| /* |
| * Copyright 2015 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef SkPathPriv_DEFINED |
| #define SkPathPriv_DEFINED |
| |
| #include "include/core/SkArc.h" |
| #include "include/core/SkPath.h" |
| #include "include/core/SkPathBuilder.h" |
| #include "include/core/SkPathTypes.h" |
| #include "include/core/SkPoint.h" |
| #include "include/core/SkRect.h" |
| #include "include/core/SkRefCnt.h" |
| #include "include/core/SkScalar.h" |
| #include "include/core/SkTypes.h" |
| #include "include/private/SkIDChangeListener.h" |
| #include "include/private/SkPathRef.h" |
| #include "include/private/base/SkDebug.h" |
| #include "src/core/SkPathEnums.h" |
| |
| #include <cstdint> |
| #include <iterator> |
| #include <utility> |
| |
| class SkMatrix; |
| class SkRRect; |
| |
| static_assert(0 == static_cast<int>(SkPathFillType::kWinding), "fill_type_mismatch"); |
| static_assert(1 == static_cast<int>(SkPathFillType::kEvenOdd), "fill_type_mismatch"); |
| static_assert(2 == static_cast<int>(SkPathFillType::kInverseWinding), "fill_type_mismatch"); |
| static_assert(3 == static_cast<int>(SkPathFillType::kInverseEvenOdd), "fill_type_mismatch"); |
| |
| class SkPathPriv { |
| public: |
| // skbug.com/9906: Not a perfect solution for W plane clipping, but 1/16384 is a |
| // reasonable limit (roughly 5e-5) |
| inline static constexpr SkScalar kW0PlaneDistance = 1.f / (1 << 14); |
| |
| static SkPathFirstDirection AsFirstDirection(SkPathDirection dir) { |
| // since we agree numerically for the values in Direction, we can just cast. |
| return (SkPathFirstDirection)dir; |
| } |
| |
| /** |
| * Return the opposite of the specified direction. kUnknown is its own |
| * opposite. |
| */ |
| static SkPathFirstDirection OppositeFirstDirection(SkPathFirstDirection dir) { |
| static const SkPathFirstDirection gOppositeDir[] = { |
| SkPathFirstDirection::kCCW, SkPathFirstDirection::kCW, SkPathFirstDirection::kUnknown, |
| }; |
| return gOppositeDir[(unsigned)dir]; |
| } |
| |
| /** |
| * Tries to compute the direction of the outer-most non-degenerate |
| * contour. If it can be computed, return that direction. If it cannot be determined, |
| * or the contour is known to be convex, return kUnknown. If the direction was determined, |
| * it is cached to make subsequent calls return quickly. |
| */ |
| static SkPathFirstDirection ComputeFirstDirection(const SkPath&); |
| |
| static bool IsClosedSingleContour(const SkPath& path) { |
| int verbCount = path.countVerbs(); |
| if (verbCount == 0) |
| return false; |
| int moveCount = 0; |
| auto verbs = path.fPathRef->verbsBegin(); |
| for (int i = 0; i < verbCount; i++) { |
| switch (verbs[i]) { |
| case SkPath::Verb::kMove_Verb: |
| moveCount += 1; |
| if (moveCount > 1) { |
| return false; |
| } |
| break; |
| case SkPath::Verb::kClose_Verb: |
| if (i == verbCount - 1) { |
| return true; |
| } |
| return false; |
| default: break; |
| } |
| } |
| return false; |
| } |
| |
| // In some scenarios (e.g. fill or convexity checking all but the last leading move to are |
| // irrelevant to behavior). SkPath::injectMoveToIfNeeded should ensure that this is always at |
| // least 1. |
| static int LeadingMoveToCount(const SkPath& path) { |
| int verbCount = path.countVerbs(); |
| auto verbs = path.fPathRef->verbsBegin(); |
| for (int i = 0; i < verbCount; i++) { |
| if (verbs[i] != SkPath::Verb::kMove_Verb) { |
| return i; |
| } |
| } |
| return verbCount; // path is all move verbs |
| } |
| |
| static void AddGenIDChangeListener(const SkPath& path, sk_sp<SkIDChangeListener> listener) { |
| path.fPathRef->addGenIDChangeListener(std::move(listener)); |
| } |
| |
| /** |
