blob: 8f74ab9008b7de625e80fa341e3a8ac258dbbe4c [file] [log] [blame]
// Copyright 2020 Google LLC.
// Use of this source code is governed by a BSD-style license that can be found in the LICENSE file.
#ifndef SkVM_opts_DEFINED
#define SkVM_opts_DEFINED
#include "include/private/SkVx.h"
#include "src/core/SkVM.h"
template <int N>
static inline skvx::Vec<N,int> gather32(const int* ptr, const skvx::Vec<N,int>& ix) {
#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX2
if constexpr (N == 8) {
return skvx::bit_pun<skvx::Vec<N,int>>(
_mm256_i32gather_epi32(ptr, skvx::bit_pun<__m256i>(ix), 4));
}
#endif
// Try to recurse on specializations, falling back on standard scalar map()-based impl.
if constexpr (N > 8) {
return join(gather32(ptr, ix.lo),
gather32(ptr, ix.hi));
}
return map([&](int i) { return ptr[i]; }, ix);
}
namespace SK_OPTS_NS {
namespace SkVMInterpreterTypes {
#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX2
constexpr inline int K = 32; // 1024-bit: 4 ymm or 2 zmm at a time
#else
constexpr inline int K = 8; // 256-bit: 2 xmm, 2 v-registers, etc.
#endif
using I32 = skvx::Vec<K, int>;
using I16 = skvx::Vec<K, int16_t>;
using F32 = skvx::Vec<K, float>;
using U64 = skvx::Vec<K, uint64_t>;
using U32 = skvx::Vec<K, uint32_t>;
using U16 = skvx::Vec<K, uint16_t>;
using U8 = skvx::Vec<K, uint8_t>;
union Slot {
F32 f32;
I32 i32;
U32 u32;
I16 i16;
U16 u16;
};
} // namespace SkVMInterpreterTypes
inline void interpret_skvm(const skvm::InterpreterInstruction insts[], const int ninsts,
const int nregs, const int loop,
const int strides[], const int nargs,
int n, void* args[]) {
using namespace skvm;
using SkVMInterpreterTypes::K;
using SkVMInterpreterTypes::I32;
using SkVMInterpreterTypes::I16;
using SkVMInterpreterTypes::F32;
using SkVMInterpreterTypes::U64;
using SkVMInterpreterTypes::U32;
using SkVMInterpreterTypes::U16;
using SkVMInterpreterTypes::U8;
using SkVMInterpreterTypes::Slot;
// We'll operate in SIMT style, knocking off K-size chunks from n while possible.
Slot few_regs[16];
std::unique_ptr<char[]> many_regs;
Slot* r = few_regs;
if (nregs > (int)SK_ARRAY_COUNT(few_regs)) {
// Annoyingly we can't trust that malloc() or new will work with Slot because
// the skvx::Vec types may have alignment greater than what they provide.
// We'll overallocate one extra register so we can align manually.
many_regs.reset(new char[ sizeof(Slot) * (nregs + 1) ]);
uintptr_t addr = (uintptr_t)many_regs.get();
addr += alignof(Slot) -
(addr & (alignof(Slot) - 1));
SkASSERT((addr & (alignof(Slot) - 1)) == 0);
r = (Slot*)addr;
}
// Step each argument pointer ahead by its stride a number of times.
auto step_args = [&](int times) {
for (int i = 0; i < nargs; i++) {
args[i] = (void*)( (char*)args[i] + times * strides[i] );
}
};
int start = 0,
stride;
for ( ; n > 0; start = loop, n -= stride, step_args(stride)) {
stride = n >= K ? K : 1;
for (int instIdx = start; instIdx < ninsts; instIdx++) {
InterpreterInstruction inst = insts[instIdx];
// d = op(x,y,z,w, immA,immB)
Reg d = inst.d,
x = inst.x,
y = inst.y,
z = inst.z,
w = inst.w;
int immA = inst.immA,
immB = inst.immB,
immC = inst.immC;
// Ops that interact with memory need to know whether we're stride=1 or K,
// but all non-memory ops can run the same code no matter the stride.
