| /* |
| * Copyright 2019 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "include/private/SkVx.h" |
| #include "tests/Test.h" |
| #include <numeric> |
| |
| using float2 = skvx::Vec<2,float>; |
| using float4 = skvx::Vec<4,float>; |
| using float8 = skvx::Vec<8,float>; |
| |
| using double2 = skvx::Vec<2,double>; |
| using double4 = skvx::Vec<4,double>; |
| using double8 = skvx::Vec<8,double>; |
| |
| using byte2 = skvx::Vec< 2,uint8_t>; |
| using byte4 = skvx::Vec< 4,uint8_t>; |
| using byte8 = skvx::Vec< 8,uint8_t>; |
| using byte16 = skvx::Vec<16,uint8_t>; |
| |
| using int2 = skvx::Vec<2,int32_t>; |
| using int4 = skvx::Vec<4,int32_t>; |
| using int8 = skvx::Vec<8,int32_t>; |
| |
| using uint2 = skvx::Vec<2,uint32_t>; |
| using uint4 = skvx::Vec<4,uint32_t>; |
| using uint8 = skvx::Vec<8,uint32_t>; |
| |
| using long2 = skvx::Vec<2,int64_t>; |
| using long4 = skvx::Vec<4,int64_t>; |
| using long8 = skvx::Vec<8,int64_t>; |
| |
| DEF_TEST(SkVx, r) { |
| static_assert(sizeof(float2) == 8, ""); |
| static_assert(sizeof(float4) == 16, ""); |
| static_assert(sizeof(float8) == 32, ""); |
| |
| static_assert(sizeof(byte2) == 2, ""); |
| static_assert(sizeof(byte4) == 4, ""); |
| static_assert(sizeof(byte8) == 8, ""); |
| |
| { |
| int4 mask = float4{1,2,3,4} < float4{1,2,4,8}; |
| REPORTER_ASSERT(r, mask[0] == int32_t( 0)); |
| REPORTER_ASSERT(r, mask[1] == int32_t( 0)); |
| REPORTER_ASSERT(r, mask[2] == int32_t(-1)); |
| REPORTER_ASSERT(r, mask[3] == int32_t(-1)); |
| |
| REPORTER_ASSERT(r, any(mask)); |
| REPORTER_ASSERT(r, !all(mask)); |
| } |
| |
| { |
| long4 mask = double4{1,2,3,4} < double4{1,2,4,8}; |
| REPORTER_ASSERT(r, mask[0] == int64_t( 0)); |
| REPORTER_ASSERT(r, mask[1] == int64_t( 0)); |
| REPORTER_ASSERT(r, mask[2] == int64_t(-1)); |
| REPORTER_ASSERT(r, mask[3] == int64_t(-1)); |
| |
| REPORTER_ASSERT(r, any(mask)); |
| REPORTER_ASSERT(r, !all(mask)); |
| } |
| |
| REPORTER_ASSERT(r, min(float4{1,2,3,4}) == 1); |
| REPORTER_ASSERT(r, max(float4{1,2,3,4}) == 4); |
| |
| REPORTER_ASSERT(r, all(int4{1,2,3,4,5} == int4{1,2,3,4})); |
| REPORTER_ASSERT(r, all(int4{1,2,3,4} == int4{1,2,3,4})); |
| REPORTER_ASSERT(r, all(int4{1,2,3} == int4{1,2,3,0})); |
| REPORTER_ASSERT(r, all(int4{1,2} == int4{1,2,0,0})); |
| REPORTER_ASSERT(r, all(int4{1} == int4{1,0,0,0})); |
| REPORTER_ASSERT(r, all(int4(1) == int4{1,1,1,1})); |
| REPORTER_ASSERT(r, all(int4{} == int4{0,0,0,0})); |
| REPORTER_ASSERT(r, all(int4() == int4{0,0,0,0})); |
| |
| REPORTER_ASSERT(r, all(int4{1,2,2,1} == min(int4{1,2,3,4}, int4{4,3,2,1}))); |
| REPORTER_ASSERT(r, all(int4{4,3,3,4} == max(int4{1,2,3,4}, int4{4,3,2,1}))); |