| * This returns true for a rect that has a move followed by 3 or 4 lines and a close. If |
| * 'isSimpleFill' is true, an uncloseed rect will also be accepted as long as it starts and |
| * ends at the same corner. This does not permit degenerate line or point rectangles. |
| */ |
| static bool IsSimpleRect(const SkPath& path, bool isSimpleFill, SkRect* rect, |
| SkPathDirection* direction, unsigned* start); |
| |
| /** |
| * Creates a path from arc params using the semantics of SkCanvas::drawArc. This function |
| * assumes empty ovals and zero sweeps have already been filtered out. |
| */ |
| static void CreateDrawArcPath(SkPath* path, const SkArc& arc, bool isFillNoPathEffect); |
| |
| /** |
| * Determines whether an arc produced by CreateDrawArcPath will be convex. Assumes a non-empty |
| * oval. |
| */ |
| static bool DrawArcIsConvex(SkScalar sweepAngle, SkArc::Type arcType, bool isFillNoPathEffect); |
| |
| static void ShrinkToFit(SkPath* path) { |
| path->shrinkToFit(); |
| } |
| |
| /** |
| * Returns a C++11-iterable object that traverses a path's verbs in order. e.g: |
| * |
| * for (SkPath::Verb verb : SkPathPriv::Verbs(path)) { |
| * ... |
| * } |
| */ |
| struct Verbs { |
| public: |
| Verbs(const SkPath& path) : fPathRef(path.fPathRef.get()) {} |
| struct Iter { |
| void operator++() { fVerb++; } |
| bool operator!=(const Iter& b) { return fVerb != b.fVerb; } |
| SkPath::Verb operator*() { return static_cast<SkPath::Verb>(*fVerb); } |
| const uint8_t* fVerb; |
| }; |
| Iter begin() { return Iter{fPathRef->verbsBegin()}; } |
| Iter end() { return Iter{fPathRef->verbsEnd()}; } |
| private: |
| Verbs(const Verbs&) = delete; |
| Verbs& operator=(const Verbs&) = delete; |
| SkPathRef* fPathRef; |
| }; |
| |
| /** |
| * Iterates through a raw range of path verbs, points, and conics. All values are returned |
| * unaltered. |
| * |
| * NOTE: This class's definition will be moved into SkPathPriv once RangeIter is removed. |
| */ |
| using RangeIter = SkPath::RangeIter; |
| |
| /** |
| * Iterable object for traversing verbs, points, and conic weights in a path: |
| * |
| * for (auto [verb, pts, weights] : SkPathPriv::Iterate(skPath)) { |
| * ... |
| * } |
| */ |
| struct Iterate { |
| public: |
| Iterate(const SkPath& path) |
| : Iterate(path.fPathRef->verbsBegin(), |
| // Don't allow iteration through non-finite points. |
| (!path.isFinite()) ? path.fPathRef->verbsBegin() |
| : path.fPathRef->verbsEnd(), |
| path.fPathRef->points(), path.fPathRef->conicWeights()) { |
| } |
| Iterate(const uint8_t* verbsBegin, const uint8_t* verbsEnd, const SkPoint* points, |
| const SkScalar* weights) |
| : fVerbsBegin(verbsBegin), fVerbsEnd(verbsEnd), fPoints(points), fWeights(weights) { |
| } |
| SkPath::RangeIter begin() { return {fVerbsBegin, fPoints, fWeights}; } |
| SkPath::RangeIter end() { return {fVerbsEnd, nullptr, nullptr}; } |
| private: |
| const uint8_t* fVerbsBegin; |
| const uint8_t* fVerbsEnd; |
| const SkPoint* fPoints; |
| const SkScalar* fWeights; |
| }; |
| |
| /** |
| * Returns a pointer to the verb data. |
| */ |
| static const uint8_t* VerbData(const SkPath& path) { |
| return path.fPathRef->verbsBegin(); |
| } |
| |
| /** Returns a raw pointer to the path points */ |
| static const SkPoint* PointData(const SkPath& path) { |
| return path.fPathRef->points(); |
| } |
| |
| /** Returns the number of conic weights in the path */ |
| static int ConicWeightCnt(const SkPath& path) { |
| return path.fPathRef->countWeights(); |
| } |
| |
| /** Returns a raw pointer to the path conic weights. */ |
| static const SkScalar* ConicWeightData(const SkPath& path) { |
| return path.fPathRef->conicWeights(); |
| } |
| |