switch (2*(int)inst.op + (stride == K ? 1 : 0)) {
default: SkUNREACHABLE;
#define STRIDE_1(op) case 2*(int)op
#define STRIDE_K(op) case 2*(int)op + 1
STRIDE_1(Op::store8 ): memcpy(args[immA], &r[x].i32, 1); break;
STRIDE_1(Op::store16): memcpy(args[immA], &r[x].i32, 2); break;
STRIDE_1(Op::store32): memcpy(args[immA], &r[x].i32, 4); break;
STRIDE_1(Op::store64): memcpy((char*)args[immA]+0, &r[x].i32, 4);
memcpy((char*)args[immA]+4, &r[y].i32, 4); break;
STRIDE_K(Op::store8 ): skvx::cast<uint8_t> (r[x].i32).store(args[immA]); break;
STRIDE_K(Op::store16): skvx::cast<uint16_t>(r[x].i32).store(args[immA]); break;
STRIDE_K(Op::store32): (r[x].i32).store(args[immA]); break;
STRIDE_K(Op::store64): (skvx::cast<uint64_t>(r[x].u32) << 0 |
skvx::cast<uint64_t>(r[y].u32) << 32).store(args[immA]);
break;
STRIDE_1(Op::load8 ): r[d].i32 = 0; memcpy(&r[d].i32, args[immA], 1); break;
STRIDE_1(Op::load16): r[d].i32 = 0; memcpy(&r[d].i32, args[immA], 2); break;
STRIDE_1(Op::load32): r[d].i32 = 0; memcpy(&r[d].i32, args[immA], 4); break;
STRIDE_1(Op::load64):
r[d].i32 = 0; memcpy(&r[d].i32, (char*)args[immA] + 4*immB, 4); break;
STRIDE_K(Op::load8 ): r[d].i32= skvx::cast<int>(U8 ::Load(args[immA])); break;
STRIDE_K(Op::load16): r[d].i32= skvx::cast<int>(U16::Load(args[immA])); break;
STRIDE_K(Op::load32): r[d].i32= I32::Load(args[immA]) ; break;
STRIDE_K(Op::load64):
// Low 32 bits if immB=0, or high 32 bits if immB=1.
r[d].i32 = skvx::cast<int>(U64::Load(args[immA]) >> (32*immB)); break;
// The pointer we base our gather on is loaded indirectly from a uniform:
// - args[immA] is the uniform holding our gather base pointer somewhere;
// - (const uint8_t*)args[immA] + immB points to the gather base pointer;
// - memcpy() loads the gather base and into a pointer of the right type.
// After all that we have an ordinary (uniform) pointer `ptr` to load from,
// and we then gather from it using the varying indices in r[x].
STRIDE_1(Op::gather8): {
const uint8_t* ptr;
memcpy(&ptr, (const uint8_t*)args[immA] + immB, sizeof(ptr));
r[d].i32 = ptr[ r[x].i32[0] ];
} break;
STRIDE_1(Op::gather16): {
const uint16_t* ptr;
memcpy(&ptr, (const uint8_t*)args[immA] + immB, sizeof(ptr));
r[d].i32 = ptr[ r[x].i32[0] ];
} break;
STRIDE_1(Op::gather32): {
const int* ptr;
memcpy(&ptr, (const uint8_t*)args[immA] + immB, sizeof(ptr));
r[d].i32 = ptr[ r[x].i32[0] ];
} break;
STRIDE_K(Op::gather8): {
const uint8_t* ptr;
memcpy(&ptr, (const uint8_t*)args[immA] + immB, sizeof(ptr));
r[d].i32 = map([&](int ix) { return (int)ptr[ix]; }, r[x].i32);
} break;
STRIDE_K(Op::gather16): {
const uint16_t* ptr;
memcpy(&ptr, (const uint8_t*)args[immA] + immB, sizeof(ptr));
r[d].i32 = map([&](int ix) { return (int)ptr[ix]; }, r[x].i32);
} break;
STRIDE_K(Op::gather32): {
const int* ptr;
memcpy(&ptr, (const uint8_t*)args[immA] + immB, sizeof(ptr));
r[d].i32 = gather32(ptr, r[x].i32);
} break;
#undef STRIDE_1
#undef STRIDE_K
// Ops that don't interact with memory should never care about the stride.
#define CASE(op) case 2*(int)op: /*fallthrough*/ case 2*(int)op+1
// These 128-bit ops are implemented serially for simplicity.
