| /* |
| * Copyright 2019 Google LLC |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "include/core/SkColorPriv.h" |
| #include "include/core/SkStream.h" |
| #include "include/private/SkColorData.h" |
| #include "src/core/SkCpu.h" |
| #include "src/core/SkMSAN.h" |
| #include "src/core/SkVM.h" |
| #include "src/gpu/ganesh/GrShaderCaps.h" |
| #include "src/sksl/SkSLCompiler.h" |
| #include "src/sksl/codegen/SkSLVMCodeGenerator.h" |
| #include "src/sksl/tracing/SkVMDebugTrace.h" |
| #include "src/utils/SkVMVisualizer.h" |
| #include "tests/Test.h" |
| |
| template <typename Fn> |
| static void test_jit_and_interpreter(const skvm::Builder& b, Fn&& test) { |
| skvm::Program p = b.done(); |
| test(p); |
| if (p.hasJIT()) { |
| test(b.done(/*debug_name=*/nullptr, /*allow_jit=*/false)); |
| } |
| } |
| |
| DEF_TEST(SkVM_eliminate_dead_code, r) { |
| skvm::Builder b; |
| { |
| skvm::Ptr arg = b.varying<int>(); |
| skvm::I32 l = b.load32(arg); |
| skvm::I32 a = b.add(l, l); |
| b.add(a, b.splat(7)); |
| } |
| |
| std::vector<skvm::Instruction> program = b.program(); |
| REPORTER_ASSERT(r, program.size() == 4); |
| |
| program = skvm::eliminate_dead_code(program); |
| REPORTER_ASSERT(r, program.size() == 0); |
| } |
| |
| DEF_TEST(SkVM_Pointless, r) { |
| // Let's build a program with no memory arguments. |
| // It should all be pegged as dead code, but we should be able to "run" it. |
| skvm::Builder b; |
| { |
| b.add(b.splat(5.0f), |
| b.splat(4.0f)); |
| } |
| |
| test_jit_and_interpreter(b, [&](const skvm::Program& program) { |
| for (int N = 0; N < 64; N++) { |
| program.eval(N); |
| } |
| }); |
| |
| for (const skvm::OptimizedInstruction& inst : b.optimize()) { |
| REPORTER_ASSERT(r, inst.death == 0 && inst.can_hoist == true); |
| } |
| } |
| |
| DEF_TEST(SkVM_memset, r) { |
| skvm::Builder b; |
| b.store32(b.varying<int>(), b.splat(42)); |
| |
| test_jit_and_interpreter(b, [&](const skvm::Program& p) { |
| int buf[18]; |
| buf[17] = 47; |
| |
| p.eval(17, buf); |
| for (int i = 0; i < 17; i++) { |
| REPORTER_ASSERT(r, buf[i] == 42); |
| } |
| REPORTER_ASSERT(r, buf[17] == 47); |
| }); |
| } |
| |
| DEF_TEST(SkVM_memcpy, r) { |
| skvm::Builder b; |
| { |
| auto src = b.varying<int>(), |
| dst = b.varying<int>(); |
| b.store32(dst, b.load32(src)); |
| } |
| |
| test_jit_and_interpreter(b, [&](const skvm::Program& p) { |
| int src[] = {1,2,3,4,5,6,7,8,9}, |
| dst[] = {0,0,0,0,0,0,0,0,0}; |
| |
| p.eval(SK_ARRAY_COUNT(src)-1, src, dst); |
| for (size_t i = 0; i < SK_ARRAY_COUNT(src)-1; i++) { |
| REPORTER_ASSERT(r, dst[i] == src[i]); |
| } |
| size_t i = SK_ARRAY_COUNT(src)-1; |
| REPORTER_ASSERT(r, dst[i] == 0); |
| }); |
| } |
| |
| DEF_TEST(SkVM_allow_jit, r) { |
| skvm::Builder b; |
| { |
| auto src = b.varying<int>(), |
| dst = b.varying<int>(); |
| b.store32(dst, b.load32(src)); |
| } |
| |
| if (b.done("test-allow_jit", /*allow_jit=*/true).hasJIT()) { |
| REPORTER_ASSERT(r, !b.done("", false).hasJIT()); |
| } |
| } |
| |
| DEF_TEST(SkVM_LoopCounts, r) { |
| // Make sure we cover all the exact N we want. |
| |
| // buf[i] += 1 |
| skvm::Builder b; |
| skvm::Ptr arg = b.varying<int>(); |
| b.store32(arg, |
| b.add(b.splat(1), |
