| /* |
| * Copyright 2015 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/shaders/SkImageShader.h" |
| |
| #include "src/base/SkArenaAlloc.h" |
| #include "src/core/SkColorSpacePriv.h" |
| #include "src/core/SkColorSpaceXformSteps.h" |
| #include "src/core/SkImageInfoPriv.h" |
| #include "src/core/SkMatrixPriv.h" |
| #include "src/core/SkMatrixProvider.h" |
| #include "src/core/SkMipmapAccessor.h" |
| #include "src/core/SkOpts.h" |
| #include "src/core/SkRasterPipeline.h" |
| #include "src/core/SkReadBuffer.h" |
| #include "src/core/SkVM.h" |
| #include "src/core/SkWriteBuffer.h" |
| #include "src/image/SkImage_Base.h" |
| #include "src/shaders/SkBitmapProcShader.h" |
| #include "src/shaders/SkLocalMatrixShader.h" |
| #include "src/shaders/SkTransformShader.h" |
| |
| #if defined(SK_GRAPHITE) |
| #include "src/gpu/graphite/ImageUtils.h" |
| #include "src/gpu/graphite/Image_Graphite.h" |
| #include "src/gpu/graphite/KeyContext.h" |
| #include "src/gpu/graphite/KeyHelpers.h" |
| #include "src/gpu/graphite/Log.h" |
| #include "src/gpu/graphite/PaintParamsKey.h" |
| #include "src/gpu/graphite/ReadWriteSwizzle.h" |
| #include "src/gpu/graphite/TextureProxyView.h" |
| |
| |
| static skgpu::graphite::ReadSwizzle swizzle_class_to_read_enum(const skgpu::Swizzle& swizzle) { |
| if (swizzle == skgpu::Swizzle::RGBA()) { |
| return skgpu::graphite::ReadSwizzle::kRGBA; |
| } else if (swizzle == skgpu::Swizzle::RGB1()) { |
| return skgpu::graphite::ReadSwizzle::kRGB1; |
| } else if (swizzle == skgpu::Swizzle("rrrr")) { |
| return skgpu::graphite::ReadSwizzle::kRRRR; |
| } else if (swizzle == skgpu::Swizzle("rrr1")) { |
| return skgpu::graphite::ReadSwizzle::kRRR1; |
| } else if (swizzle == skgpu::Swizzle::BGRA()) { |
| return skgpu::graphite::ReadSwizzle::kBGRA; |
| } else { |
| SKGPU_LOG_W("%s is an unsupported read swizzle. Defaulting to RGBA.\n", |
| swizzle.asString().data()); |
| return skgpu::graphite::ReadSwizzle::kRGBA; |
| } |
| } |
| #endif |
| |
| SkM44 SkImageShader::CubicResamplerMatrix(float B, float C) { |
| #if 0 |
| constexpr SkM44 kMitchell = SkM44( 1.f/18.f, -9.f/18.f, 15.f/18.f, -7.f/18.f, |
| 16.f/18.f, 0.f/18.f, -36.f/18.f, 21.f/18.f, |
| 1.f/18.f, 9.f/18.f, 27.f/18.f, -21.f/18.f, |
| 0.f/18.f, 0.f/18.f, -6.f/18.f, 7.f/18.f); |
| |
| constexpr SkM44 kCatmull = SkM44(0.0f, -0.5f, 1.0f, -0.5f, |
| 1.0f, 0.0f, -2.5f, 1.5f, |
| 0.0f, 0.5f, 2.0f, -1.5f, |
| 0.0f, 0.0f, -0.5f, 0.5f); |
| |
| if (B == 1.0f/3 && C == 1.0f/3) { |
| return kMitchell; |
| } |
| if (B == 0 && C == 0.5f) { |
| return kCatmull; |
| } |
| #endif |
| return SkM44( (1.f/6)*B, -(3.f/6)*B - C, (3.f/6)*B + 2*C, - (1.f/6)*B - C, |
| 1 - (2.f/6)*B, 0, -3 + (12.f/6)*B + C, 2 - (9.f/6)*B - C, |
| (1.f/6)*B, (3.f/6)*B + C, 3 - (15.f/6)*B - 2*C, -2 + (9.f/6)*B + C, |
| 0, 0, -C, (1.f/6)*B + C); |
| } |
| |
| /** |
| * We are faster in clamp, so always use that tiling when we can. |
| */ |
| static SkTileMode optimize(SkTileMode tm, int dimension) { |
| SkASSERT(dimension > 0); |
| #ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK |
| // need to update frameworks/base/libs/hwui/tests/unit/SkiaBehaviorTests.cpp:55 to allow |
| // for transforming to clamp. |
| return tm; |
| #else |
| // mirror and repeat on a 1px axis are the same as clamping, but decal will still transition to |
| // transparent black. |
| return (tm != SkTileMode::kDecal && dimension == 1) ? SkTileMode::kClamp : tm; |
| #endif |
| } |
| |
| // TODO: currently this only *always* used in asFragmentProcessor(), which is excluded on no-gpu |
| // builds. No-gpu builds only use needs_subset() in asserts, so release+no-gpu doesn't use it, which |
| // can cause builds to fail if unused warnings are treated as errors. |
| [[maybe_unused]] static bool needs_subset(SkImage* img, const SkRect& subset) { |
| return subset != SkRect::Make(img->dimensions()); |
| } |
| |
| SkImageShader::SkImageShader(sk_sp<SkImage> img, |
| const SkRect& subset, |
| SkTileMode tmx, SkTileMode tmy, |
| const SkSamplingOptions& sampling, |
| bool raw, |
| bool clampAsIfUnpremul) |
| : fImage(std::move(img)) |
| , fSampling(sampling) |
| , fTileModeX(optimize(tmx, fImage->width())) |
| , fTileModeY(optimize(tmy, fImage->height())) |
| , fSubset(subset) |
| , fRaw(raw) |
| , fClampAsIfUnpremul(clampAsIfUnpremul) { |
| // These options should never appear together: |
| SkASSERT(!fRaw || !fClampAsIfUnpremul); |
| |
| // Bicubic filtering of raw image shaders would add a surprising clamp - so we don't support it |
| SkASSERT(!fRaw || !fSampling.useCubic); |
| } |
| |
| // just used for legacy-unflattening |
| enum class LegacyFilterEnum { |
| kNone, |
| kLow, |
| kMedium, |
| kHigh, |
| // this is the special value for backward compatibility |
| kInheritFromPaint, |
| // this signals we should use the new SkFilterOptions |
| kUseFilterOptions, |
| // use cubic and ignore FilterOptions |
| kUseCubicResampler, |
| |
| kLast = kUseCubicResampler, |
| }; |
| |
| // fClampAsIfUnpremul is always false when constructed through public APIs, |
| // so there's no need to read or write it here. |
| |
