if we can blit the
// resolved msaa though.
if ((dst->asRenderTarget() && dst->asRenderTarget()->numColorSamples() > 1) ||
(src->asRenderTarget() && src->asRenderTarget()->numColorSamples() > 1)) {
return false;
}
return true;
}
void GrVkGpu::copySurfaceAsBlit(GrSurface* dst, GrSurfaceOrigin dstOrigin,
GrSurface* src, GrSurfaceOrigin srcOrigin,
GrVkImage* dstImage,
GrVkImage* srcImage,
const SkIRect& srcRect,
const SkIPoint& dstPoint) {
SkASSERT(can_copy_as_blit(dst, src, dstImage, srcImage, this));
dstImage->setImageLayout(this,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_ACCESS_TRANSFER_WRITE_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
false);
srcImage->setImageLayout(this,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
VK_ACCESS_TRANSFER_READ_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
false);
// Flip rect if necessary
SkIRect srcVkRect;
srcVkRect.fLeft = srcRect.fLeft;
srcVkRect.fRight = srcRect.fRight;
SkIRect dstRect;
dstRect.fLeft = dstPoint.fX;
dstRect.fRight = dstPoint.fX + srcRect.width();
if (kBottomLeft_GrSurfaceOrigin == srcOrigin) {
srcVkRect.fTop = src->height() - srcRect.fBottom;
srcVkRect.fBottom = src->height() - srcRect.fTop;
} else {
srcVkRect.fTop = srcRect.fTop;
srcVkRect.fBottom = srcRect.fBottom;
}
if (kBottomLeft_GrSurfaceOrigin == dstOrigin) {
dstRect.fTop = dst->height() - dstPoint.fY - srcVkRect.height();
} else {
dstRect.fTop = dstPoint.fY;
}
dstRect.fBottom = dstRect.fTop + srcVkRect.height();
// If we have different origins, we need to flip the top and bottom of the dst rect so that we
// get the correct origintation of the copied data.
if (srcOrigin != dstOrigin) {
SkTSwap(dstRect.fTop, dstRect.fBottom);
}
VkImageBlit blitRegion;
memset(&blitRegion, 0, sizeof(VkImageBlit));
blitRegion.srcSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 };
blitRegion.srcOffsets[0] = { srcVkRect.fLeft, srcVkRect.fTop, 0 };
blitRegion.srcOffsets[1] = { srcVkRect.fRight, srcVkRect.fBottom, 1 };
blitRegion.dstSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 };
blitRegion.dstOffsets[0] = { dstRect.fLeft, dstRect.fTop, 0 };
blitRegion.dstOffsets[1] = { dstRect.fRight, dstRect.fBottom, 1 };
fCurrentCmdBuffer->blitImage(this,
*srcImage,
*dstImage,
1,
&blitRegion,
VK_FILTER_NEAREST); // We never scale so any filter works here
this->didWriteToSurface(dst, &dstRect);
}
inline bool can_copy_as_resolve(const GrSurface* dst, GrSurfaceOrigin dstOrigin,
const GrSurface* src, GrSurfaceOrigin srcOrigin,
const GrVkGpu* gpu) {
// Our src must be a multisampled render target
if (!src->asRenderTarget() || 1 == src->asRenderTarget()->numColorSamples()) {
return false;
}
// The dst must not be a multisampled render target, expect in the case where the dst is the
// resolve texture connected to the msaa src. We check for this in case we are copying a part of
// a surface to a different region in the same surface.
if (dst->asRenderTarget() && dst->asRenderTarget()->numColorSamples() > 1 && dst != src) {
return false;
}
// Surfaces must have the same origin.