| /** Returns true if the underlying SkPathRef has one single owner. */ |
| static bool TestingOnly_unique(const SkPath& path) { |
| return path.fPathRef->unique(); |
| } |
| |
| // Won't be needed once we can make path's immutable (with their bounds always computed) |
| static bool HasComputedBounds(const SkPath& path) { |
| return path.hasComputedBounds(); |
| } |
| |
| /** Returns true if constructed by addCircle(), addOval(); and in some cases, |
| addRoundRect(), addRRect(). SkPath constructed with conicTo() or rConicTo() will not |
| return true though SkPath draws oval. |
| |
| rect receives bounds of oval. |
| dir receives SkPathDirection of oval: kCW_Direction if clockwise, kCCW_Direction if |
| counterclockwise. |
| start receives start of oval: 0 for top, 1 for right, 2 for bottom, 3 for left. |
| |
| rect, dir, and start are unmodified if oval is not found. |
| |
| Triggers performance optimizations on some GPU surface implementations. |
| |
| @param rect storage for bounding SkRect of oval; may be nullptr |
| @param dir storage for SkPathDirection; may be nullptr |
| @param start storage for start of oval; may be nullptr |
| @return true if SkPath was constructed by method that reduces to oval |
| */ |
| static bool IsOval(const SkPath& path, SkRect* rect, SkPathDirection* dir, unsigned* start) { |
| bool isCCW = false; |
| bool result = path.fPathRef->isOval(rect, &isCCW, start); |
| if (dir && result) { |
| *dir = isCCW ? SkPathDirection::kCCW : SkPathDirection::kCW; |
| } |
| return result; |
| } |
| |
| /** Returns true if constructed by addRoundRect(), addRRect(); and if construction |
| is not empty, not SkRect, and not oval. SkPath constructed with other calls |
| will not return true though SkPath draws SkRRect. |
| |
| rrect receives bounds of SkRRect. |
| dir receives SkPathDirection of oval: kCW_Direction if clockwise, kCCW_Direction if |
| counterclockwise. |
| start receives start of SkRRect: 0 for top, 1 for right, 2 for bottom, 3 for left. |
| |
| rrect, dir, and start are unmodified if SkRRect is not found. |
| |
| Triggers performance optimizations on some GPU surface implementations. |
| |
| @param rrect storage for bounding SkRect of SkRRect; may be nullptr |
| @param dir storage for SkPathDirection; may be nullptr |
| @param start storage for start of SkRRect; may be nullptr |
| @return true if SkPath contains only SkRRect |
| */ |
| static bool IsRRect(const SkPath& path, SkRRect* rrect, SkPathDirection* dir, |
| unsigned* start) { |
| bool isCCW = false; |
| bool result = path.fPathRef->isRRect(rrect, &isCCW, start); |
| if (dir && result) { |
| *dir = isCCW ? SkPathDirection::kCCW : SkPathDirection::kCW; |
| } |
| return result; |
| } |
| |
| /** |
| * Sometimes in the drawing pipeline, we have to perform math on path coordinates, even after |
| * the path is in device-coordinates. Tessellation and clipping are two examples. Usually this |
| * is pretty modest, but it can involve subtracting/adding coordinates, or multiplying by |
| * small constants (e.g. 2,3,4). To try to preflight issues where these optionations could turn |
| * finite path values into infinities (or NaNs), we allow the upper drawing code to reject |
| * the path if its bounds (in device coordinates) is too close to max float. |
| */ |
| static bool TooBigForMath(const SkRect& bounds) { |
| // This value is just a guess. smaller is safer, but we don't want to reject largish paths |
| // that we don't have to. |
| constexpr SkScalar scale_down_to_allow_for_small_multiplies = 0.25f; |
| constexpr SkScalar max = SK_ScalarMax * scale_down_to_allow_for_small_multiplies; |
| |
| // use ! expression so we return true if bounds contains NaN |