| |
| REPORTER_ASSERT(r, all(if_then_else(float4{1,2,3,2} <= float4{2,2,2,2}, float4(42), float4(47)) |
| == float4{42,42,47,42})); |
| |
| REPORTER_ASSERT(r, all(floor(float4{-1.5f,1.5f,1.0f,-1.0f}) == float4{-2.0f,1.0f,1.0f,-1.0f})); |
| REPORTER_ASSERT(r, all( ceil(float4{-1.5f,1.5f,1.0f,-1.0f}) == float4{-1.0f,2.0f,1.0f,-1.0f})); |
| REPORTER_ASSERT(r, all(trunc(float4{-1.5f,1.5f,1.0f,-1.0f}) == float4{-1.0f,1.0f,1.0f,-1.0f})); |
| REPORTER_ASSERT(r, all(round(float4{-1.5f,1.5f,1.0f,-1.0f}) == float4{-2.0f,2.0f,1.0f,-1.0f})); |
| |
| |
| REPORTER_ASSERT(r, all(abs(float4{-2,-1,0,1}) == float4{2,1,0,1})); |
| |
| // TODO(mtklein): these tests could be made less loose. |
| REPORTER_ASSERT(r, all( sqrt(float4{2,3,4,5}) < float4{2,2,3,3})); |
| REPORTER_ASSERT(r, all( sqrt(float2{2,3}) < float2{2,2})); |
| |
| REPORTER_ASSERT(r, all(skvx::cast<int>(float4{-1.5f,0.5f,1.0f,1.5f}) == int4{-1,0,1,1})); |
| |
| float buf[] = {1,2,3,4,5,6}; |
| REPORTER_ASSERT(r, all(float4::Load(buf) == float4{1,2,3,4})); |
| float4{2,3,4,5}.store(buf); |
| REPORTER_ASSERT(r, buf[0] == 2 |
| && buf[1] == 3 |
| && buf[2] == 4 |
| && buf[3] == 5 |
| && buf[4] == 5 |
| && buf[5] == 6); |
| REPORTER_ASSERT(r, all(float4::Load(buf+0) == float4{2,3,4,5})); |
| REPORTER_ASSERT(r, all(float4::Load(buf+2) == float4{4,5,5,6})); |
| |
| REPORTER_ASSERT(r, all(skvx::shuffle<2,1,0,3> (float4{1,2,3,4}) == float4{3,2,1,4})); |
| REPORTER_ASSERT(r, all(skvx::shuffle<2,1> (float4{1,2,3,4}) == float2{3,2})); |
| REPORTER_ASSERT(r, all(skvx::shuffle<3,3,3,3> (float4{1,2,3,4}) == float4{4,4,4,4})); |
| REPORTER_ASSERT(r, all(skvx::shuffle<2,1,2,1,2,1,2,1>(float4{1,2,3,4}) |
| == float8{3,2,3,2,3,2,3,2})); |
| |
| // Test that mixed types can be used where they make sense. Mostly about ergonomics. |
| REPORTER_ASSERT(r, all(float4{1,2,3,4} < 5)); |
| REPORTER_ASSERT(r, all( byte4{1,2,3,4} < 5)); |
| REPORTER_ASSERT(r, all( int4{1,2,3,4} < 5.0f)); |
| float4 five = 5; |
| REPORTER_ASSERT(r, all(five == 5.0f)); |
| REPORTER_ASSERT(r, all(five == 5)); |
| |
| REPORTER_ASSERT(r, all(max(2, min(float4{1,2,3,4}, 3)) == float4{2,2,3,3})); |
| |
| for (int x = 0; x < 256; x++) |
| for (int y = 0; y < 256; y++) { |
| uint8_t want = (uint8_t)( 255*(x/255.0 * y/255.0) + 0.5 ); |
| |
| { |
| uint8_t got = skvx::div255(skvx::Vec<8, uint16_t>(x) * |
| skvx::Vec<8, uint16_t>(y) )[0]; |
| REPORTER_ASSERT(r, got == want); |
| } |
| |
| { |
| uint8_t got = skvx::approx_scale(skvx::Vec<8,uint8_t>(x), |
| skvx::Vec<8,uint8_t>(y))[0]; |
| |
| REPORTER_ASSERT(r, got == want-1 || |
| got == want || |
| got == want+1); |
