blob: ee9a1ed1a935be0e662f347780f075d1364365fb [file] [log] [blame]
/*
* Copyright 2006 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/core/SkColorFilter.h"
#include "include/core/SkFlattenable.h"
#include "include/core/SkString.h"
#include "include/effects/SkRuntimeEffect.h"
#include "include/private/SkColorData.h"
#include "src/base/SkArenaAlloc.h"
#include "src/core/SkBlendModePriv.h"
#include "src/core/SkBlenderBase.h"
#include "src/core/SkRasterPipeline.h"
#include "src/core/SkReadBuffer.h"
#include "src/core/SkRuntimeEffectPriv.h"
#include "src/core/SkVM.h"
#include "src/core/SkWriteBuffer.h"
#include "src/shaders/SkShaderBase.h"
#if defined(SK_GRAPHITE)
#include "src/gpu/Blend.h"
#include "src/gpu/graphite/KeyHelpers.h"
#include "src/gpu/graphite/PaintParamsKey.h"
#endif
class SkShader_Blend final : public SkShaderBase {
public:
SkShader_Blend(SkBlendMode mode, sk_sp<SkShader> dst, sk_sp<SkShader> src)
: fDst(std::move(dst))
, fSrc(std::move(src))
, fMode(mode) {}
#if defined(SK_GANESH)
std::unique_ptr<GrFragmentProcessor> asFragmentProcessor(const GrFPArgs&,
const MatrixRec&) const override;
#endif
#if defined(SK_GRAPHITE)
void addToKey(const skgpu::graphite::KeyContext&,
skgpu::graphite::PaintParamsKeyBuilder*,
skgpu::graphite::PipelineDataGatherer*) const override;
#endif
protected:
SkShader_Blend(SkReadBuffer&);
void flatten(SkWriteBuffer&) const override;
bool appendStages(const SkStageRec&, const MatrixRec&) const override;
skvm::Color program(skvm::Builder*,
skvm::Coord device,
skvm::Coord local,
skvm::Color paint,
const MatrixRec& mRec,
const SkColorInfo& dst,
skvm::Uniforms*,
SkArenaAlloc*) const override;
private:
friend void ::SkRegisterComposeShaderFlattenable();
SK_FLATTENABLE_HOOKS(SkShader_Blend)
sk_sp<SkShader> fDst;
sk_sp<SkShader> fSrc;
SkBlendMode fMode;
using INHERITED = SkShaderBase;
};
sk_sp<SkFlattenable> SkShader_Blend::CreateProc(SkReadBuffer& buffer) {
sk_sp<SkShader> dst(buffer.readShader());
sk_sp<SkShader> src(buffer.readShader());
if (!buffer.validate(dst && src)) {
return nullptr;
}
unsigned mode = buffer.read32();
if (mode == kCustom_SkBlendMode) {
sk_sp<SkBlender> blender = buffer.readBlender();
if (buffer.validate(blender != nullptr)) {
return SkShaders::Blend(std::move(blender), std::move(dst), std::move(src));
}
} else {
if (buffer.validate(mode <= (unsigned)SkBlendMode::kLastMode)) {
return SkShaders::Blend(static_cast<SkBlendMode>(mode), std::move(dst), std::move(src));
}
}
return nullptr;
}
void SkShader_Blend::flatten(SkWriteBuffer& buffer) const {
buffer.writeFlattenable(fDst.get());
buffer.writeFlattenable(fSrc.get());
buffer.write32((int)fMode);
}
// Returns the output of e0, and leaves the output of e1 in r,g,b,a
static float* append_two_shaders(const SkStageRec& rec,
const SkShaderBase::MatrixRec& mRec,
SkShader* s0,
SkShader* s1) {
struct Storage {
float fCoords[2 * SkRasterPipeline_kMaxStride];
float fRes0 [4 * SkRasterPipeline_kMaxStride];
};
auto storage = rec.fAlloc->make<Storage>();
// Note we cannot simply apply mRec here and then unconditionally store the coordinates. When
// building for Android Framework it would interrupt the backwards local matrix concatenation if
// mRec had a pending local matrix and either of the children also had a local matrix.