CASE(Op::store128): {
U64 lo = (skvx::cast<uint64_t>(r[x].u32) << 0 |
skvx::cast<uint64_t>(r[y].u32) << 32),
hi = (skvx::cast<uint64_t>(r[z].u32) << 0 |
skvx::cast<uint64_t>(r[w].u32) << 32);
for (int i = 0; i < stride; i++) {
memcpy((char*)args[immA] + 16*i + 0, &lo[i], 8);
memcpy((char*)args[immA] + 16*i + 8, &hi[i], 8);
}
} break;
CASE(Op::load128):
r[d].i32 = 0;
for (int i = 0; i < stride; i++) {
memcpy(&r[d].i32[i], (const char*)args[immA] + 16*i+ 4*immB, 4);
} break;
CASE(Op::assert_true):
#ifdef SK_DEBUG
if (!all(r[x].i32)) {
SkDebugf("inst %d, register %d\n", instIdx, y);
for (int i = 0; i < K; i++) {
SkDebugf("\t%2d: %08x (%g)\n",
instIdx, r[y].i32[instIdx], r[y].f32[instIdx]);
}
SkASSERT(false);
}
#endif
break;
CASE(Op::index): {
const int iota[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,
16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,
32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,
48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63 };
static_assert(K <= SK_ARRAY_COUNT(iota), "");
r[d].i32 = n - I32::Load(iota);
} break;
CASE(Op::uniform32):
r[d].i32 = *(const int*)( (const char*)args[immA] + immB );
break;
CASE(Op::array32):
const int* ptr;
memcpy(&ptr, (const uint8_t*)args[immA] + immB, sizeof(ptr));
r[d].i32 = ptr[immC/sizeof(int)];
break;
CASE(Op::splat): r[d].i32 = immA; break;
CASE(Op::add_f32): r[d].f32 = r[x].f32 + r[y].f32; break;
CASE(Op::sub_f32): r[d].f32 = r[x].f32 - r[y].f32; break;
CASE(Op::mul_f32): r[d].f32 = r[x].f32 * r[y].f32; break;
CASE(Op::div_f32): r[d].f32 = r[x].f32 / r[y].f32; break;
CASE(Op::min_f32): r[d].f32 = min(r[x].f32, r[y].f32); break;
CASE(Op::max_f32): r[d].f32 = max(r[x].f32, r[y].f32); break;
CASE(Op::fma_f32): r[d].f32 = fma( r[x].f32, r[y].f32, r[z].f32); break;
CASE(Op::fms_f32): r[d].f32 = fma( r[x].f32, r[y].f32, -r[z].f32); break;
CASE(Op::fnma_f32): r[d].f32 = fma(-r[x].f32, r[y].f32, r[z].f32); break;
CASE(Op::sqrt_f32): r[d].f32 = sqrt(r[x].f32); break;
CASE(Op::add_i32): r[d].i32 = r[x].i32 + r[y].i32; break;
CASE(Op::sub_i32): r[d].i32 = r[x].i32 - r[y].i32; break;
CASE(Op::mul_i32): r[d].i32 = r[x].i32 * r[y].i32; break;
CASE(Op::shl_i32): r[d].i32 = r[x].i32 << immA; break;
CASE(Op::sra_i32): r[d].i32 = r[x].i32 >> immA; break;
CASE(Op::shr_i32): r[d].u32 = r[x].u32 >> immA; break;
CASE(Op:: eq_f32): r[d].i32 = r[x].f32 == r[y].f32; break;
CASE(Op::neq_f32): r[d].i32 = r[x].f32 != r[y].f32; break;
CASE(Op:: gt_f32): r[d].i32 = r[x].f32 > r[y].f32; break;
CASE(Op::gte_f32): r[d].i32 = r[x].f32 >= r[y].f32; break;
CASE(Op:: eq_i32): r[d].i32 = r[x].i32 == r[y].i32; break;
CASE(Op:: gt_i32): r[d].i32 = r[x].i32 > r[y].i32; break;
CASE(Op::bit_and ): r[d].i32 = r[x].i32 & r[y].i32; break;
CASE(Op::bit_or ): r[d].i32 = r[x].i32 | r[y].i32; break;
CASE(Op::bit_xor ): r[d].i32 = r[x].i32 ^ r[y].i32; break;
CASE(Op::bit_clear): r[d].i32 = r[x].i32 & ~r[y].i32; break;
CASE(Op::select): r[d].i32 = skvx::if_then_else(r[x].i32, r[y].i32, r[z].i32);
break;
CASE(Op::ceil): r[d].f32 = skvx::ceil(r[x].f32) ; break;
CASE(Op::floor): r[d].f32 = skvx::floor(r[x].f32) ; break;
CASE(Op::to_f32): r[d].f32 = skvx::cast<float>( r[x].i32 ); break;
CASE(Op::trunc): r[d].i32 = skvx::cast<int> ( r[x].f32 ); break;
CASE(Op::round): r[d].i32 = skvx::cast<int> (skvx::lrint(r[x].f32)); break;
CASE(Op::to_fp16):
r[d].i32 = skvx::cast<int>(skvx::to_half(r[x].f32));
break;
CASE(Op::from_fp16):
r[d].f32 = skvx::from_half(skvx::cast<uint16_t>(r[x].i32));
break;
#undef CASE
}
}
}
}
} // namespace SK_OPTS_NS
#endif//SkVM_opts_DEFINED