| b.load32(arg))); |
| |
| test_jit_and_interpreter(b, [&](const skvm::Program& program) { |
| int buf[64]; |
| for (int N = 0; N <= (int)SK_ARRAY_COUNT(buf); N++) { |
| for (int i = 0; i < (int)SK_ARRAY_COUNT(buf); i++) { |
| buf[i] = i; |
| } |
| program.eval(N, buf); |
| |
| for (int i = 0; i < N; i++) { |
| REPORTER_ASSERT(r, buf[i] == i+1); |
| } |
| for (int i = N; i < (int)SK_ARRAY_COUNT(buf); i++) { |
| REPORTER_ASSERT(r, buf[i] == i); |
| } |
| } |
| }); |
| } |
| |
| DEF_TEST(SkVM_gather32, r) { |
| skvm::Builder b; |
| { |
| skvm::UPtr uniforms = b.uniform(); |
| skvm::Ptr buf = b.varying<int>(); |
| skvm::I32 x = b.load32(buf); |
| b.store32(buf, b.gather32(uniforms,0, b.bit_and(x, b.splat(7)))); |
| } |
| |
| test_jit_and_interpreter(b, [&](const skvm::Program& program) { |
| const int img[] = {12,34,56,78, 90,98,76,54}; |
| |
| int buf[20]; |
| for (int i = 0; i < 20; i++) { |
| buf[i] = i; |
| } |
| |
| struct Uniforms { |
| const int* img; |
| } uniforms{img}; |
| |
| program.eval(20, &uniforms, buf); |
| int i = 0; |
| REPORTER_ASSERT(r, buf[i] == 12); i++; |
| REPORTER_ASSERT(r, buf[i] == 34); i++; |
| REPORTER_ASSERT(r, buf[i] == 56); i++; |
| REPORTER_ASSERT(r, buf[i] == 78); i++; |
| REPORTER_ASSERT(r, buf[i] == 90); i++; |
| REPORTER_ASSERT(r, buf[i] == 98); i++; |
| REPORTER_ASSERT(r, buf[i] == 76); i++; |
| REPORTER_ASSERT(r, buf[i] == 54); i++; |
| |
| REPORTER_ASSERT(r, buf[i] == 12); i++; |
| REPORTER_ASSERT(r, buf[i] == 34); i++; |
| REPORTER_ASSERT(r, buf[i] == 56); i++; |
| REPORTER_ASSERT(r, buf[i] == 78); i++; |
| REPORTER_ASSERT(r, buf[i] == 90); i++; |
| REPORTER_ASSERT(r, buf[i] == 98); i++; |
| REPORTER_ASSERT(r, buf[i] == 76); i++; |
| REPORTER_ASSERT(r, buf[i] == 54); i++; |
| |
| REPORTER_ASSERT(r, buf[i] == 12); i++; |
| REPORTER_ASSERT(r, buf[i] == 34); i++; |
| REPORTER_ASSERT(r, buf[i] == 56); i++; |
| REPORTER_ASSERT(r, buf[i] == 78); i++; |
| }); |
| } |
| |
| DEF_TEST(SkVM_gathers, r) { |
| skvm::Builder b; |
| { |
| skvm::UPtr uniforms = b.uniform(); |
| skvm::Ptr buf32 = b.varying<int>(), |
| buf16 = b.varying<uint16_t>(), |
| buf8 = b.varying<uint8_t>(); |
| |
| skvm::I32 x = b.load32(buf32); |
| |
| b.store32(buf32, b.gather32(uniforms,0, b.bit_and(x, b.splat( 7)))); |
| b.store16(buf16, b.gather16(uniforms,0, b.bit_and(x, b.splat(15)))); |
| b.store8 (buf8 , b.gather8 (uniforms,0, b.bit_and(x, b.splat(31)))); |
| } |
| |
| test_jit_and_interpreter(b, [&](const skvm::Program& program) { |
| const int img[] = {12,34,56,78, 90,98,76,54}; |
| |
| constexpr int N = 20; |
| int buf32[N]; |
| uint16_t buf16[N]; |
| uint8_t buf8 [N]; |
| |
| for (int i = 0; i < 20; i++) { |
| buf32[i] = i; |
| } |
| |
| struct Uniforms { |
| const int* img; |
| } uniforms{img}; |
| |
| program.eval(N, &uniforms, buf32, buf16, buf8); |
| int i = 0; |
| REPORTER_ASSERT(r, buf32[i] == 12 && buf16[i] == 12 && buf8[i] == 12); i++; |
| REPORTER_ASSERT(r, buf32[i] == 34 && buf16[i] == 0 && buf8[i] == 0); i++; |
| REPORTER_ASSERT(r, buf32[i] == 56 && buf16[i] == 34 && buf8[i] == 0); i++; |
| REPORTER_ASSERT(r, buf32[i] == 78 && buf16[i] == 0 && buf8[i] == 0); i++; |
| REPORTER_ASSERT(r, buf32[i] == 90 && buf16[i] == 56 && buf8[i] == 34); i++; |