if (srcOrigin != dstOrigin) {
return false;
}
return true;
}
void GrVkGpu::copySurfaceAsResolve(GrSurface* dst, GrSurfaceOrigin dstOrigin,
GrSurface* src, GrSurfaceOrigin srcOrigin,
const SkIRect& srcRect,
const SkIPoint& dstPoint) {
GrVkRenderTarget* srcRT = static_cast<GrVkRenderTarget*>(src->asRenderTarget());
this->resolveImage(dst, dstOrigin, srcRT, srcOrigin, srcRect, dstPoint);
}
bool GrVkGpu::onCopySurface(GrSurface* dst, GrSurfaceOrigin dstOrigin,
GrSurface* src, GrSurfaceOrigin srcOrigin,
const SkIRect& srcRect,
const SkIPoint& dstPoint) {
if (can_copy_as_resolve(dst, dstOrigin, src, srcOrigin, this)) {
this->copySurfaceAsResolve(dst, dstOrigin, src, srcOrigin, srcRect, dstPoint);
return true;
}
if (this->vkCaps().mustSubmitCommandsBeforeCopyOp()) {
this->submitCommandBuffer(GrVkGpu::kSkip_SyncQueue);
}
if (fCopyManager.copySurfaceAsDraw(this, dst, dstOrigin, src, srcOrigin, srcRect, dstPoint)) {
return true;
}
GrVkImage* dstImage;
GrVkImage* srcImage;
GrRenderTarget* dstRT = dst->asRenderTarget();
if (dstRT) {
GrVkRenderTarget* vkRT = static_cast<GrVkRenderTarget*>(dstRT);
dstImage = vkRT->numColorSamples() > 1 ? vkRT->msaaImage() : vkRT;
} else {
SkASSERT(dst->asTexture());
dstImage = static_cast<GrVkTexture*>(dst->asTexture());
}
GrRenderTarget* srcRT = src->asRenderTarget();
if (srcRT) {
GrVkRenderTarget* vkRT = static_cast<GrVkRenderTarget*>(srcRT);
srcImage = vkRT->numColorSamples() > 1 ? vkRT->msaaImage() : vkRT;
} else {
SkASSERT(src->asTexture());
srcImage = static_cast<GrVkTexture*>(src->asTexture());
}
// For borrowed textures, we *only* want to copy using draws (to avoid layout changes)
if (srcImage->isBorrowed()) {
return false;
}
if (can_copy_image(dst, dstOrigin, src, srcOrigin, this)) {
this->copySurfaceAsCopyImage(dst, dstOrigin, src, srcOrigin, dstImage, srcImage,
srcRect, dstPoint);
return true;
}
if (can_copy_as_blit(dst, src, dstImage, srcImage, this)) {
this->copySurfaceAsBlit(dst, dstOrigin, src, srcOrigin, dstImage, srcImage,
srcRect, dstPoint);
return true;
}
return false;
}
void GrVkGpu::onQueryMultisampleSpecs(GrRenderTarget* rt, GrSurfaceOrigin, const GrStencilSettings&,
int* effectiveSampleCnt, SamplePattern*) {
// TODO: stub.
SkASSERT(!this->caps()->sampleLocationsSupport());
*effectiveSampleCnt = rt->numStencilSamples();
}
bool GrVkGpu::onGetReadPixelsInfo(GrSurface* srcSurface, GrSurfaceOrigin srcOrigin,
int width, int height, size_t rowBytes,
GrPixelConfig readConfig, DrawPreference* drawPreference,
ReadPixelTempDrawInfo* tempDrawInfo) {
// These settings we will always want if a temp draw is performed.
tempDrawInfo->fTempSurfaceDesc.fFlags = kRenderTarget_GrSurfaceFlag;
tempDrawInfo->fTempSurfaceDesc.fWidth = width;
tempDrawInfo->fTempSurfaceDesc.fHeight = height;
tempDrawInfo->fTempSurfaceDesc.fSampleCnt = 1;
tempDrawInfo->fTempSurfaceDesc.fOrigin = kTopLeft_GrSurfaceOrigin; // no CPU y-flip for TL.
tempDrawInfo->fTempSurfaceFit = SkBackingFit::kApprox;
// For now assume no swizzling, we may change that below.
tempDrawInfo->fSwizzle = GrSwizzle::RGBA();
// Depends on why we need/want a temp draw. Start off assuming no change, the surface we read
// from will be srcConfig and we will read readConfig pixels from it.