| if (x == 0 || y == 0 || x == 255 || y == 255) { |
| REPORTER_ASSERT(r, got == want); |
| } |
| } |
| } |
| |
| for (int x = 0; x < 256; x++) |
| for (int y = 0; y < 256; y++) { |
| uint16_t xy = x*y; |
| |
| // Make sure to cover implementation cases N=8, N<8, and N>8. |
| REPORTER_ASSERT(r, all(mull(byte2 (x), byte2 (y)) == xy)); |
| REPORTER_ASSERT(r, all(mull(byte4 (x), byte4 (y)) == xy)); |
| REPORTER_ASSERT(r, all(mull(byte8 (x), byte8 (y)) == xy)); |
| REPORTER_ASSERT(r, all(mull(byte16(x), byte16(y)) == xy)); |
| } |
| |
| { |
| // Intentionally not testing -0, as we don't care if it's 0x0000 or 0x8000. |
| float8 fs = {+0.0f,+0.5f,+1.0f,+2.0f, |
| -4.0f,-0.5f,-1.0f,-2.0f}; |
| skvx::Vec<8,uint16_t> hs = {0x0000,0x3800,0x3c00,0x4000, |
| 0xc400,0xb800,0xbc00,0xc000}; |
| REPORTER_ASSERT(r, all(skvx:: to_half(fs) == hs)); |
| REPORTER_ASSERT(r, all(skvx::from_half(hs) == fs)); |
| } |
| } |
| |
| DEF_TEST(SkVx_xy, r) { |
| float2 f = float2(1,2); |
| REPORTER_ASSERT(r, all(f == float2{1,2})); |
| REPORTER_ASSERT(r, f.x() == 1); |
| REPORTER_ASSERT(r, f.y() == 2); |
| f.y() = 9; |
| REPORTER_ASSERT(r, all(f == float2{1,9})); |
| f.x() = 0; |
| REPORTER_ASSERT(r, all(f == float2(0,9))); |
| f[0] = 8; |
| REPORTER_ASSERT(r, f.x() == 8); |
| f[1] = 6; |
| REPORTER_ASSERT(r, f.y() == 6); |
| REPORTER_ASSERT(r, all(f == float2(8,6))); |
| f = f.yx(); |
| REPORTER_ASSERT(r, all(f == float2(6,8))); |
| REPORTER_ASSERT(r, skvx::bit_pun<SkPoint>(f) == SkPoint::Make(6,8)); |
| SkPoint p; |
| f.store(&p); |
| REPORTER_ASSERT(r, p == SkPoint::Make(6,8)); |
| f.yx().store(&p); |
| REPORTER_ASSERT(r, p == SkPoint::Make(8,6)); |
| REPORTER_ASSERT(r, all(f.xyxy() == float4(6,8,6,8))); |
| REPORTER_ASSERT(r, all(f.xyxy() == float4(f,f))); |
| REPORTER_ASSERT(r, all(skvx::join(f,f) == f.xyxy())); |
| REPORTER_ASSERT(r, all(skvx::join(f.yx(),f) == float4(f.y(),f.x(),f))); |
| REPORTER_ASSERT(r, all(skvx::join(f.yx(),f) == float4(f.yx(),f.x(),f.y()))); |
| REPORTER_ASSERT(r, all(skvx::join(f,f.yx()) == float4(f.x(),f.y(),f.yx()))); |
| REPORTER_ASSERT(r, all(skvx::join(f.yx(),f.yx()) == float4(f.yx(),f.yx()))); |
| } |
| |
| DEF_TEST(SkVx_xyzw, r) { |
| float4 f = float4{1,2,3,4}; |
| REPORTER_ASSERT(r, all(f == float4(1,2,3,4))); |
| REPORTER_ASSERT(r, all(f == float4(1,2,float2(3,4)))); |
| REPORTER_ASSERT(r, all(f == float4(float2(1,2),3,4))); |
| REPORTER_ASSERT(r, all(f == float4(float2(1,2),float2(3,4)))); |
| f.xy() = float2(9,8); |
| REPORTER_ASSERT(r, all(f == float4(9,8,3,4))); |
| f.zw().x() = 7; |
| f.zw().y() = 6; |
| REPORTER_ASSERT(r, all(f == float4(9,8,7,6))); |
| f.x() = 5; |