| sk_sp<SkFlattenable> SkImageShader::CreateProc(SkReadBuffer& buffer) { |
| auto tmx = buffer.read32LE<SkTileMode>(SkTileMode::kLastTileMode); |
| auto tmy = buffer.read32LE<SkTileMode>(SkTileMode::kLastTileMode); |
| |
| SkSamplingOptions sampling; |
| bool readSampling = true; |
| if (buffer.isVersionLT(SkPicturePriv::kNoFilterQualityShaders_Version) && |
| !buffer.readBool() /* legacy has_sampling */) |
| { |
| readSampling = false; |
| // we just default to Nearest in sampling |
| } |
| if (readSampling) { |
| sampling = buffer.readSampling(); |
| } |
| |
| SkMatrix localMatrix; |
| if (buffer.isVersionLT(SkPicturePriv::Version::kNoShaderLocalMatrix)) { |
| buffer.readMatrix(&localMatrix); |
| } |
| sk_sp<SkImage> img = buffer.readImage(); |
| if (!img) { |
| return nullptr; |
| } |
| |
| bool raw = buffer.isVersionLT(SkPicturePriv::Version::kRawImageShaders) ? false |
| : buffer.readBool(); |
| |
| // TODO(skbug.com/12784): Subset is not serialized yet; it's only used by special images so it |
| // will never be written to an SKP. |
| |
| return raw ? SkImageShader::MakeRaw(std::move(img), tmx, tmy, sampling, &localMatrix) |
| : SkImageShader::Make(std::move(img), tmx, tmy, sampling, &localMatrix); |
| } |
| |
| void SkImageShader::flatten(SkWriteBuffer& buffer) const { |
| buffer.writeUInt((unsigned)fTileModeX); |
| buffer.writeUInt((unsigned)fTileModeY); |
| |
| buffer.writeSampling(fSampling); |
| |
| buffer.writeImage(fImage.get()); |
| SkASSERT(fClampAsIfUnpremul == false); |
| |
| // TODO(skbug.com/12784): Subset is not serialized yet; it's only used by special images so it |
| // will never be written to an SKP. |
| SkASSERT(!needs_subset(fImage.get(), fSubset)); |
| |
| buffer.writeBool(fRaw); |
| } |
| |
| bool SkImageShader::isOpaque() const { |
| return fImage->isOpaque() && |
| fTileModeX != SkTileMode::kDecal && fTileModeY != SkTileMode::kDecal; |
| } |
| |
| #ifdef SK_ENABLE_LEGACY_SHADERCONTEXT |
| |
| static bool legacy_shader_can_handle(const SkMatrix& inv) { |
| SkASSERT(!inv.hasPerspective()); |
| |
| // Scale+translate methods are always present, but affine might not be. |
| if (!SkOpts::S32_alpha_D32_filter_DXDY && !inv.isScaleTranslate()) { |
| return false; |
| } |
| |
| // legacy code uses SkFixed 32.32, so ensure the inverse doesn't map device coordinates |
| // out of range. |
| const SkScalar max_dev_coord = 32767.0f; |
| const SkRect src = inv.mapRect(SkRect::MakeWH(max_dev_coord, max_dev_coord)); |
| |
| // take 1/4 of max signed 32bits so we have room to subtract local values |
| const SkScalar max_fixed32dot32 = float(SK_MaxS32) * 0.25f; |
| if (!SkRect::MakeLTRB(-max_fixed32dot32, -max_fixed32dot32, |
| +max_fixed32dot32, +max_fixed32dot32).contains(src)) { |
| return false; |
| } |
| |
| // legacy shader impl should be able to handle these matrices |
| return true; |
| } |
| |
| SkShaderBase::Context* SkImageShader::onMakeContext(const ContextRec& rec, |
| SkArenaAlloc* alloc) const { |
| SkASSERT(!needs_subset(fImage.get(), fSubset)); // TODO(skbug.com/12784) |
| if (fImage->alphaType() == kUnpremul_SkAlphaType) { |
| return nullptr; |
| } |
| if (fImage->colorType() != kN32_SkColorType) { |
| return nullptr; |
| } |
| if (fTileModeX != fTileModeY) { |
| return nullptr; |
| } |
| if (fTileModeX == SkTileMode::kDecal || fTileModeY == SkTileMode::kDecal) { |
| return nullptr; |
| } |
| |
| SkSamplingOptions sampling = fSampling; |
| if (sampling.isAniso()) { |
| sampling = SkSamplingPriv::AnisoFallback(fImage->hasMipmaps()); |
| } |
| |
| auto supported = [](const SkSamplingOptions& sampling) { |
| const std::tuple<SkFilterMode,SkMipmapMode> supported[] = { |
| {SkFilterMode::kNearest, SkMipmapMode::kNone}, // legacy None |
| {SkFilterMode::kLinear, SkMipmapMode::kNone}, // legacy Low |
| {SkFilterMode::kLinear, SkMipmapMode::kNearest}, // legacy Medium |
| }; |
| for (auto [f, m] : supported) { |
| if (sampling.filter == f && sampling.mipmap == m) { |
| return true; |
| } |
| } |
| return false; |
| }; |
| if (sampling.useCubic || !supported(sampling)) { |
| return nullptr; |
| } |
| |
| // SkBitmapProcShader stores bitmap coordinates in a 16bit buffer, |
| // so it can't handle bitmaps larger than 65535. |
| // |
| // We back off another bit to 32767 to make small amounts of |
| // intermediate math safe, e.g. in |
| // |
| // SkFixed fx = ...; |
| // fx = tile(fx + SK_Fixed1); |
| // |
| // we want to make sure (fx + SK_Fixed1) never overflows. |
| if (fImage-> width() > 32767 || |
| fImage->height() > 32767) { |
| return nullptr; |
| } |
| |
| SkMatrix inv; |
| if (!this->computeTotalInverse(*rec.fMatrix, rec.fLocalMatrix, &inv) || |
| !legacy_shader_can_handle(inv)) { |
| return nullptr; |
| } |
| |
| if (!rec.isLegacyCompatible(fImage->colorSpace())) { |
| return nullptr; |
| } |
| |
| return SkBitmapProcLegacyShader::MakeContext(*this, fTileModeX, fTileModeY, sampling, |
| as_IB(fImage.get()), rec, alloc); |
| } |
| #endif |
| |
| SkImage* SkImageShader::onIsAImage(SkMatrix* texM, SkTileMode xy[]) const { |
| if (texM) { |
| *texM = SkMatrix::I(); |
| } |
| if (xy) { |
| xy[0] = fTileModeX; |
| xy[1] = fTileModeY; |
| } |