// Note that if we require a draw and return a non-renderable format for the temp surface the
// base class will fail for us.
tempDrawInfo->fTempSurfaceDesc.fConfig = srcSurface->config();
tempDrawInfo->fReadConfig = readConfig;
if (srcSurface->config() == readConfig) {
return true;
}
// Any config change requires a draw
ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference);
tempDrawInfo->fTempSurfaceDesc.fConfig = readConfig;
tempDrawInfo->fReadConfig = readConfig;
return true;
}
bool GrVkGpu::onReadPixels(GrSurface* surface, GrSurfaceOrigin origin,
int left, int top, int width, int height,
GrPixelConfig config,
void* buffer,
size_t rowBytes) {
VkFormat pixelFormat;
if (!GrPixelConfigToVkFormat(config, &pixelFormat)) {
return false;
}
GrVkImage* image = nullptr;
GrVkRenderTarget* rt = static_cast<GrVkRenderTarget*>(surface->asRenderTarget());
if (rt) {
// resolve the render target if necessary
switch (rt->getResolveType()) {
case GrVkRenderTarget::kCantResolve_ResolveType:
return false;
case GrVkRenderTarget::kAutoResolves_ResolveType:
break;
case GrVkRenderTarget::kCanResolve_ResolveType:
this->internalResolveRenderTarget(rt, origin, false);
break;
default:
SK_ABORT("Unknown resolve type");
}
image = rt;
} else {
image = static_cast<GrVkTexture*>(surface->asTexture());
}
if (!image) {
return false;
}
// Change layout of our target so it can be used as copy
image->setImageLayout(this,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
VK_ACCESS_TRANSFER_READ_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
false);
size_t bpp = GrBytesPerPixel(config);
size_t tightRowBytes = bpp * width;
bool flipY = kBottomLeft_GrSurfaceOrigin == origin;
VkBufferImageCopy region;
memset(&region, 0, sizeof(VkBufferImageCopy));
bool copyFromOrigin = this->vkCaps().mustDoCopiesFromOrigin();
if (copyFromOrigin) {
region.imageOffset = { 0, 0, 0 };
region.imageExtent = { (uint32_t)(left + width),
(uint32_t)(flipY ? surface->height() - top : top + height),
1
};
} else {
VkOffset3D offset = {
left,
flipY ? surface->height() - top - height : top,
0
};
region.imageOffset = offset;
region.imageExtent = { (uint32_t)width, (uint32_t)height, 1 };
}
size_t transBufferRowBytes = bpp * region.imageExtent.width;
size_t imageRows = bpp * region.imageExtent.height;
GrVkTransferBuffer* transferBuffer =
static_cast<GrVkTransferBuffer*>(this->createBuffer(transBufferRowBytes * imageRows,
kXferGpuToCpu_GrBufferType,
kStream_GrAccessPattern));
// Copy the image to a buffer so we can map it to cpu memory
region.bufferOffset = transferBuffer->offset();
region.bufferRowLength = 0; // Forces RowLength to be width. We handle the rowBytes below.
region.bufferImageHeight = 0; // Forces height to be tightly packed. Only useful for 3d images.
region.imageSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 };
fCurrentCmdBuffer->copyImageToBuffer(this,
image,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
transferBuffer,
1,
&region);
// make sure the copy to buffer has finished
transferBuffer->addMemoryBarrier(this,
VK_ACCESS_TRANSFER_WRITE_BIT,
VK_ACCESS_HOST_READ_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_HOST_BIT,
false);
// We need to submit the current command buffer to the Queue and make sure it finishes before
// we can copy the data out of the buffer.