| REPORTER_ASSERT(r, buf32[i] == 98 && buf16[i] == 0 && buf8[i] == 0); i++; |
| REPORTER_ASSERT(r, buf32[i] == 76 && buf16[i] == 78 && buf8[i] == 0); i++; |
| REPORTER_ASSERT(r, buf32[i] == 54 && buf16[i] == 0 && buf8[i] == 0); i++; |
| |
| REPORTER_ASSERT(r, buf32[i] == 12 && buf16[i] == 90 && buf8[i] == 56); i++; |
| REPORTER_ASSERT(r, buf32[i] == 34 && buf16[i] == 0 && buf8[i] == 0); i++; |
| REPORTER_ASSERT(r, buf32[i] == 56 && buf16[i] == 98 && buf8[i] == 0); i++; |
| REPORTER_ASSERT(r, buf32[i] == 78 && buf16[i] == 0 && buf8[i] == 0); i++; |
| REPORTER_ASSERT(r, buf32[i] == 90 && buf16[i] == 76 && buf8[i] == 78); i++; |
| REPORTER_ASSERT(r, buf32[i] == 98 && buf16[i] == 0 && buf8[i] == 0); i++; |
| REPORTER_ASSERT(r, buf32[i] == 76 && buf16[i] == 54 && buf8[i] == 0); i++; |
| REPORTER_ASSERT(r, buf32[i] == 54 && buf16[i] == 0 && buf8[i] == 0); i++; |
| |
| REPORTER_ASSERT(r, buf32[i] == 12 && buf16[i] == 12 && buf8[i] == 90); i++; |
| REPORTER_ASSERT(r, buf32[i] == 34 && buf16[i] == 0 && buf8[i] == 0); i++; |
| REPORTER_ASSERT(r, buf32[i] == 56 && buf16[i] == 34 && buf8[i] == 0); i++; |
| REPORTER_ASSERT(r, buf32[i] == 78 && buf16[i] == 0 && buf8[i] == 0); i++; |
| }); |
| } |
| |
| DEF_TEST(SkVM_gathers2, r) { |
| skvm::Builder b; |
| { |
| skvm::UPtr uniforms = b.uniform(); |
| skvm::Ptr buf32 = b.varying<int>(), |
| buf16 = b.varying<uint16_t>(), |
| buf8 = b.varying<uint8_t>(); |
| |
| skvm::I32 x = b.load32(buf32); |
| |
| b.store32(buf32, b.gather32(uniforms,0, x)); |
| b.store16(buf16, b.gather16(uniforms,0, x)); |
| b.store8 (buf8 , b.gather8 (uniforms,0, x)); |
| } |
| |
| test_jit_and_interpreter(b, [&](const skvm::Program& program) { |
| uint8_t img[256]; |
| for (int i = 0; i < 256; i++) { |
| img[i] = i; |
| } |
| |
| int buf32[64]; |
| uint16_t buf16[64]; |
| uint8_t buf8 [64]; |
| |
| for (int i = 0; i < 64; i++) { |
| buf32[i] = (i*47)&63; |
| buf16[i] = 0; |
| buf8 [i] = 0; |
| } |
| |
| struct Uniforms { |
| const uint8_t* img; |
| } uniforms{img}; |
| |
| program.eval(64, &uniforms, buf32, buf16, buf8); |
| |
| for (int i = 0; i < 64; i++) { |
| REPORTER_ASSERT(r, buf8[i] == ((i*47)&63)); // 0,47,30,13,60,... |
| } |
| |
| REPORTER_ASSERT(r, buf16[ 0] == 0x0100); |
| REPORTER_ASSERT(r, buf16[63] == 0x2322); |
| |
| REPORTER_ASSERT(r, buf32[ 0] == 0x03020100); |
| REPORTER_ASSERT(r, buf32[63] == 0x47464544); |
| }); |
| } |
| |
| DEF_TEST(SkVM_bitops, r) { |
| skvm::Builder b; |
| { |
| skvm::Ptr ptr = b.varying<int>(); |
| |
| skvm::I32 x = b.load32(ptr); |
| |
| x = b.bit_and (x, b.splat(0xf1)); // 0x40 |
| x = b.bit_or (x, b.splat(0x80)); // 0xc0 |
| x = b.bit_xor (x, b.splat(0xfe)); // 0x3e |
| x = b.bit_clear(x, b.splat(0x30)); // 0x0e |
| |
| x = b.shl(x, 28); // 0xe000'0000 |
| x = b.sra(x, 28); // 0xffff'fffe |
| x = b.shr(x, 1); // 0x7fff'ffff |
| |
| b.store32(ptr, x); |
| } |
| |
| test_jit_and_interpreter(b, [&](const skvm::Program& program) { |
| int x = 0x42; |
| program.eval(1, &x); |
| REPORTER_ASSERT(r, x == 0x7fff'ffff); |
| }); |
| } |
| |
| DEF_TEST(SkVM_select_is_NaN, r) { |
| skvm::Builder b; |
| { |
| skvm::Ptr src = b.varying<float>(), |