| f.y() = 4; |
| f.z() = 3; |
| f.w() = 2; |
| REPORTER_ASSERT(r, all(f == float4(5,4,3,2))); |
| f[0] = 0; |
| REPORTER_ASSERT(r, f.x() == 0); |
| f[1] = 1; |
| REPORTER_ASSERT(r, f.y() == 1); |
| f[2] = 2; |
| REPORTER_ASSERT(r, f.z() == 2); |
| f[3] = 3; |
| REPORTER_ASSERT(r, f.w() == 3); |
| REPORTER_ASSERT(r, skvx::all(f.xy() == float2(0,1))); |
| REPORTER_ASSERT(r, skvx::all(f.zw() == float2{2,3})); |
| REPORTER_ASSERT(r, all(f == float4(0,1,2,3))); |
| REPORTER_ASSERT(r, all(f.yxwz().lo == skvx::shuffle<1,0>(f))); |
| REPORTER_ASSERT(r, all(f.yxwz().hi == skvx::shuffle<3,2>(f))); |
| REPORTER_ASSERT(r, all(f.zwxy().lo.lo == f.z())); |
| REPORTER_ASSERT(r, all(f.zwxy().lo.hi == f.w())); |
| REPORTER_ASSERT(r, all(f.zwxy().hi.lo == f.x())); |
| REPORTER_ASSERT(r, all(f.zwxy().hi.hi == f.y())); |
| REPORTER_ASSERT(r, f.yxwz().lo.lo.val == f.y()); |
| REPORTER_ASSERT(r, f.yxwz().lo.hi.val == f.x()); |
| REPORTER_ASSERT(r, f.yxwz().hi.lo.val == f.w()); |
| REPORTER_ASSERT(r, f.yxwz().hi.hi.val == f.z()); |
| |
| REPORTER_ASSERT(r, all(skvx::naive_if_then_else(int2(0,~0), |
| skvx::shuffle<3,2>(float4(0,1,2,3)), |
| float4(4,5,6,7).xy()) == float2(4,2))); |
| REPORTER_ASSERT(r, all(skvx::if_then_else(int2(0,~0), |
| skvx::shuffle<3,2>(float4(0,1,2,3)), |
| float4(4,5,6,7).xy()) == float2(4,2))); |
| REPORTER_ASSERT(r, all(skvx::naive_if_then_else(int2(0,~0).xyxy(), |
| float4(0,1,2,3).zwxy(), |
| float4(4,5,6,7)) == float4(4,3,6,1))); |
| REPORTER_ASSERT(r, all(skvx::if_then_else(int2(0,~0).xyxy(), |
| float4(0,1,2,3).zwxy(), |
| float4(4,5,6,7)) == float4(4,3,6,1))); |
| |
| REPORTER_ASSERT(r, all(skvx::pin(float4(0,1,2,3).yxwz(), |
| float2(1).xyxy(), |
| float2(2).xyxy()) == float4(1,1,2,2))); |
| } |
| |
| static bool check_approx_acos(skiatest::Reporter* r, float x, float approx_acos_x) { |
| float acosf_x = acosf(x); |
| float error = acosf_x - approx_acos_x; |
| if (!(fabsf(error) <= SKVX_APPROX_ACOS_MAX_ERROR)) { |
| ERRORF(r, "Larger-than-expected error from skvx::approx_acos\n" |
| " x= %f\n" |
| " approx_acos_x= %f (%f degrees\n" |
| " acosf_x= %f (%f degrees\n" |
| " error= %f (%f degrees)\n" |
| " tolerance= %f (%f degrees)\n\n", |
| x, approx_acos_x, SkRadiansToDegrees(approx_acos_x), acosf_x, |
| SkRadiansToDegrees(acosf_x), error, SkRadiansToDegrees(error), |
| SKVX_APPROX_ACOS_MAX_ERROR, SkRadiansToDegrees(SKVX_APPROX_ACOS_MAX_ERROR)); |
| return false; |
| } |
| return true; |
| } |
| |
| DEF_TEST(SkVx_approx_acos, r) { |
| float4 boundaries = skvx::approx_acos(float4{-1, 0, 1, 0}); |
| check_approx_acos(r, -1, boundaries[0]); |
| check_approx_acos(r, 0, boundaries[1]); |