| return !(bounds.fLeft >= -max && bounds.fTop >= -max && |
| bounds.fRight <= max && bounds.fBottom <= max); |
| } |
| static bool TooBigForMath(const SkPath& path) { |
| return TooBigForMath(path.getBounds()); |
| } |
| |
| // Returns number of valid points for each SkPath::Iter verb |
| static int PtsInIter(unsigned verb) { |
| static const uint8_t gPtsInVerb[] = { |
| 1, // kMove pts[0] |
| 2, // kLine pts[0..1] |
| 3, // kQuad pts[0..2] |
| 3, // kConic pts[0..2] |
| 4, // kCubic pts[0..3] |
| 0, // kClose |
| 0 // kDone |
| }; |
| |
| SkASSERT(verb < std::size(gPtsInVerb)); |
| return gPtsInVerb[verb]; |
| } |
| |
| // Returns number of valid points for each verb, not including the "starter" |
| // point that the Iterator adds for line/quad/conic/cubic |
| static int PtsInVerb(unsigned verb) { |
| static const uint8_t gPtsInVerb[] = { |
| 1, // kMove pts[0] |
| 1, // kLine pts[0..1] |
| 2, // kQuad pts[0..2] |
| 2, // kConic pts[0..2] |
| 3, // kCubic pts[0..3] |
| 0, // kClose |
| 0 // kDone |
| }; |
| |
| SkASSERT(verb < std::size(gPtsInVerb)); |
| return gPtsInVerb[verb]; |
| } |
| |
| static bool IsAxisAligned(const SkPath& path); |
| |
| static bool AllPointsEq(const SkPoint pts[], int count) { |
| for (int i = 1; i < count; ++i) { |
| if (pts[0] != pts[i]) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| static int LastMoveToIndex(const SkPath& path) { return path.fLastMoveToIndex; } |
| |
| static bool IsRectContour(const SkPath&, bool allowPartial, int* currVerb, |
| const SkPoint** ptsPtr, bool* isClosed, SkPathDirection* direction, |
| SkRect* rect); |
| |
| /** Returns true if SkPath is equivalent to nested SkRect pair when filled. |
| If false, rect and dirs are unchanged. |
| If true, rect and dirs are written to if not nullptr: |
| setting rect[0] to outer SkRect, and rect[1] to inner SkRect; |
| setting dirs[0] to SkPathDirection of outer SkRect, and dirs[1] to SkPathDirection of |
| inner SkRect. |
| |
| @param rect storage for SkRect pair; may be nullptr |
| @param dirs storage for SkPathDirection pair; may be nullptr |
| @return true if SkPath contains nested SkRect pair |
| */ |
| static bool IsNestedFillRects(const SkPath&, SkRect rect[2], |
| SkPathDirection dirs[2] = nullptr); |
| |
| static bool IsInverseFillType(SkPathFillType fill) { |
| return (static_cast<int>(fill) & 2) != 0; |
| } |
| |
| /** Returns equivalent SkPath::FillType representing SkPath fill inside its bounds. |
| . |
| |
| @param fill one of: kWinding_FillType, kEvenOdd_FillType, |
| kInverseWinding_FillType, kInverseEvenOdd_FillType |
| @return fill, or kWinding_FillType or kEvenOdd_FillType if fill is inverted |
| */ |
| static SkPathFillType ConvertToNonInverseFillType(SkPathFillType fill) { |
| return (SkPathFillType)(static_cast<int>(fill) & 1); |
| } |
| |
| /** |
| * If needed (to not blow-up under a perspective matrix), clip the path, returning the |
| * answer in "result", and return true. |
| * |
| * Note result might be empty (if the path was completely clipped out). |
| * |
| * If no clipping is needed, returns false and "result" is left unchanged. |
| */ |
| static bool PerspectiveClip(const SkPath& src, const SkMatrix&, SkPath* result); |
| |
| /** |
| * Gets the number of GenIDChangeListeners. If another thread has access to this path then |
| * this may be stale before return and only indicates that the count was the return value |
| * at some point during the execution of the function. |
| */ |
| static int GenIDChangeListenersCount(const SkPath&); |
| |
| static void UpdatePathPoint(SkPath* path, int index, const SkPoint& pt) { |
| SkASSERT(index < path->countPoints()); |