| dst = b.varying<float>(); |
| |
| skvm::F32 x = b.loadF(src); |
| x = select(is_NaN(x), b.splat(0.0f) |
| , x); |
| b.storeF(dst, x); |
| } |
| |
| std::vector<skvm::OptimizedInstruction> program = b.optimize(); |
| REPORTER_ASSERT(r, program.size() == 4); |
| REPORTER_ASSERT(r, program[0].op == skvm::Op::load32); |
| REPORTER_ASSERT(r, program[1].op == skvm::Op::neq_f32); |
| REPORTER_ASSERT(r, program[2].op == skvm::Op::bit_clear); |
| REPORTER_ASSERT(r, program[3].op == skvm::Op::store32); |
| |
| test_jit_and_interpreter(b, [&](const skvm::Program& program) { |
| // ±NaN, ±0, ±1, ±inf |
| uint32_t src[] = {0x7f80'0001, 0xff80'0001, 0x0000'0000, 0x8000'0000, |
| 0x3f80'0000, 0xbf80'0000, 0x7f80'0000, 0xff80'0000}; |
| uint32_t dst[SK_ARRAY_COUNT(src)]; |
| program.eval(SK_ARRAY_COUNT(src), src, dst); |
| |
| for (int i = 0; i < (int)SK_ARRAY_COUNT(src); i++) { |
| REPORTER_ASSERT(r, dst[i] == (i < 2 ? 0 : src[i])); |
| } |
| }); |
| } |
| |
| DEF_TEST(SkVM_f32, r) { |
| skvm::Builder b; |
| { |
| skvm::Ptr arg = b.varying<float>(); |
| |
| skvm::F32 x = b.loadF(arg), |
| y = b.add(x,x), // y = 2x |
| z = b.sub(y,x), // z = 2x-x = x |
| w = b.div(z,x); // w = x/x = 1 |
| b.storeF(arg, w); |
| } |
| |
| test_jit_and_interpreter(b, [&](const skvm::Program& program) { |
| float buf[] = { 1,2,3,4,5,6,7,8,9 }; |
| program.eval(SK_ARRAY_COUNT(buf), buf); |
| for (float v : buf) { |
| REPORTER_ASSERT(r, v == 1.0f); |
| } |
| }); |
| } |
| |
| DEF_TEST(SkVM_cmp_i32, r) { |
| skvm::Builder b; |
| { |
| skvm::I32 x = b.load32(b.varying<int>()); |
| |
| auto to_bit = [&](int shift, skvm::I32 mask) { |
| return b.shl(b.bit_and(mask, b.splat(0x1)), shift); |
| }; |
| |
| skvm::I32 m = b.splat(0); |
| m = b.bit_or(m, to_bit(0, b. eq(x, b.splat(0)))); |
| m = b.bit_or(m, to_bit(1, b.neq(x, b.splat(1)))); |
| m = b.bit_or(m, to_bit(2, b. lt(x, b.splat(2)))); |
| m = b.bit_or(m, to_bit(3, b.lte(x, b.splat(3)))); |
| m = b.bit_or(m, to_bit(4, b. gt(x, b.splat(4)))); |
| m = b.bit_or(m, to_bit(5, b.gte(x, b.splat(5)))); |
| |
| b.store32(b.varying<int>(), m); |
| } |
| test_jit_and_interpreter(b, [&](const skvm::Program& program) { |
| int in[] = { 0,1,2,3,4,5,6,7,8,9 }; |
| int out[SK_ARRAY_COUNT(in)]; |
| |
| program.eval(SK_ARRAY_COUNT(in), in, out); |
| |
| REPORTER_ASSERT(r, out[0] == 0b001111); |
| REPORTER_ASSERT(r, out[1] == 0b001100); |
| REPORTER_ASSERT(r, out[2] == 0b001010); |
| REPORTER_ASSERT(r, out[3] == 0b001010); |
| REPORTER_ASSERT(r, out[4] == 0b000010); |
| for (int i = 5; i < (int)SK_ARRAY_COUNT(out); i++) { |
| REPORTER_ASSERT(r, out[i] == 0b110010); |
| } |
| }); |
| } |
| |
| DEF_TEST(SkVM_cmp_f32, r) { |
| skvm::Builder b; |
| { |
| skvm::F32 x = b.loadF(b.varying<float>()); |
| |
| auto to_bit = [&](int shift, skvm::I32 mask) { |
| return b.shl(b.bit_and(mask, b.splat(0x1)), shift); |
| }; |
| |
| skvm::I32 m = b.splat(0); |
| m = b.bit_or(m, to_bit(0, b. eq(x, b.splat(0.0f)))); |
| m = b.bit_or(m, to_bit(1, b.neq(x, b.splat(1.0f)))); |
| m = b.bit_or(m, to_bit(2, b. lt(x, b.splat(2.0f)))); |
| m = b.bit_or(m, to_bit(3, b.lte(x, b.splat(3.0f)))); |
| m = b.bit_or(m, to_bit(4, b. gt(x, b.splat(4.0f)))); |