| check_approx_acos(r, +1, boundaries[2]); |
| |
| // Select a distribution of starting points around which to begin testing approx_acos. These |
| // fall roughly around the known minimum and maximum errors. No need to include -1, 0, or 1 |
| // since those were just tested above. (Those are tricky because 0 is an inflection and the |
| // derivative is infinite at 1 and -1.) |
| float8 x = {-.99f, -.8f, -.4f, -.2f, .2f, .4f, .8f, .99f}; |
| |
| // Converge at the various local minima and maxima of "approx_acos(x) - cosf(x)" and verify that |
| // approx_acos is always within "kTolerance" degrees of the expected answer. |
| float8 err_; |
| for (int iter = 0; iter < 10; ++iter) { |
| // Run our approximate inverse cosine approximation. |
| auto approx_acos_x = skvx::approx_acos(x); |
| |
| // Find d/dx(error) |
| // = d/dx(approx_acos(x) - acos(x)) |
| // = (f'g - fg')/gg + 1/sqrt(1 - x^2), [where f = bx^3 + ax, g = dx^4 + cx^2 + 1] |
| float8 xx = x*x; |
| float8 a = -0.939115566365855f; |
| float8 b = 0.9217841528914573f; |
| float8 c = -1.2845906244690837f; |
| float8 d = 0.295624144969963174f; |
| float8 f = (b*xx + a)*x; |
| float8 f_ = 3*b*xx + a; |
| float8 g = (d*xx + c)*xx + 1; |
| float8 g_ = (4*d*xx + 2*c)*x; |
| float8 gg = g*g; |
| float8 q = skvx::sqrt(1 - xx); |
| err_ = (f_*g - f*g_)/gg + 1/q; |
| |
| // Find d^2/dx^2(error) |
| // = ((f''g - fg'')g^2 - (f'g - fg')2gg') / g^4 + x(1 - x^2)^(-3/2) |
| // = ((f''g - fg'')g - (f'g - fg')2g') / g^3 + x(1 - x^2)^(-3/2) |
| float8 f__ = 6*b*x; |
| float8 g__ = 12*d*xx + 2*c; |
| float8 err__ = ((f__*g - f*g__)*g - (f_*g - f*g_)*2*g_) / (gg*g) + x/((1 - xx)*q); |
| |
| #if 0 |
| SkDebugf("\n\niter %i\n", iter); |
| #endif |
| // Ensure each lane's approximation is within maximum error. |
| for (int j = 0; j < 8; ++j) { |
| #if 0 |
| SkDebugf("x=%f err=%f err'=%f err''=%f\n", |
| x[j], SkRadiansToDegrees(skvx::approx_acos_x[j] - acosf(x[j])), |
| SkRadiansToDegrees(err_[j]), SkRadiansToDegrees(err__[j])); |
| #endif |
| if (!check_approx_acos(r, x[j], approx_acos_x[j])) { |
| return; |
| } |
| } |
| |
| // Use Newton's method to update the x values to locations closer to their local minimum or |
| // maximum. (This is where d/dx(error) == 0.) |
| x -= err_/err__; |
| x = skvx::pin<8,float>(x, -.99f, .99f); |
| } |
| |
| // Ensure each lane converged to a local minimum or maximum. |
| for (int j = 0; j < 8; ++j) { |
| REPORTER_ASSERT(r, SkScalarNearlyZero(err_[j])); |
| } |
| |
| // Make sure we found all the actual known locations of local min/max error. |
| for (float knownRoot : {-0.983536f, -0.867381f, -0.410923f, 0.410923f, 0.867381f, 0.983536f}) { |