| SkPathRef::Editor ed(&path->fPathRef); |
| ed.writablePoints()[index] = pt; |
| path->dirtyAfterEdit(); |
| } |
| |
| static SkPathConvexity GetConvexity(const SkPath& path) { |
| return path.getConvexity(); |
| } |
| static SkPathConvexity GetConvexityOrUnknown(const SkPath& path) { |
| return path.getConvexityOrUnknown(); |
| } |
| static void SetConvexity(const SkPath& path, SkPathConvexity c) { |
| path.setConvexity(c); |
| } |
| static void ForceComputeConvexity(const SkPath& path) { |
| path.setConvexity(SkPathConvexity::kUnknown); |
| (void)path.isConvex(); |
| } |
| |
| static void ReverseAddPath(SkPathBuilder* builder, const SkPath& reverseMe) { |
| builder->privateReverseAddPath(reverseMe); |
| } |
| |
| static SkPath MakePath(const SkPathVerbAnalysis& analysis, |
| const SkPoint points[], |
| const uint8_t verbs[], |
| int verbCount, |
| const SkScalar conics[], |
| SkPathFillType fillType, |
| bool isVolatile) { |
| return SkPath::MakeInternal(analysis, points, verbs, verbCount, conics, fillType, |
| isVolatile); |
| } |
| }; |
| |
| // Lightweight variant of SkPath::Iter that only returns segments (e.g. lines/conics). |
| // Does not return kMove or kClose. |
| // Always "auto-closes" each contour. |
| // Roughly the same as SkPath::Iter(path, true), but does not return moves or closes |
| // |
| class SkPathEdgeIter { |
| const uint8_t* fVerbs; |
| const uint8_t* fVerbsStop; |
| const SkPoint* fPts; |
| const SkPoint* fMoveToPtr; |
| const SkScalar* fConicWeights; |
| SkPoint fScratch[2]; // for auto-close lines |
| bool fNeedsCloseLine; |
| bool fNextIsNewContour; |
| SkDEBUGCODE(bool fIsConic;) |
| |
| enum { |
| kIllegalEdgeValue = 99 |
| }; |
| |
| public: |
| SkPathEdgeIter(const SkPath& path); |
| |
| SkScalar conicWeight() const { |
| SkASSERT(fIsConic); |
| return *fConicWeights; |
| } |
| |
| enum class Edge { |
| kLine = SkPath::kLine_Verb, |
| kQuad = SkPath::kQuad_Verb, |
| kConic = SkPath::kConic_Verb, |
| kCubic = SkPath::kCubic_Verb, |
| }; |
| |
| static SkPath::Verb EdgeToVerb(Edge e) { |
| return SkPath::Verb(e); |
| } |
| |
| struct Result { |
| const SkPoint* fPts; // points for the segment, or null if done |
| Edge fEdge; |
| bool fIsNewContour; |
| |
| // Returns true when it holds an Edge, false when the path is done. |
| explicit operator bool() { return fPts != nullptr; } |
| }; |
| |
| Result next() { |
| auto closeline = [&]() { |
| fScratch[0] = fPts[-1]; |
| fScratch[1] = *fMoveToPtr; |
| fNeedsCloseLine = false; |
| fNextIsNewContour = true; |
| return Result{ fScratch, Edge::kLine, false }; |
| }; |
| |
| for (;;) { |
| SkASSERT(fVerbs <= fVerbsStop); |
| if (fVerbs == fVerbsStop) { |
| return fNeedsCloseLine |
| ? closeline() |
| : Result{ nullptr, Edge(kIllegalEdgeValue), false }; |
| } |
| |
| SkDEBUGCODE(fIsConic = false;) |
| |
| const auto v = *fVerbs++; |
| switch (v) { |
| case SkPath::kMove_Verb: { |
| if (fNeedsCloseLine) { |
| auto res = closeline(); |
| fMoveToPtr = fPts++; |
| return res; |
| } |
| fMoveToPtr = fPts++; |
| fNextIsNewContour = true; |
| } break; |
| case SkPath::kClose_Verb: |
| if (fNeedsCloseLine) return closeline(); |
| break; |
| default: { |
| // Actual edge. |
| const int pts_count = (v+2) / 2, |
| cws_count = (v & (v-1)) / 2; |
| SkASSERT(pts_count == SkPathPriv::PtsInIter(v) - 1); |
| |
| fNeedsCloseLine = true; |
| fPts += pts_count; |
| fConicWeights += cws_count; |
| |
| SkDEBUGCODE(fIsConic = (v == SkPath::kConic_Verb);) |
| SkASSERT(fIsConic == (cws_count > 0)); |
| |
| bool isNewContour = fNextIsNewContour; |
| fNextIsNewContour = false; |
| return { &fPts[-(pts_count + 1)], Edge(v), isNewContour }; |
| } |
| } |
| } |
| } |
| }; |
| |
| #endif |