this->submitCommandBuffer(kForce_SyncQueue);
void* mappedMemory = transferBuffer->map();
GrVkMemory::InvalidateMappedAlloc(this, transferBuffer->alloc());
if (copyFromOrigin) {
uint32_t skipRows = region.imageExtent.height - height;
mappedMemory = (char*)mappedMemory + transBufferRowBytes * skipRows + bpp * left;
}
if (flipY) {
const char* srcRow = reinterpret_cast<const char*>(mappedMemory);
char* dstRow = reinterpret_cast<char*>(buffer)+(height - 1) * rowBytes;
for (int y = 0; y < height; y++) {
memcpy(dstRow, srcRow, tightRowBytes);
srcRow += transBufferRowBytes;
dstRow -= rowBytes;
}
} else {
SkRectMemcpy(buffer, rowBytes, mappedMemory, transBufferRowBytes, tightRowBytes, height);
}
transferBuffer->unmap();
transferBuffer->unref();
return true;
}
// The RenderArea bounds we pass into BeginRenderPass must have a start x value that is a multiple
// of the granularity. The width must also be a multiple of the granularity or eaqual to the width
// the the entire attachment. Similar requirements for the y and height components.
void adjust_bounds_to_granularity(SkIRect* dstBounds, const SkIRect& srcBounds,
const VkExtent2D& granularity, int maxWidth, int maxHeight) {
// Adjust Width
if ((0 != granularity.width && 1 != granularity.width)) {
// Start with the right side of rect so we know if we end up going pass the maxWidth.
int rightAdj = srcBounds.fRight % granularity.width;
if (rightAdj != 0) {
rightAdj = granularity.width - rightAdj;
}
dstBounds->fRight = srcBounds.fRight + rightAdj;
if (dstBounds->fRight > maxWidth) {
dstBounds->fRight = maxWidth;
dstBounds->fLeft = 0;
} else {
dstBounds->fLeft = srcBounds.fLeft - srcBounds.fLeft % granularity.width;
}
} else {
dstBounds->fLeft = srcBounds.fLeft;
dstBounds->fRight = srcBounds.fRight;
}
// Adjust height
if ((0 != granularity.height && 1 != granularity.height)) {
// Start with the bottom side of rect so we know if we end up going pass the maxHeight.
int bottomAdj = srcBounds.fBottom % granularity.height;
if (bottomAdj != 0) {
bottomAdj = granularity.height - bottomAdj;
}
dstBounds->fBottom = srcBounds.fBottom + bottomAdj;
if (dstBounds->fBottom > maxHeight) {
dstBounds->fBottom = maxHeight;
dstBounds->fTop = 0;
} else {
dstBounds->fTop = srcBounds.fTop - srcBounds.fTop % granularity.height;
}
} else {
dstBounds->fTop = srcBounds.fTop;
dstBounds->fBottom = srcBounds.fBottom;
}
}
void GrVkGpu::submitSecondaryCommandBuffer(const SkTArray<GrVkSecondaryCommandBuffer*>& buffers,
const GrVkRenderPass* renderPass,
const VkClearValue* colorClear,
GrVkRenderTarget* target, GrSurfaceOrigin origin,
const SkIRect& bounds) {
const SkIRect* pBounds = &bounds;
SkIRect flippedBounds;
if (kBottomLeft_GrSurfaceOrigin == origin) {
flippedBounds = bounds;
flippedBounds.fTop = target->height() - bounds.fBottom;
flippedBounds.fBottom = target->height() - bounds.fTop;
pBounds = &flippedBounds;
}
// The bounds we use for the render pass should be of the granularity supported
// by the device.