| return const_cast<SkImage*>(fImage.get()); |
| } |
| |
| sk_sp<SkShader> SkImageShader::Make(sk_sp<SkImage> image, |
| SkTileMode tmx, SkTileMode tmy, |
| const SkSamplingOptions& options, |
| const SkMatrix* localMatrix, |
| bool clampAsIfUnpremul) { |
| SkRect subset = image ? SkRect::Make(image->dimensions()) : SkRect::MakeEmpty(); |
| return MakeSubset(std::move(image), subset, tmx, tmy, options, localMatrix, clampAsIfUnpremul); |
| } |
| |
| sk_sp<SkShader> SkImageShader::MakeRaw(sk_sp<SkImage> image, |
| SkTileMode tmx, SkTileMode tmy, |
| const SkSamplingOptions& options, |
| const SkMatrix* localMatrix) { |
| if (options.useCubic) { |
| return nullptr; |
| } |
| if (!image) { |
| return SkShaders::Empty(); |
| } |
| auto subset = SkRect::Make(image->dimensions()); |
| return SkLocalMatrixShader::MakeWrapped<SkImageShader>(localMatrix, |
| image, |
| subset, |
| tmx, tmy, |
| options, |
| /*raw=*/true, |
| /*clampAsIfUnpremul=*/false); |
| } |
| |
| sk_sp<SkShader> SkImageShader::MakeSubset(sk_sp<SkImage> image, |
| const SkRect& subset, |
| SkTileMode tmx, SkTileMode tmy, |
| const SkSamplingOptions& options, |
| const SkMatrix* localMatrix, |
| bool clampAsIfUnpremul) { |
| auto is_unit = [](float x) { |
| return x >= 0 && x <= 1; |
| }; |
| if (options.useCubic) { |
| if (!is_unit(options.cubic.B) || !is_unit(options.cubic.C)) { |
| return nullptr; |
| } |
| } |
| if (!image || subset.isEmpty()) { |
| return SkShaders::Empty(); |
| } |
| |
| // Validate subset and check if we can drop it |
| if (!SkRect::Make(image->bounds()).contains(subset)) { |
| return nullptr; |
| } |
| // TODO(skbug.com/12784): GPU-only for now since it's only supported in onAsFragmentProcessor() |
| SkASSERT(!needs_subset(image.get(), subset) || image->isTextureBacked()); |
| return SkLocalMatrixShader::MakeWrapped<SkImageShader>(localMatrix, |
| std::move(image), |
| subset, |
| tmx, tmy, |
| options, |
| /*raw=*/false, |
| clampAsIfUnpremul); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| #if defined(SK_GANESH) |
| |
| #include "src/gpu/ganesh/GrColorInfo.h" |
| #include "src/gpu/ganesh/GrFPArgs.h" |
| #include "src/gpu/ganesh/effects/GrBlendFragmentProcessor.h" |
| |
| std::unique_ptr<GrFragmentProcessor> |
| SkImageShader::asFragmentProcessor(const GrFPArgs& args, const MatrixRec& mRec) const { |
| SkTileMode tileModes[2] = {fTileModeX, fTileModeY}; |
| const SkRect* subset = needs_subset(fImage.get(), fSubset) ? &fSubset : nullptr; |
| auto fp = as_IB(fImage.get())->asFragmentProcessor(args.fContext, |
| fSampling, |
| tileModes, |
| SkMatrix::I(), |
| subset); |
| if (!fp) { |
| return nullptr; |
| } |
| |
| bool success; |
| std::tie(success, fp) = mRec.apply(std::move(fp)); |
| if (!success) { |
| return nullptr; |
| } |
| |
| if (!fRaw) { |
| fp = GrColorSpaceXformEffect::Make(std::move(fp), |
| fImage->colorSpace(), |
| fImage->alphaType(), |
| args.fDstColorInfo->colorSpace(), |
| kPremul_SkAlphaType); |
| |
| if (fImage->isAlphaOnly()) { |
| fp = GrBlendFragmentProcessor::Make<SkBlendMode::kDstIn>(std::move(fp), nullptr); |
| } |
| } |
| |
| return fp; |
| } |
| |
| #endif |
| |
| #if defined(SK_GRAPHITE) |
| void SkImageShader::addToKey(const skgpu::graphite::KeyContext& keyContext, |
| skgpu::graphite::PaintParamsKeyBuilder* builder, |
| skgpu::graphite::PipelineDataGatherer* gatherer) const { |
| using namespace skgpu::graphite; |
| |
| ImageShaderBlock::ImageData imgData(fSampling, fTileModeX, fTileModeY, fSubset, |
| ReadSwizzle::kRGBA); |
| |
| auto [ imageToDraw, newSampling ] = skgpu::graphite::GetGraphiteBacked(keyContext.recorder(), |
| fImage.get(), |
| fSampling); |
| |
| if (imageToDraw) { |
| imgData.fSampling = newSampling; |
| skgpu::Mipmapped mipmapped = (newSampling.mipmap != SkMipmapMode::kNone) |
| ? skgpu::Mipmapped::kYes : skgpu::Mipmapped::kNo; |
| |
| auto [view, _] = as_IB(imageToDraw)->asView(keyContext.recorder(), mipmapped); |
| imgData.fTextureProxy = view.refProxy(); |
| skgpu::Swizzle readSwizzle = view.swizzle(); |
| // If the color type is alpha-only, propagate the alpha value to the other channels. |
| if (imageToDraw->isAlphaOnly()) { |
| readSwizzle = skgpu::Swizzle::Concat(readSwizzle, skgpu::Swizzle("aaaa")); |
| } |
| imgData.fReadSwizzle = swizzle_class_to_read_enum(readSwizzle); |
| } |
| |
| if (!fRaw) { |
| imgData.fSteps = SkColorSpaceXformSteps(fImage->colorSpace(), |
| fImage->alphaType(), |
| keyContext.dstColorInfo().colorSpace(), |
| keyContext.dstColorInfo().alphaType()); |
| |
| if (fImage->isAlphaOnly()) { |
| SkSpan<const float> constants = skgpu::GetPorterDuffBlendConstants(SkBlendMode::kDstIn); |
| // expects dst, src |
| PorterDuffBlendShaderBlock::BeginBlock(keyContext, builder, gatherer, |
| {constants}); |
| |
| // dst |
| SolidColorShaderBlock::BeginBlock(keyContext, builder, gatherer, |
| keyContext.paintColor()); |
| builder->endBlock(); |
| |
| // src |
| ImageShaderBlock::BeginBlock(keyContext, builder, gatherer, &imgData); |
| builder->endBlock(); |
| |
| builder->endBlock(); |
| return; |
| } |
| } |
| |
| ImageShaderBlock::BeginBlock(keyContext, builder, gatherer, &imgData); |
