blob: a4a43fd7b4fa3f7a573ccd817c80152f59723fe7 [file] [log] [blame]
/*
* Copyright 2022 Google LLC
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/text/gpu/GlyphVector.h"
#include "src/core/SkReadBuffer.h"
#include "src/core/SkStrikeCache.h"
#include "src/core/SkWriteBuffer.h"
#include "src/text/StrikeForGPU.h"
#include <optional>
class SkStrikeClient;
using MaskFormat = skgpu::MaskFormat;
namespace sktext::gpu {
// -- GlyphVector ----------------------------------------------------------------------------------
GlyphVector::GlyphVector(StrikeRef&& strikeRef, SkSpan<Variant> glyphs)
: fStrikeRef{std::move(strikeRef)}
, fGlyphs{glyphs} {
SkASSERT(fGlyphs.size() > 0);
}
GlyphVector::Variant*
GlyphVector::MakeGlyphs(SkSpan<SkGlyphVariant> glyphs, sktext::gpu::SubRunAllocator* alloc) {
Variant* variants = alloc->makePODArray<Variant>(glyphs.size());
for (auto [i, gv] : SkMakeEnumerate(glyphs)) {
variants[i] = gv.packedID();
}
return variants;
}
GlyphVector GlyphVector::Make(
sk_sp<SkStrike>&& strike, SkSpan<SkGlyphVariant> glyphs, SubRunAllocator* alloc) {
SkASSERT(strike != nullptr);
SkASSERT(glyphs.size() > 0);
Variant* variants = MakeGlyphs(glyphs, alloc);
return GlyphVector{std::move(strike), SkSpan(variants, glyphs.size())};
}
GlyphVector GlyphVector::Make(
StrikeForGPU* strike, SkSpan<SkGlyphVariant> glyphs, SubRunAllocator* alloc) {
SkASSERT(strike != nullptr);
SkASSERT(glyphs.size() > 0);
Variant* variants = MakeGlyphs(glyphs, alloc);
return GlyphVector{strike, SkSpan(variants, glyphs.size())};
}
std::optional<GlyphVector> GlyphVector::MakeFromBuffer(SkReadBuffer& buffer,
const SkStrikeClient* client,
SubRunAllocator* alloc) {
std::optional<StrikeRef> strikeRef = StrikeRef::MakeFromBuffer(buffer, client);
if (!buffer.validate(strikeRef.has_value())) {
return std::nullopt;
}
int32_t glyphCount = buffer.read32();
// Since the glyph count can never be zero. There was a buffer reading problem.
if (!buffer.validate(glyphCount > 0)) {
return std::nullopt;
}
// Make sure we can multiply without overflow in the check below.
static constexpr int kMaxCount = (int)(INT_MAX / sizeof(uint32_t));
if (!buffer.validate(glyphCount <= kMaxCount)) {
return std::nullopt;
}
// Check for enough bytes to populate the packedGlyphID array. If not enough something has
// gone wrong.
if (!buffer.validate(glyphCount * sizeof(uint32_t) <= buffer.available())) {
return std::nullopt;
}
Variant* variants = alloc->makePODArray<Variant>(glyphCount);
for (int i = 0; i < glyphCount; i++) {
variants[i].packedGlyphID = SkPackedGlyphID(buffer.readUInt());
}
return GlyphVector{std::move(strikeRef.value()), SkSpan(variants, glyphCount)};
}
void GlyphVector::flatten(SkWriteBuffer& buffer) const {
// There should never be a glyph vector with zero glyphs.
SkASSERT(fGlyphs.size() != 0);
fStrikeRef.flatten(buffer);
// Write out the span of packedGlyphIDs.
buffer.write32(SkTo<int32_t>(fGlyphs.size()));
for (Variant variant : fGlyphs) {
buffer.writeUInt(variant.packedGlyphID.value());
}
}
SkSpan<const Glyph*> GlyphVector::glyphs() const {
return SkSpan(reinterpret_cast<const Glyph**>(fGlyphs.data()), fGlyphs.size());
}
// packedGlyphIDToGlyph must be run in single-threaded mode.
// If fSkStrike is not sk_sp<SkStrike> then the conversion to Glyph* has not happened.
void GlyphVector::packedGlyphIDToGlyph(StrikeCache* cache) {
if (sk_sp<SkStrike> strike = fStrikeRef.getStrikeAndSetToNullptr()) {
fTextStrike = cache->findOrCreateStrike(strike->strikeSpec());
for (Variant& variant : fGlyphs) {
variant.glyph = fTextStrike->getGlyph(variant.packedGlyphID);
}
// This must be pinned for the Atlas filling to work.
strike->verifyPinnedStrike();
}
}
} // namespace sktext::gpu