| m = b.bit_or(m, to_bit(5, b.gte(x, b.splat(5.0f)))); |
| |
| b.store32(b.varying<int>(), m); |
| } |
| |
| test_jit_and_interpreter(b, [&](const skvm::Program& program) { |
| float in[] = { 0,1,2,3,4,5,6,7,8,9 }; |
| int out[SK_ARRAY_COUNT(in)]; |
| |
| program.eval(SK_ARRAY_COUNT(in), in, out); |
| |
| REPORTER_ASSERT(r, out[0] == 0b001111); |
| REPORTER_ASSERT(r, out[1] == 0b001100); |
| REPORTER_ASSERT(r, out[2] == 0b001010); |
| REPORTER_ASSERT(r, out[3] == 0b001010); |
| REPORTER_ASSERT(r, out[4] == 0b000010); |
| for (int i = 5; i < (int)SK_ARRAY_COUNT(out); i++) { |
| REPORTER_ASSERT(r, out[i] == 0b110010); |
| } |
| }); |
| } |
| |
| DEF_TEST(SkVM_index, r) { |
| skvm::Builder b; |
| b.store32(b.varying<int>(), b.index()); |
| |
| test_jit_and_interpreter(b, [&](const skvm::Program& program) { |
| int buf[23]; |
| program.eval(SK_ARRAY_COUNT(buf), buf); |
| for (int i = 0; i < (int)SK_ARRAY_COUNT(buf); i++) { |
| REPORTER_ASSERT(r, buf[i] == (int)SK_ARRAY_COUNT(buf)-i); |
| } |
| }); |
| } |
| |
| DEF_TEST(SkVM_mad, r) { |
| // This program is designed to exercise the tricky corners of instruction |
| // and register selection for Op::mad_f32. |
| |
| skvm::Builder b; |
| { |
| skvm::Ptr arg = b.varying<int>(); |
| |
| skvm::F32 x = b.to_F32(b.load32(arg)), |
| y = b.mad(x,x,x), // x is needed in the future, so r[x] != r[y]. |
| z = b.mad(y,y,x), // y is needed in the future, but r[z] = r[x] is ok. |
| w = b.mad(z,z,y), // w can alias z but not y. |
| v = b.mad(w,y,w); // Got to stop somewhere. |
| b.store32(arg, b.trunc(v)); |
| } |
| |
| test_jit_and_interpreter(b, [&](const skvm::Program& program) { |
| int x = 2; |
| program.eval(1, &x); |
| // x = 2 |
| // y = 2*2 + 2 = 6 |
| // z = 6*6 + 2 = 38 |
| // w = 38*38 + 6 = 1450 |
| // v = 1450*6 + 1450 = 10150 |
| REPORTER_ASSERT(r, x == 10150); |
| }); |
| } |
| |
| DEF_TEST(SkVM_fms, r) { |
| // Create a pattern that can be peepholed into an Op::fms_f32. |
| skvm::Builder b; |
| { |
| skvm::Ptr arg = b.varying<int>(); |
| |
| skvm::F32 x = b.to_F32(b.load32(arg)), |
| v = b.sub(b.mul(x, b.splat(2.0f)), |
| b.splat(1.0f)); |
| b.store32(arg, b.trunc(v)); |
| } |
| |
| test_jit_and_interpreter(b, [&](const skvm::Program& program) { |
| int buf[] = {0,1,2,3,4,5,6,7,8,9,10}; |
| program.eval((int)SK_ARRAY_COUNT(buf), &buf); |
| |
| for (int i = 0; i < (int)SK_ARRAY_COUNT(buf); i++) { |
| REPORTER_ASSERT(r, buf[i] = 2*i-1); |
| } |
| }); |
| } |
| |
| DEF_TEST(SkVM_fnma, r) { |
| // Create a pattern that can be peepholed into an Op::fnma_f32. |
| skvm::Builder b; |
| { |
| skvm::Ptr arg = b.varying<int>(); |
| |
| skvm::F32 x = b.to_F32(b.load32(arg)), |
| v = b.sub(b.splat(1.0f), |
| b.mul(x, b.splat(2.0f))); |
| b.store32(arg, b.trunc(v)); |
| } |
| |
| test_jit_and_interpreter(b, [&](const skvm::Program& program) { |
| int buf[] = {0,1,2,3,4,5,6,7,8,9,10}; |
| program.eval((int)SK_ARRAY_COUNT(buf), &buf); |
| |
| for (int i = 0; i < (int)SK_ARRAY_COUNT(buf); i++) { |
| REPORTER_ASSERT(r, buf[i] = 1-2*i); |
| } |
| }); |
| } |
| |
| DEF_TEST(SkVM_madder, r) { |
| skvm::Builder b; |
| { |
| skvm::Ptr arg = b.varying<float>(); |
| |
| skvm::F32 x = b.loadF(arg), |