| builder->endBlock(); |
| } |
| #endif |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////////// |
| #include "src/core/SkImagePriv.h" |
| |
| sk_sp<SkShader> SkMakeBitmapShaderForPaint(const SkPaint& paint, const SkBitmap& src, |
| SkTileMode tmx, SkTileMode tmy, |
| const SkSamplingOptions& sampling, |
| const SkMatrix* localMatrix, SkCopyPixelsMode mode) { |
| auto s = SkImageShader::Make(SkMakeImageFromRasterBitmap(src, mode), |
| tmx, tmy, sampling, localMatrix); |
| if (!s) { |
| return nullptr; |
| } |
| if (SkColorTypeIsAlphaOnly(src.colorType()) && paint.getShader()) { |
| // Compose the image shader with the paint's shader. Alpha images+shaders should output the |
| // texture's alpha multiplied by the shader's color. DstIn (d*sa) will achieve this with |
| // the source image and dst shader (MakeBlend takes dst first, src second). |
| s = SkShaders::Blend(SkBlendMode::kDstIn, paint.refShader(), std::move(s)); |
| } |
| return s; |
| } |
| |
| void SkShaderBase::RegisterFlattenables() { SK_REGISTER_FLATTENABLE(SkImageShader); } |
| |
| namespace { |
| |
| struct MipLevelHelper { |
| SkPixmap pm; |
| SkMatrix inv; |
| SkRasterPipeline_GatherCtx* gather; |
| SkRasterPipeline_TileCtx* limitX; |
| SkRasterPipeline_TileCtx* limitY; |
| SkRasterPipeline_DecalTileCtx* decalCtx = nullptr; |
| |
| void allocAndInit(SkArenaAlloc* alloc, |
| const SkSamplingOptions& sampling, |
| SkTileMode tileModeX, |
| SkTileMode tileModeY) { |
| gather = alloc->make<SkRasterPipeline_GatherCtx>(); |
| gather->pixels = pm.addr(); |
| gather->stride = pm.rowBytesAsPixels(); |
| gather->width = pm.width(); |
| gather->height = pm.height(); |
| |
| if (sampling.useCubic) { |
| SkImageShader::CubicResamplerMatrix(sampling.cubic.B, sampling.cubic.C) |
| .getColMajor(gather->weights); |
| } |
| |
| limitX = alloc->make<SkRasterPipeline_TileCtx>(); |
| limitY = alloc->make<SkRasterPipeline_TileCtx>(); |
| limitX->scale = pm.width(); |
| limitX->invScale = 1.0f / pm.width(); |
| limitY->scale = pm.height(); |
| limitY->invScale = 1.0f / pm.height(); |
| |
| // We would like an image that is mapped 1:1 with device pixels but at a half pixel offset |
| // to select every pixel from the src image once. Our rasterizer biases upward. That is a |
| // rect from 0.5...1.5 fills pixel 1 and not pixel 0. So we make exact integer pixel sample |
| // values select the pixel to the left/above the integer value. |
| // |
| // Note that a mirror mapping between canvas and image space will not have this property - |
| // on one side of the image a row/column will be skipped and one repeated on the other side. |
| // |
| // The GM nearest_half_pixel_image tests both of the above scenarios. |
| // |
| // The implementation of SkTileMode::kMirror also modifies integer pixel snapping to create |
| // consistency when the sample coords are running backwards and must account for gather |
| // modification we perform here. The GM mirror_tile tests this. |
| if (!sampling.useCubic && sampling.filter == SkFilterMode::kNearest) { |
| gather->roundDownAtInteger = true; |
| limitX->mirrorBiasDir = limitY->mirrorBiasDir = 1; |
| } |
| |
| if (tileModeX == SkTileMode::kDecal || tileModeY == SkTileMode::kDecal) { |
| decalCtx = alloc->make<SkRasterPipeline_DecalTileCtx>(); |
| decalCtx->limit_x = limitX->scale; |
| decalCtx->limit_y = limitY->scale; |
| |
| // When integer sample coords snap left/up then we want the right/bottom edge of the |
| // image bounds to be inside the image rather than the left/top edge, that is (0, w] |
| // rather than [0, w). |
| if (gather->roundDownAtInteger) { |
| decalCtx->inclusiveEdge_x = decalCtx->limit_x; |
| decalCtx->inclusiveEdge_y = decalCtx->limit_y; |
| } |
| } |
| } |
| }; |
| |
| } // namespace |
| |
| static SkSamplingOptions tweak_sampling(SkSamplingOptions sampling, const SkMatrix& matrix) { |
| SkFilterMode filter = sampling.filter; |
| |
| // When the matrix is just an integer translate, bilerp == nearest neighbor. |
| if (filter == SkFilterMode::kLinear && |
| matrix.getType() <= SkMatrix::kTranslate_Mask && |
| matrix.getTranslateX() == (int)matrix.getTranslateX() && |
| matrix.getTranslateY() == (int)matrix.getTranslateY()) { |
| filter = SkFilterMode::kNearest; |
| } |
| |
| return SkSamplingOptions(filter, sampling.mipmap); |
| } |
| |
| bool SkImageShader::appendStages(const SkStageRec& rec, const MatrixRec& mRec) const { |
| SkASSERT(!needs_subset(fImage.get(), fSubset)); // TODO(skbug.com/12784) |
| |
| // We only support certain sampling options in stages so far |
| auto sampling = fSampling; |
| if (sampling.isAniso()) { |
| sampling = SkSamplingPriv::AnisoFallback(fImage->hasMipmaps()); |
| } |
| |
| SkRasterPipeline* p = rec.fPipeline; |
| SkArenaAlloc* alloc = rec.fAlloc; |
| |
| SkMatrix baseInv; |
| // If the total matrix isn't valid then we will always access the base MIP level. |
| if (mRec.totalMatrixIsValid()) { |
| if (!mRec.totalInverse(&baseInv)) { |
| return false; |
| } |
| baseInv.normalizePerspective(); |
| } |
| |
| SkASSERT(!sampling.useCubic || sampling.mipmap == SkMipmapMode::kNone); |