const VkExtent2D& granularity = renderPass->granularity();
SkIRect adjustedBounds;
if ((0 != granularity.width && 1 != granularity.width) ||
(0 != granularity.height && 1 != granularity.height)) {
adjust_bounds_to_granularity(&adjustedBounds, *pBounds, granularity,
target->width(), target->height());
pBounds = &adjustedBounds;
}
#ifdef SK_DEBUG
uint32_t index;
bool result = renderPass->colorAttachmentIndex(&index);
SkASSERT(result && 0 == index);
result = renderPass->stencilAttachmentIndex(&index);
if (result) {
SkASSERT(1 == index);
}
#endif
VkClearValue clears[2];
clears[0].color = colorClear->color;
clears[1].depthStencil.depth = 0.0f;
clears[1].depthStencil.stencil = 0;
fCurrentCmdBuffer->beginRenderPass(this, renderPass, clears, *target, *pBounds, true);
for (int i = 0; i < buffers.count(); ++i) {
fCurrentCmdBuffer->executeCommands(this, buffers[i]);
}
fCurrentCmdBuffer->endRenderPass(this);
this->didWriteToSurface(target, &bounds);
}
GrFence SK_WARN_UNUSED_RESULT GrVkGpu::insertFence() {
VkFenceCreateInfo createInfo;
memset(&createInfo, 0, sizeof(VkFenceCreateInfo));
createInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
createInfo.pNext = nullptr;
createInfo.flags = 0;
VkFence fence = VK_NULL_HANDLE;
VK_CALL_ERRCHECK(CreateFence(this->device(), &createInfo, nullptr, &fence));
VK_CALL(QueueSubmit(this->queue(), 0, nullptr, fence));
GR_STATIC_ASSERT(sizeof(GrFence) >= sizeof(VkFence));
return (GrFence)fence;
}
bool GrVkGpu::waitFence(GrFence fence, uint64_t timeout) {
SkASSERT(VK_NULL_HANDLE != (VkFence)fence);
VkResult result = VK_CALL(WaitForFences(this->device(), 1, (VkFence*)&fence, VK_TRUE, timeout));
return (VK_SUCCESS == result);
}
void GrVkGpu::deleteFence(GrFence fence) const {
VK_CALL(DestroyFence(this->device(), (VkFence)fence, nullptr));
}
sk_sp<GrSemaphore> SK_WARN_UNUSED_RESULT GrVkGpu::makeSemaphore(bool isOwned) {
return GrVkSemaphore::Make(this, isOwned);
}
sk_sp<GrSemaphore> GrVkGpu::wrapBackendSemaphore(const GrBackendSemaphore& semaphore,
GrResourceProvider::SemaphoreWrapType wrapType,
GrWrapOwnership ownership) {
return GrVkSemaphore::MakeWrapped(this, semaphore.vkSemaphore(), wrapType, ownership);
}
void GrVkGpu::insertSemaphore(sk_sp<GrSemaphore> semaphore, bool flush) {
GrVkSemaphore* vkSem = static_cast<GrVkSemaphore*>(semaphore.get());
GrVkSemaphore::Resource* resource = vkSem->getResource();
if (resource->shouldSignal()) {
resource->ref();
fSemaphoresToSignal.push_back(resource);
}
if (flush) {
this->submitCommandBuffer(kSkip_SyncQueue);
}
}
void GrVkGpu::waitSemaphore(sk_sp<GrSemaphore> semaphore) {
GrVkSemaphore* vkSem = static_cast<GrVkSemaphore*>(semaphore.get());
GrVkSemaphore::Resource* resource = vkSem->getResource();
if (resource->shouldWait()) {
resource->ref();
fSemaphoresToWaitOn.push_back(resource);
}
}
sk_sp<GrSemaphore> GrVkGpu::prepareTextureForCrossContextUsage(GrTexture* texture) {
SkASSERT(texture);
GrVkTexture* vkTexture = static_cast<GrVkTexture*>(texture);
vkTexture->setImageLayout(this,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
VK_ACCESS_SHADER_READ_BIT,
VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT,
false);
this->submitCommandBuffer(kSkip_SyncQueue);
// The image layout change serves as a barrier, so no semaphore is needed
return nullptr;
}