| y = b.mad(x,x,x), // x is needed in the future, so r[x] != r[y]. |
| z = b.mad(y,x,y), // r[x] can be reused after this instruction, but not r[y]. |
| w = b.mad(y,y,z); |
| b.storeF(arg, w); |
| } |
| |
| test_jit_and_interpreter(b, [&](const skvm::Program& program) { |
| float x = 2.0f; |
| // y = 2*2 + 2 = 6 |
| // z = 6*2 + 6 = 18 |
| // w = 6*6 + 18 = 54 |
| program.eval(1, &x); |
| REPORTER_ASSERT(r, x == 54.0f); |
| }); |
| } |
| |
| DEF_TEST(SkVM_floor, r) { |
| skvm::Builder b; |
| { |
| skvm::Ptr arg = b.varying<float>(); |
| b.storeF(arg, b.floor(b.loadF(arg))); |
| } |
| |
| test_jit_and_interpreter(b, [&](const skvm::Program& program) { |
| float buf[] = { -2.0f, -1.5f, -1.0f, 0.0f, 1.0f, 1.5f, 2.0f }; |
| float want[] = { -2.0f, -2.0f, -1.0f, 0.0f, 1.0f, 1.0f, 2.0f }; |
| program.eval(SK_ARRAY_COUNT(buf), buf); |
| for (int i = 0; i < (int)SK_ARRAY_COUNT(buf); i++) { |
| REPORTER_ASSERT(r, buf[i] == want[i]); |
| } |
| }); |
| } |
| |
| DEF_TEST(SkVM_round, r) { |
| skvm::Builder b; |
| { |
| skvm::Ptr src = b.varying<float>(); |
| skvm::Ptr dst = b.varying<int>(); |
| b.store32(dst, b.round(b.loadF(src))); |
| } |
| |
| // The test cases on exact 0.5f boundaries assume the current rounding mode is nearest even. |
| // We haven't explicitly guaranteed that here... it just probably is. |
| test_jit_and_interpreter(b, [&](const skvm::Program& program) { |
| float buf[] = { -1.5f, -0.5f, 0.0f, 0.5f, 0.2f, 0.6f, 1.0f, 1.4f, 1.5f, 2.0f }; |
| int want[] = { -2 , 0 , 0 , 0 , 0 , 1 , 1 , 1 , 2 , 2 }; |
| int dst[SK_ARRAY_COUNT(buf)]; |
| |
| program.eval(SK_ARRAY_COUNT(buf), buf, dst); |
| for (int i = 0; i < (int)SK_ARRAY_COUNT(dst); i++) { |
| REPORTER_ASSERT(r, dst[i] == want[i]); |
| } |
| }); |
| } |
| |
| DEF_TEST(SkVM_min, r) { |
| skvm::Builder b; |
| { |
| skvm::Ptr src1 = b.varying<float>(); |
| skvm::Ptr src2 = b.varying<float>(); |
| skvm::Ptr dst = b.varying<float>(); |
| |
| b.storeF(dst, b.min(b.loadF(src1), b.loadF(src2))); |
| } |
| |
| test_jit_and_interpreter(b, [&](const skvm::Program& program) { |
| float s1[] = { 0.0f, 1.0f, 4.0f, -1.0f, -1.0f}; |
| float s2[] = { 0.0f, 2.0f, 3.0f, 1.0f, -2.0f}; |
| float want[] = { 0.0f, 1.0f, 3.0f, -1.0f, -2.0f}; |
| float d[SK_ARRAY_COUNT(s1)]; |
| program.eval(SK_ARRAY_COUNT(d), s1, s2, d); |
| for (int i = 0; i < (int)SK_ARRAY_COUNT(d); i++) { |
| REPORTER_ASSERT(r, d[i] == want[i]); |
| } |
| }); |
| } |
| |
| DEF_TEST(SkVM_max, r) { |
| skvm::Builder b; |
| { |
| skvm::Ptr src1 = b.varying<float>(); |
| skvm::Ptr src2 = b.varying<float>(); |
| skvm::Ptr dst = b.varying<float>(); |
| |
| b.storeF(dst, b.max(b.loadF(src1), b.loadF(src2))); |
| } |
| |
| test_jit_and_interpreter(b, [&](const skvm::Program& program) { |
| float s1[] = { 0.0f, 1.0f, 4.0f, -1.0f, -1.0f}; |
| float s2[] = { 0.0f, 2.0f, 3.0f, 1.0f, -2.0f}; |
| float want[] = { 0.0f, 2.0f, 4.0f, 1.0f, -1.0f}; |
| float d[SK_ARRAY_COUNT(s1)]; |
| program.eval(SK_ARRAY_COUNT(d), s1, s2, d); |
| for (int i = 0; i < (int)SK_ARRAY_COUNT(d); i++) { |
| REPORTER_ASSERT(r, d[i] == want[i]); |
| } |
| }); |
| } |
| |
| DEF_TEST(SkVM_hoist, r) { |
| // This program uses enough constants that it will fail to JIT if we hoist them. |