| auto* access = SkMipmapAccessor::Make(alloc, fImage.get(), baseInv, sampling.mipmap); |
| if (!access) { |
| return false; |
| } |
| |
| MipLevelHelper upper; |
| std::tie(upper.pm, upper.inv) = access->level(); |
| |
| if (!sampling.useCubic) { |
| // TODO: can tweak_sampling sometimes for cubic too when B=0 |
| if (mRec.totalMatrixIsValid()) { |
| sampling = tweak_sampling(sampling, SkMatrix::Concat(upper.inv, baseInv)); |
| } |
| } |
| |
| if (!mRec.apply(rec, upper.inv)) { |
| return false; |
| } |
| |
| upper.allocAndInit(alloc, sampling, fTileModeX, fTileModeY); |
| |
| MipLevelHelper lower; |
| SkRasterPipeline_MipmapCtx* mipmapCtx = nullptr; |
| float lowerWeight = access->lowerWeight(); |
| if (lowerWeight > 0) { |
| std::tie(lower.pm, lower.inv) = access->lowerLevel(); |
| mipmapCtx = alloc->make<SkRasterPipeline_MipmapCtx>(); |
| mipmapCtx->lowerWeight = lowerWeight; |
| mipmapCtx->scaleX = static_cast<float>(lower.pm.width()) / upper.pm.width(); |
| mipmapCtx->scaleY = static_cast<float>(lower.pm.height()) / upper.pm.height(); |
| |
| lower.allocAndInit(alloc, sampling, fTileModeX, fTileModeY); |
| |
| p->append(SkRasterPipelineOp::mipmap_linear_init, mipmapCtx); |
| } |
| |
| const bool decalBothAxes = fTileModeX == SkTileMode::kDecal && fTileModeY == SkTileMode::kDecal; |
| |
| auto append_tiling_and_gather = [&](const MipLevelHelper* level) { |
| if (decalBothAxes) { |
| p->append(SkRasterPipelineOp::decal_x_and_y, level->decalCtx); |
| } else { |
| switch (fTileModeX) { |
| case SkTileMode::kClamp: /* The gather_xxx stage will clamp for us. */ |
| break; |
| case SkTileMode::kMirror: |
| p->append(SkRasterPipelineOp::mirror_x, level->limitX); |
| break; |
| case SkTileMode::kRepeat: |
| p->append(SkRasterPipelineOp::repeat_x, level->limitX); |
| break; |
| case SkTileMode::kDecal: |
| p->append(SkRasterPipelineOp::decal_x, level->decalCtx); |
| break; |
| } |
| switch (fTileModeY) { |
| case SkTileMode::kClamp: /* The gather_xxx stage will clamp for us. */ |
| break; |
| case SkTileMode::kMirror: |
| p->append(SkRasterPipelineOp::mirror_y, level->limitY); |
| break; |
| case SkTileMode::kRepeat: |
| p->append(SkRasterPipelineOp::repeat_y, level->limitY); |
| break; |
| case SkTileMode::kDecal: |
| p->append(SkRasterPipelineOp::decal_y, level->decalCtx); |
| break; |
| } |
| } |
| |
| void* ctx = level->gather; |
| switch (level->pm.colorType()) { |
| case kAlpha_8_SkColorType: p->append(SkRasterPipelineOp::gather_a8, ctx); break; |
| case kA16_unorm_SkColorType: p->append(SkRasterPipelineOp::gather_a16, ctx); break; |
| case kA16_float_SkColorType: p->append(SkRasterPipelineOp::gather_af16, ctx); break; |
| case kRGB_565_SkColorType: p->append(SkRasterPipelineOp::gather_565, ctx); break; |
| case kARGB_4444_SkColorType: p->append(SkRasterPipelineOp::gather_4444, ctx); break; |
| case kR8G8_unorm_SkColorType: p->append(SkRasterPipelineOp::gather_rg88, ctx); break; |
| case kR16G16_unorm_SkColorType: p->append(SkRasterPipelineOp::gather_rg1616,ctx); break; |
| case kR16G16_float_SkColorType: p->append(SkRasterPipelineOp::gather_rgf16, ctx); break; |
| case kRGBA_8888_SkColorType: p->append(SkRasterPipelineOp::gather_8888, ctx); break; |
| |
| case kRGBA_1010102_SkColorType: |
| p->append(SkRasterPipelineOp::gather_1010102, ctx); |
| break; |
| |
| case kR16G16B16A16_unorm_SkColorType: |
| p->append(SkRasterPipelineOp::gather_16161616, ctx); |
| break; |
| |
| case kRGBA_F16Norm_SkColorType: |
| case kRGBA_F16_SkColorType: p->append(SkRasterPipelineOp::gather_f16, ctx); break; |
| case kRGBA_F32_SkColorType: p->append(SkRasterPipelineOp::gather_f32, ctx); break; |
| |
| case kGray_8_SkColorType: p->append(SkRasterPipelineOp::gather_a8, ctx); |
| p->append(SkRasterPipelineOp::alpha_to_gray ); break; |
| |
| case kR8_unorm_SkColorType: p->append(SkRasterPipelineOp::gather_a8, ctx); |
| p->append(SkRasterPipelineOp::alpha_to_red ); break; |
| |
| case kRGB_888x_SkColorType: p->append(SkRasterPipelineOp::gather_8888, ctx); |
| p->append(SkRasterPipelineOp::force_opaque ); break; |
| |
| case kBGRA_1010102_SkColorType: |
| p->append(SkRasterPipelineOp::gather_1010102, ctx); |
| p->append(SkRasterPipelineOp::swap_rb); |
| break; |
| |
| case kRGB_101010x_SkColorType: |
| p->append(SkRasterPipelineOp::gather_1010102, ctx); |
| p->append(SkRasterPipelineOp::force_opaque); |
| break; |
| |
| case kBGR_101010x_XR_SkColorType: |
| SkASSERT(false); |
| break; |
| |
| case kBGR_101010x_SkColorType: |
| p->append(SkRasterPipelineOp::gather_1010102, ctx); |
| p->append(SkRasterPipelineOp::force_opaque); |
| p->append(SkRasterPipelineOp::swap_rb); |
| break; |
| |
| case kBGRA_8888_SkColorType: |
| p->append(SkRasterPipelineOp::gather_8888, ctx); |
| p->append(SkRasterPipelineOp::swap_rb); |
| break; |
| |
| case kSRGBA_8888_SkColorType: |
| p->append(SkRasterPipelineOp::gather_8888, ctx); |
| p->append_transfer_function(*skcms_sRGB_TransferFunction()); |
| break; |
| |
| case kUnknown_SkColorType: SkASSERT(false); |
| } |
| if (level->decalCtx) { |
| p->append(SkRasterPipelineOp::check_decal_mask, level->decalCtx); |
| } |
| }; |
| |