| REPORTER_ASSERT(r, skvx::any(skvx::abs(x - knownRoot) < SK_ScalarNearlyZero)); |
| } |
| } |
| |
| template<int N, typename T> void check_strided_loads(skiatest::Reporter* r) { |
| using Vec = skvx::Vec<N,T>; |
| T values[N*4]; |
| std::iota(values, values + N*4, 0); |
| Vec a, b, c, d; |
| skvx::strided_load2(values, a, b); |
| for (int i = 0; i < N; ++i) { |
| REPORTER_ASSERT(r, a[i] == values[i*2]); |
| REPORTER_ASSERT(r, b[i] == values[i*2 + 1]); |
| } |
| skvx::strided_load4(values, a, b, c, d); |
| for (int i = 0; i < N; ++i) { |
| REPORTER_ASSERT(r, a[i] == values[i*4]); |
| REPORTER_ASSERT(r, b[i] == values[i*4 + 1]); |
| REPORTER_ASSERT(r, c[i] == values[i*4 + 2]); |
| REPORTER_ASSERT(r, d[i] == values[i*4 + 3]); |
| } |
| } |
| |
| template<typename T> void check_strided_loads(skiatest::Reporter* r) { |
| check_strided_loads<1,T>(r); |
| check_strided_loads<2,T>(r); |
| check_strided_loads<4,T>(r); |
| check_strided_loads<8,T>(r); |
| check_strided_loads<16,T>(r); |
| check_strided_loads<32,T>(r); |
| } |
| |
| DEF_TEST(SkVx_strided_loads, r) { |
| check_strided_loads<uint32_t>(r); |
| check_strided_loads<uint16_t>(r); |
| check_strided_loads<uint8_t>(r); |
| check_strided_loads<int32_t>(r); |
| check_strided_loads<int16_t>(r); |
| check_strided_loads<int8_t>(r); |
| check_strided_loads<float>(r); |
| } |
| |
| DEF_TEST(SkVM_ScaledDividerU32, r) { |
| static constexpr uint32_t kMax = std::numeric_limits<uint32_t>::max(); |
| |
| auto errorBounds = [&](uint32_t actual, uint32_t expected) { |
| uint32_t lowerLimit = expected == 0 ? 0 : expected - 1, |
| upperLimit = expected == kMax ? kMax : expected + 1; |
| return lowerLimit <= actual && actual <= upperLimit; |
| }; |
| |
| auto test = [&](uint32_t denom) { |
| // half == 1 so, the max to check is kMax-1 |
| skvx::ScaledDividerU32 d(denom); |
| uint32_t maxCheck = static_cast<uint32_t>(floor((double)(kMax - d.half()) / denom + 0.5)); |
| REPORTER_ASSERT(r, errorBounds(d.divide((kMax))[0], maxCheck)); |
| for (uint32_t i = 0; i < kMax - d.half(); i += 65535) { |
| uint32_t expected = static_cast<uint32_t>(floor((double)i / denom + 0.5)); |
| auto actual = d.divide(i + d.half()); |
| if (!errorBounds(actual[0], expected)) { |
| SkDebugf("i: %u expected: %u actual: %u\n", i, expected, actual[0]); |
| } |
| // Make sure all the lanes are the same. |
| for (int e = 1; e < 4; e++) { |
| SkASSERT(actual[0] == actual[e]); |
| } |
| } |
| }; |
| |
| test(2); |
| test(3); |
| test(5); |
| test(7); |
| test(27); |
| test(65'535); |
| test(15'485'863); |
| test(512'927'377); |
| } |