| // The JIT will try again without hoisting, and that'll just need 2 registers. |
| skvm::Builder b; |
| { |
| skvm::Ptr arg = b.varying<int>(); |
| skvm::I32 x = b.load32(arg); |
| for (int i = 0; i < 32; i++) { |
| x = b.add(x, b.splat(i)); |
| } |
| b.store32(arg, x); |
| } |
| |
| test_jit_and_interpreter(b, [&](const skvm::Program& program) { |
| int x = 4; |
| program.eval(1, &x); |
| // x += 0 + 1 + 2 + 3 + ... + 30 + 31 |
| // x += 496 |
| REPORTER_ASSERT(r, x == 500); |
| }); |
| } |
| |
| DEF_TEST(SkVM_select, r) { |
| skvm::Builder b; |
| { |
| skvm::Ptr buf = b.varying<int>(); |
| |
| skvm::I32 x = b.load32(buf); |
| |
| x = b.select( b.gt(x, b.splat(4)), x, b.splat(42) ); |
| |
| b.store32(buf, x); |
| } |
| |
| test_jit_and_interpreter(b, [&](const skvm::Program& program) { |
| int buf[] = { 0,1,2,3,4,5,6,7,8 }; |
| program.eval(SK_ARRAY_COUNT(buf), buf); |
| for (int i = 0; i < (int)SK_ARRAY_COUNT(buf); i++) { |
| REPORTER_ASSERT(r, buf[i] == (i > 4 ? i : 42)); |
| } |
| }); |
| } |
| |
| DEF_TEST(SkVM_swap, r) { |
| skvm::Builder b; |
| { |
| // This program is the equivalent of |
| // x = *X |
| // y = *Y |
| // *X = y |
| // *Y = x |
| // One rescheduling of the program based only on data flow of Op arguments is |
| // x = *X |
| // *Y = x |
| // y = *Y |
| // *X = y |
| // but this reordering does not produce the same results and is invalid. |
| skvm::Ptr X = b.varying<int>(), |
| Y = b.varying<int>(); |
| |
| skvm::I32 x = b.load32(X), |
| y = b.load32(Y); |
| |
| b.store32(X, y); |
| b.store32(Y, x); |
| } |
| |
| test_jit_and_interpreter(b, [&](const skvm::Program& program) { |
| int b1[] = { 0,1,2,3 }; |
| int b2[] = { 4,5,6,7 }; |
| program.eval(SK_ARRAY_COUNT(b1), b1, b2); |
| for (int i = 0; i < (int)SK_ARRAY_COUNT(b1); i++) { |
| REPORTER_ASSERT(r, b1[i] == 4 + i); |
| REPORTER_ASSERT(r, b2[i] == i); |
| } |
| }); |
| } |
| |
| DEF_TEST(SkVM_NewOps, r) { |
| // Exercise a somewhat arbitrary set of new ops. |
| skvm::Builder b; |
| { |
| skvm::Ptr buf = b.varying<int16_t>(); |
| skvm::UPtr uniforms = b.uniform(); |
| |
| skvm::I32 x = b.load16(buf); |
| |
| const size_t kPtr = sizeof(const int*); |
| |
| x = b.add(x, b.uniform32(uniforms, kPtr+0)); |
| x = b.mul(x, b.uniform32(uniforms, kPtr+4)); |
| x = b.sub(x, b.uniform32(uniforms, kPtr+8)); |
| |
| skvm::I32 limit = b.uniform32(uniforms, kPtr+12); |
| x = b.select(b.lt(x, b.splat(0)), b.splat(0), x); |
| x = b.select(b.gt(x, limit ), limit , x); |
| |
| x = b.gather8(uniforms,0, x); |
| |
| b.store16(buf, x); |
| } |
| |
| test_jit_and_interpreter(b, [&](const skvm::Program& program) { |
| const int N = 31; |
| int16_t buf[N]; |
| for (int i = 0; i < N; i++) { |
| buf[i] = i; |
| } |
| |
| const int M = 16; |
| uint8_t img[M]; |
| for (int i = 0; i < M; i++) { |
| img[i] = i*i; |
| } |
| |
| struct { |
| const uint8_t* img; |
| int add = 5; |
| int mul = 3; |
| int sub = 18; |
| int limit = M-1; |
| } uniforms{img}; |
| |
| program.eval(N, buf, &uniforms); |
| |
| for (int i = 0; i < N; i++) { |
| // Our first math calculates x = (i+5)*3 - 18 a.k.a 3*(i-1). |
| int x = 3*(i-1); |
| |
| // Then that's pinned to the limits of img. |
| if (i < 2) { x = 0; } // Notice i == 1 hits x == 0 exactly... |