| auto append_misc = [&] { |
| SkColorSpace* cs = upper.pm.colorSpace(); |
| SkAlphaType at = upper.pm.alphaType(); |
| |
| // Color for alpha-only images comes from the paint (already converted to dst color space). |
| if (SkColorTypeIsAlphaOnly(upper.pm.colorType()) && !fRaw) { |
| p->append_set_rgb(alloc, rec.fPaintColor); |
| |
| cs = rec.fDstCS; |
| at = kUnpremul_SkAlphaType; |
| } |
| |
| // Bicubic filtering naturally produces out of range values on both sides of [0,1]. |
| if (sampling.useCubic) { |
| p->append(at == kUnpremul_SkAlphaType || fClampAsIfUnpremul |
| ? SkRasterPipelineOp::clamp_01 |
| : SkRasterPipelineOp::clamp_gamut); |
| } |
| |
| // Transform color space and alpha type to match shader convention (dst CS, premul alpha). |
| if (!fRaw) { |
| alloc->make<SkColorSpaceXformSteps>(cs, at, rec.fDstCS, kPremul_SkAlphaType)->apply(p); |
| } |
| |
| return true; |
| }; |
| |
| // Check for fast-path stages. |
| // TODO: Could we use the fast-path stages for each level when doing linear mipmap filtering? |
| SkColorType ct = upper.pm.colorType(); |
| if (true |
| && (ct == kRGBA_8888_SkColorType || ct == kBGRA_8888_SkColorType) |
| && !sampling.useCubic && sampling.filter == SkFilterMode::kLinear |
| && sampling.mipmap != SkMipmapMode::kLinear |
| && fTileModeX == SkTileMode::kClamp && fTileModeY == SkTileMode::kClamp) { |
| |
| p->append(SkRasterPipelineOp::bilerp_clamp_8888, upper.gather); |
| if (ct == kBGRA_8888_SkColorType) { |
| p->append(SkRasterPipelineOp::swap_rb); |
| } |
| return append_misc(); |
| } |
| if (true |
| && (ct == kRGBA_8888_SkColorType || ct == kBGRA_8888_SkColorType) |
| && sampling.useCubic |
| && fTileModeX == SkTileMode::kClamp && fTileModeY == SkTileMode::kClamp) { |
| |
| p->append(SkRasterPipelineOp::bicubic_clamp_8888, upper.gather); |
| if (ct == kBGRA_8888_SkColorType) { |
| p->append(SkRasterPipelineOp::swap_rb); |
| } |
| return append_misc(); |
| } |
| |
| // This context can be shared by both levels when doing linear mipmap filtering |
| SkRasterPipeline_SamplerCtx* sampler = alloc->make<SkRasterPipeline_SamplerCtx>(); |
| |
| auto sample = [&](SkRasterPipelineOp setup_x, |
| SkRasterPipelineOp setup_y, |
| const MipLevelHelper* level) { |
| p->append(setup_x, sampler); |
| p->append(setup_y, sampler); |
| append_tiling_and_gather(level); |
| p->append(SkRasterPipelineOp::accumulate, sampler); |
| }; |
| |
| auto sample_level = [&](const MipLevelHelper* level) { |
| if (sampling.useCubic) { |
| CubicResamplerMatrix(sampling.cubic.B, sampling.cubic.C).getColMajor(sampler->weights); |
| |
| p->append(SkRasterPipelineOp::bicubic_setup, sampler); |
| |
| sample(SkRasterPipelineOp::bicubic_n3x, SkRasterPipelineOp::bicubic_n3y, level); |
| sample(SkRasterPipelineOp::bicubic_n1x, SkRasterPipelineOp::bicubic_n3y, level); |
| sample(SkRasterPipelineOp::bicubic_p1x, SkRasterPipelineOp::bicubic_n3y, level); |
| sample(SkRasterPipelineOp::bicubic_p3x, SkRasterPipelineOp::bicubic_n3y, level); |
| |
| sample(SkRasterPipelineOp::bicubic_n3x, SkRasterPipelineOp::bicubic_n1y, level); |
| sample(SkRasterPipelineOp::bicubic_n1x, SkRasterPipelineOp::bicubic_n1y, level); |
| sample(SkRasterPipelineOp::bicubic_p1x, SkRasterPipelineOp::bicubic_n1y, level); |
| sample(SkRasterPipelineOp::bicubic_p3x, SkRasterPipelineOp::bicubic_n1y, level); |
| |
| sample(SkRasterPipelineOp::bicubic_n3x, SkRasterPipelineOp::bicubic_p1y, level); |
| sample(SkRasterPipelineOp::bicubic_n1x, SkRasterPipelineOp::bicubic_p1y, level); |
| sample(SkRasterPipelineOp::bicubic_p1x, SkRasterPipelineOp::bicubic_p1y, level); |
| sample(SkRasterPipelineOp::bicubic_p3x, SkRasterPipelineOp::bicubic_p1y, level); |
| |
| sample(SkRasterPipelineOp::bicubic_n3x, SkRasterPipelineOp::bicubic_p3y, level); |
| sample(SkRasterPipelineOp::bicubic_n1x, SkRasterPipelineOp::bicubic_p3y, level); |
| sample(SkRasterPipelineOp::bicubic_p1x, SkRasterPipelineOp::bicubic_p3y, level); |
| sample(SkRasterPipelineOp::bicubic_p3x, SkRasterPipelineOp::bicubic_p3y, level); |
| |
| p->append(SkRasterPipelineOp::move_dst_src); |
| } else if (sampling.filter == SkFilterMode::kLinear) { |
| p->append(SkRasterPipelineOp::bilinear_setup, sampler); |
| |
| sample(SkRasterPipelineOp::bilinear_nx, SkRasterPipelineOp::bilinear_ny, level); |
| sample(SkRasterPipelineOp::bilinear_px, SkRasterPipelineOp::bilinear_ny, level); |
| sample(SkRasterPipelineOp::bilinear_nx, SkRasterPipelineOp::bilinear_py, level); |
| sample(SkRasterPipelineOp::bilinear_px, SkRasterPipelineOp::bilinear_py, level); |
| |
| p->append(SkRasterPipelineOp::move_dst_src); |
| } else { |
| append_tiling_and_gather(level); |
| } |
| }; |
| |
| sample_level(&upper); |
| |
| if (mipmapCtx) { |
| p->append(SkRasterPipelineOp::mipmap_linear_update, mipmapCtx); |
| sample_level(&lower); |
| p->append(SkRasterPipelineOp::mipmap_linear_finish, mipmapCtx); |
| } |
| |
| return append_misc(); |
| } |
| |
| skvm::Color SkImageShader::program(skvm::Builder* p, |
| skvm::Coord device, |
| skvm::Coord origLocal, |
| skvm::Color paint, |
| const MatrixRec& mRec, |
| const SkColorInfo& dst, |
| skvm::Uniforms* uniforms, |