// b/256873449
if (mRec.rasterPipelineCoordsAreSeeded()) {
rec.fPipeline->append(SkRasterPipelineOp::store_src_rg, storage->fCoords);
}
if (!as_SB(s0)->appendStages(rec, mRec)) {
return nullptr;
}
rec.fPipeline->append(SkRasterPipelineOp::store_src, storage->fRes0);
if (mRec.rasterPipelineCoordsAreSeeded()) {
rec.fPipeline->append(SkRasterPipelineOp::load_src_rg, storage->fCoords);
}
if (!as_SB(s1)->appendStages(rec, mRec)) {
return nullptr;
}
return storage->fRes0;
}
bool SkShader_Blend::appendStages(const SkStageRec& rec, const MatrixRec& mRec) const {
float* res0 = append_two_shaders(rec, mRec, fDst.get(), fSrc.get());
if (!res0) {
return false;
}
rec.fPipeline->append(SkRasterPipelineOp::load_dst, res0);
SkBlendMode_AppendStages(fMode, rec.fPipeline);
return true;
}
skvm::Color SkShader_Blend::program(skvm::Builder* p,
skvm::Coord device,
skvm::Coord local,
skvm::Color paint,
const MatrixRec& mRec,
const SkColorInfo& cinfo,
skvm::Uniforms* uniforms,
SkArenaAlloc* alloc) const {
skvm::Color d,s;
if ((d = as_SB(fDst)->program(p, device, local, paint, mRec, cinfo, uniforms, alloc)) &&
(s = as_SB(fSrc)->program(p, device, local, paint, mRec, cinfo, uniforms, alloc))) {
return p->blend(fMode, s,d);
}
return {};
}
#if defined(SK_GANESH)
#include "include/gpu/GrRecordingContext.h"
#include "src/gpu/ganesh/GrFPArgs.h"
#include "src/gpu/ganesh/GrFragmentProcessor.h"
#include "src/gpu/ganesh/effects/GrBlendFragmentProcessor.h"
std::unique_ptr<GrFragmentProcessor>
SkShader_Blend::asFragmentProcessor(const GrFPArgs& args, const MatrixRec& mRec) const {
auto fpA = as_SB(fDst)->asFragmentProcessor(args, mRec);
auto fpB = as_SB(fSrc)->asFragmentProcessor(args, mRec);
if (!fpA || !fpB) {
// This is unexpected. Both src and dst shaders should be valid. Just fail.
return nullptr;
}
return GrBlendFragmentProcessor::Make(std::move(fpB), std::move(fpA), fMode);
}
#endif
#if defined(SK_GRAPHITE)
void SkShader_Blend::addToKey(const skgpu::graphite::KeyContext& keyContext,
skgpu::graphite::PaintParamsKeyBuilder* builder,
skgpu::graphite::PipelineDataGatherer* gatherer) const {
using namespace skgpu::graphite;
SkSpan<const float> porterDuffConstants = skgpu::GetPorterDuffBlendConstants(fMode);
if (!porterDuffConstants.empty()) {
PorterDuffBlendShaderBlock::BeginBlock(keyContext, builder, gatherer,
{porterDuffConstants});
} else {
BlendShaderBlock::BeginBlock(keyContext, builder, gatherer, {fMode});
}
as_SB(fDst)->addToKey(keyContext, builder, gatherer);
as_SB(fSrc)->addToKey(keyContext, builder, gatherer);
builder->endBlock();
}
#endif
sk_sp<SkShader> SkShaders::Blend(SkBlendMode mode, sk_sp<SkShader> dst, sk_sp<SkShader> src) {
if (!src || !dst) {
return nullptr;
}
switch (mode) {
case SkBlendMode::kClear: return Color(0);
case SkBlendMode::kDst: return dst;
case SkBlendMode::kSrc: return src;
default: break;
}
return sk_sp<SkShader>(new SkShader_Blend(mode, std::move(dst), std::move(src)));
}
sk_sp<SkShader> SkShaders::Blend(sk_sp<SkBlender> blender,
sk_sp<SkShader> dst,
sk_sp<SkShader> src) {
if (!src || !dst) {
return nullptr;
}
if (!blender) {
return SkShaders::Blend(SkBlendMode::kSrcOver, std::move(dst), std::move(src));
}
if (std::optional<SkBlendMode> mode = as_BB(blender)->asBlendMode()) {
return sk_make_sp<SkShader_Blend>(mode.value(), std::move(dst), std::move(src));
}
#ifdef SK_ENABLE_SKSL
// This isn't a built-in blend mode; we might as well use a runtime effect to evaluate it.
static SkRuntimeEffect* sBlendEffect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForShader,
"uniform blender b;"
"uniform shader d, s;"
"half4 main(float2 xy) {"
"return b.eval(s.eval(xy), d.eval(xy));"
"}"
);
SkRuntimeEffect::ChildPtr children[] = {std::move(blender), std::move(dst), std::move(src)};
return sBlendEffect->makeShader(/*uniforms=*/{}, children);
#else
// We need SkSL to render this blend.
return nullptr;
#endif
}
void SkRegisterComposeShaderFlattenable() {
SK_REGISTER_FLATTENABLE(SkShader_Blend);
}