| SkArenaAlloc* alloc) const { |
| SkASSERT(!needs_subset(fImage.get(), fSubset)); // TODO(skbug.com/12784) |
| |
| auto sampling = fSampling; |
| if (sampling.isAniso()) { |
| sampling = SkSamplingPriv::AnisoFallback(fImage->hasMipmaps()); |
| } |
| |
| SkMatrix baseInv; |
| // If the total matrix isn't valid then we will always access the base MIP level. |
| if (mRec.totalMatrixIsValid()) { |
| if (!mRec.totalInverse(&baseInv)) { |
| return {}; |
| } |
| baseInv.normalizePerspective(); |
| } |
| |
| SkASSERT(!sampling.useCubic || sampling.mipmap == SkMipmapMode::kNone); |
| auto* access = SkMipmapAccessor::Make(alloc, fImage.get(), baseInv, sampling.mipmap); |
| if (!access) { |
| return {}; |
| } |
| |
| SkPixmap upper; |
| SkMatrix upperInv; |
| std::tie(upper, upperInv) = access->level(); |
| |
| if (!sampling.useCubic) { |
| // TODO: can tweak_sampling sometimes for cubic too when B=0 |
| if (mRec.totalMatrixIsValid()) { |
| sampling = tweak_sampling(sampling, SkMatrix::Concat(upperInv, baseInv)); |
| } |
| } |
| |
| SkPixmap lowerPixmap; |
| SkMatrix lowerInv; |
| SkPixmap* lower = nullptr; |
| float lowerWeight = access->lowerWeight(); |
| if (lowerWeight > 0) { |
| std::tie(lowerPixmap, lowerInv) = access->lowerLevel(); |
| lower = &lowerPixmap; |
| } |
| |
| skvm::Coord upperLocal = origLocal; |
| if (!mRec.apply(p, &upperLocal, uniforms, upperInv).has_value()) { |
| return {}; |
| } |
| |
| // We can exploit image opacity to skip work unpacking alpha channels. |
| const bool input_is_opaque = SkAlphaTypeIsOpaque(upper.alphaType()) |
| || SkColorTypeIsAlwaysOpaque(upper.colorType()); |
| |
| // Each call to sample() will try to rewrite the same uniforms over and over, |
| // so remember where we start and reset back there each time. That way each |
| // sample() call uses the same uniform offsets. |
| |
| auto compute_clamp_limit = [&](float limit) { |
| // Subtract an ulp so the upper clamp limit excludes limit itself. |
| int bits; |
| memcpy(&bits, &limit, 4); |
| return p->uniformF(uniforms->push(bits-1)); |
| }; |
| |
| // Except in the simplest case (no mips, no filtering), we reference uniforms |
| // more than once. To avoid adding/registering them multiple times, we pre-load them |
| // into a struct (just to logically group them together), based on the "current" |
| // pixmap (level of a mipmap). |
| // |
| struct Uniforms { |
| skvm::F32 w, iw, i2w, |
| h, ih, i2h; |
| |
| skvm::F32 clamp_w, |
| clamp_h; |
| |
| skvm::Uniform addr; |
| skvm::I32 rowBytesAsPixels; |
| |
| skvm::PixelFormat pixelFormat; // not a uniform, but needed for each texel sample, |
| // so we store it here, since it is also dependent on |
| // the current pixmap (level). |
| }; |
| |
| auto setup_uniforms = [&](const SkPixmap& pm) -> Uniforms { |
| skvm::PixelFormat pixelFormat = skvm::SkColorType_to_PixelFormat(pm.colorType()); |
| return { |
| p->uniformF(uniforms->pushF( pm.width())), |
| p->uniformF(uniforms->pushF(1.0f/pm.width())), // iff tileX == kRepeat |
| p->uniformF(uniforms->pushF(0.5f/pm.width())), // iff tileX == kMirror |
| |
| p->uniformF(uniforms->pushF( pm.height())), |
| p->uniformF(uniforms->pushF(1.0f/pm.height())), // iff tileY == kRepeat |
| p->uniformF(uniforms->pushF(0.5f/pm.height())), // iff tileY == kMirror |
| |
| compute_clamp_limit(pm. width()), |
| compute_clamp_limit(pm.height()), |
| |
| uniforms->pushPtr(pm.addr()), |
| p->uniform32(uniforms->push(pm.rowBytesAsPixels())), |
| |
| pixelFormat, |
| }; |
| }; |
| |
| auto sample_texel = [&](const Uniforms& u, skvm::F32 sx, skvm::F32 sy) -> skvm::Color { |
| // repeat() and mirror() are written assuming they'll be followed by a [0,scale) clamp. |
| auto repeat = [&](skvm::F32 v, skvm::F32 S, skvm::F32 I) { |
| return v - floor(v * I) * S; |
| }; |
| auto mirror = [&](skvm::F32 v, skvm::F32 S, skvm::F32 I2) { |
| // abs( (v-scale) - (2*scale)*floor((v-scale)*(0.5f/scale)) - scale ) |
| // {---A---} {------------------B------------------} |
| skvm::F32 A = v - S, |
| B = (S + S) * floor(A * I2); |
| return abs(A - B - S); |
| }; |
| switch (fTileModeX) { |
| case SkTileMode::kDecal: /* handled after gather */ break; |
| case SkTileMode::kClamp: /* we always clamp */ break; |
| case SkTileMode::kRepeat: sx = repeat(sx, u.w, u.iw); break; |
| case SkTileMode::kMirror: sx = mirror(sx, u.w, u.i2w); break; |
| } |
| switch (fTileModeY) { |
| case SkTileMode::kDecal: /* handled after gather */ break; |
| case SkTileMode::kClamp: /* we always clamp */ break; |
| case SkTileMode::kRepeat: sy = repeat(sy, u.h, u.ih); break; |
| case SkTileMode::kMirror: sy = mirror(sy, u.h, u.i2h); break; |
| } |
| |
| // Always clamp sample coordinates to [0,width), [0,height), both for memory |
| // safety and to handle the clamps still needed by kClamp, kRepeat, and kMirror. |
| skvm::F32 clamped_x = clamp(sx, 0, u.clamp_w), |
| clamped_y = clamp(sy, 0, u.clamp_h); |
| |
| // Load pixels from pm.addr()[(int)sx + (int)sy*stride]. |
| skvm::I32 index = trunc(clamped_x) + |
| trunc(clamped_y) * u.rowBytesAsPixels; |
| skvm::Color c = gather(u.pixelFormat, u.addr, index); |
| |
| // If we know the image is opaque, jump right to alpha = 1.0f, skipping work to unpack it. |
| if (input_is_opaque) { |
| c.a = p->splat(1.0f); |
| } |
| |
| // Mask away any pixels that we tried to sample outside the bounds in kDecal. |
| if (fTileModeX == SkTileMode::kDecal || fTileModeY == SkTileMode::kDecal) { |
| skvm::I32 mask = p->splat(~0); |
| if (fTileModeX == SkTileMode::kDecal) { mask &= (sx == clamped_x); } |
| if (fTileModeY == SkTileMode::kDecal) { mask &= (sy == clamped_y); } |
| c.r = pun_to_F32(p->bit_and(mask, pun_to_I32(c.r))); |
| c.g = pun_to_F32(p->bit_and(mask, pun_to_I32(c.g))); |
| c.b = pun_to_F32(p->bit_and(mask, pun_to_I32(c.b))); |
| c.a = pun_to_F32(p->bit_and(mask, pun_to_I32(c.a))); |
| // Notice that even if input_is_opaque, c.a might now be 0. |
| } |
| |
| return c; |
| }; |
| |
| auto sample_level = [&](const SkPixmap& pm, skvm::Coord local) { |
| const Uniforms u = setup_uniforms(pm); |
| |
| if (sampling.useCubic) { |
| // All bicubic samples have the same fractional offset (fx,fy) from the center. |
| // They're either the 16 corners of a 3x3 grid/ surrounding (x,y) at (0.5,0.5) off-center. |
| skvm::F32 fx = fract(local.x + 0.5f), |
| fy = fract(local.y + 0.5f); |
| skvm::F32 wx[4], |
| wy[4]; |
| |
| SkM44 weights = CubicResamplerMatrix(sampling.cubic.B, sampling.cubic.C); |
| |
| auto dot = [](const skvm::F32 a[], const skvm::F32 b[]) { |
| return a[0]*b[0] + a[1]*b[1] + a[2]*b[2] + a[3]*b[3]; |
| }; |
| const skvm::F32 tmpx[] = { p->splat(1.0f), fx, fx*fx, fx*fx*fx }; |
| const skvm::F32 tmpy[] = { p->splat(1.0f), fy, fy*fy, fy*fy*fy }; |
| |
| for (int row = 0; row < 4; ++row) { |
| SkV4 r = weights.row(row); |
| skvm::F32 ru[] = { |
| p->uniformF(uniforms->pushF(r[0])), |
| p->uniformF(uniforms->pushF(r[1])), |
| p->uniformF(uniforms->pushF(r[2])), |
| p->uniformF(uniforms->pushF(r[3])), |
| }; |
| wx[row] = dot(ru, tmpx); |
| wy[row] = dot(ru, tmpy); |
| } |
| |
| skvm::Color c; |
| c.r = c.g = c.b = c.a = p->splat(0.0f); |
| |
| skvm::F32 sy = local.y - 1.5f; |
| for (int j = 0; j < 4; j++, sy += 1.0f) { |
| skvm::F32 sx = local.x - 1.5f; |
| for (int i = 0; i < 4; i++, sx += 1.0f) { |
| skvm::Color s = sample_texel(u, sx,sy); |
| skvm::F32 w = wx[i] * wy[j]; |
| |
| c.r += s.r * w; |
| c.g += s.g * w; |
| c.b += s.b * w; |
| c.a += s.a * w; |
| } |
| } |
| return c; |
| } else if (sampling.filter == SkFilterMode::kLinear) { |
| // Our four sample points are the corners of a logical 1x1 pixel |
| // box surrounding (x,y) at (0.5,0.5) off-center. |
| skvm::F32 left = local.x - 0.5f, |
| top = local.y - 0.5f, |
| right = local.x + 0.5f, |
| bottom = local.y + 0.5f; |
| |
| // The fractional parts of right and bottom are our lerp factors in x and y respectively. |
| skvm::F32 fx = fract(right ), |
| fy = fract(bottom); |
| |
| return lerp(lerp(sample_texel(u, left,top ), sample_texel(u, right,top ), fx), |
| lerp(sample_texel(u, left,bottom), sample_texel(u, right,bottom), fx), fy); |
| } else { |
| SkASSERT(sampling.filter == SkFilterMode::kNearest); |
| // Our rasterizer biases upward. That is a rect from 0.5...1.5 fills pixel 1 and not |
| // pixel 0. To make an image that is mapped 1:1 with device pixels but at a half pixel |
| // offset select every pixel from the src image once we make exact integer pixel sample |
| // values round down not up. Note that a mirror mapping will not have this property. |
| local.x = skvm::pun_to_F32(skvm::pun_to_I32(local.x) - 1); |
| local.y = skvm::pun_to_F32(skvm::pun_to_I32(local.y) - 1); |
| return sample_texel(u, local.x,local.y); |
| } |
| }; |
| |
| skvm::Color c = sample_level(upper, upperLocal); |
| if (lower) { |
| skvm::Coord lowerLocal = origLocal; |
| if (!mRec.apply(p, &lowerLocal, uniforms, lowerInv)) { |
| return {}; |
| } |
| // lower * weight + upper * (1 - weight) |
| c = lerp(c, |
| sample_level(*lower, lowerLocal), |
| p->uniformF(uniforms->pushF(lowerWeight))); |
| } |
| |
| // If the input is opaque and we're not in decal mode, that means the output is too. |
| // Forcing *a to 1.0 here will retroactively skip any work we did to interpolate sample alphas. |
| if (input_is_opaque |
| && fTileModeX != SkTileMode::kDecal |
| && fTileModeY != SkTileMode::kDecal) { |
| c.a = p->splat(1.0f); |
| } |
| |
| // Alpha-only images get their color from the paint (already converted to dst color space). |
| SkColorSpace* cs = upper.colorSpace(); |
| SkAlphaType at = upper.alphaType(); |
| if (SkColorTypeIsAlphaOnly(upper.colorType()) && !fRaw) { |
| c.r = paint.r; |
| c.g = paint.g; |
| c.b = paint.b; |
| |
| cs = dst.colorSpace(); |
| at = kUnpremul_SkAlphaType; |
| } |
| |
| if (sampling.useCubic) { |
| // Bicubic filtering naturally produces out of range values on both sides of [0,1]. |
| c.a = clamp01(c.a); |
| |
| skvm::F32 limit = (at == kUnpremul_SkAlphaType || fClampAsIfUnpremul) |
| ? p->splat(1.0f) |
| : c.a; |
| c.r = clamp(c.r, 0.0f, limit); |
| c.g = clamp(c.g, 0.0f, limit); |
| c.b = clamp(c.b, 0.0f, limit); |
| } |
| |
| return fRaw ? c |
| : SkColorSpaceXformSteps{cs, at, dst.colorSpace(), dst.alphaType()}.program( |
| p, uniforms, c); |
| } |