| if (i > 5) { x = 15; } // ...and i == 6 hits x == 15 exactly |
| REPORTER_ASSERT(r, buf[i] == img[x]); |
| } |
| }); |
| } |
| |
| DEF_TEST(SKVM_array32, r) { |
| |
| |
| |
| skvm::Builder b; |
| skvm::Uniforms uniforms(b.uniform(), 0); |
| // Take up the first slot, so other uniforms are not at 0 offset. |
| uniforms.push(0); |
| int i[] = {3, 7}; |
| skvm::Uniform array = uniforms.pushArray(i); |
| float f[] = {5, 9}; |
| skvm::Uniform arrayF = uniforms.pushArrayF(f); |
| { |
| skvm::Ptr buf0 = b.varying<int32_t>(), |
| buf1 = b.varying<int32_t>(), |
| buf2 = b.varying<int32_t>(); |
| |
| skvm::I32 j = b.array32(array, 0); |
| b.store32(buf0, j); |
| skvm::I32 k = b.array32(array, 1); |
| b.store32(buf1, k); |
| |
| skvm::F32 x = b.arrayF(arrayF, 0); |
| skvm::F32 y = b.arrayF(arrayF, 1); |
| b.store32(buf2, b.trunc(b.add(x, y))); |
| } |
| |
| test_jit_and_interpreter(b, [&](const skvm::Program& program) { |
| const int K = 10; |
| int32_t buf0[K], |
| buf1[K], |
| buf2[K]; |
| |
| // reset the i[0] for the two tests. |
| i[0] = 3; |
| f[1] = 9; |
| program.eval(K, uniforms.buf.data(), buf0, buf1, buf2); |
| for (auto v : buf0) { |
| REPORTER_ASSERT(r, v == 3); |
| } |
| for (auto v : buf1) { |
| REPORTER_ASSERT(r, v == 7); |
| } |
| for (auto v : buf2) { |
| REPORTER_ASSERT(r, v == 14); |
| } |
| i[0] = 4; |
| f[1] = 10; |
| program.eval(K, uniforms.buf.data(), buf0, buf1, buf2); |
| for (auto v : buf0) { |
| REPORTER_ASSERT(r, v == 4); |
| } |
| for (auto v : buf1) { |
| REPORTER_ASSERT(r, v == 7); |
| } |
| for (auto v : buf2) { |
| REPORTER_ASSERT(r, v == 15); |
| } |
| }); |
| } |
| |
| DEF_TEST(SkVM_sqrt, r) { |
| skvm::Builder b; |
| auto buf = b.varying<int>(); |
| b.storeF(buf, b.sqrt(b.loadF(buf))); |
| |
| test_jit_and_interpreter(b, [&](const skvm::Program& program) { |
| constexpr int K = 17; |
| float buf[K]; |
| for (int i = 0; i < K; i++) { |
| buf[i] = (float)(i*i); |
| } |
| |
| // x^2 -> x |
| program.eval(K, buf); |
| |
| for (int i = 0; i < K; i++) { |
| REPORTER_ASSERT(r, buf[i] == (float)i); |
| } |
| }); |
| } |
| |
| DEF_TEST(SkVM_MSAN, r) { |
| // This little memset32() program should be able to JIT, but if we run that |
| // JIT code in an MSAN build, it won't see the writes initialize buf. So |
| // this tests that we're using the interpreter instead. |
| skvm::Builder b; |
| b.store32(b.varying<int>(), b.splat(42)); |
| |
| test_jit_and_interpreter(b, [&](const skvm::Program& program) { |
| constexpr int K = 17; |
| int buf[K]; // Intentionally uninitialized. |
| program.eval(K, buf); |
| sk_msan_assert_initialized(buf, buf+K); |
| for (int x : buf) { |
| REPORTER_ASSERT(r, x == 42); |
| } |
| }); |
| } |
| |
| DEF_TEST(SkVM_assert, r) { |
| skvm::Builder b; |
| b.assert_true(b.lt(b.load32(b.varying<int>()), |
| b.splat(42))); |
| |
| test_jit_and_interpreter(b, [&](const skvm::Program& program) { |
| int buf[] = { 0,1,2,3,4,5,6,7,8,9 }; |
| program.eval(SK_ARRAY_COUNT(buf), buf); |
| }); |
| } |
| |
| DEF_TEST(SkVM_trace_line, r) { |
| class TestTraceHook : public skvm::TraceHook { |
| public: |
| void var(int, int32_t) override { fBuffer.push_back(-9999999); } |
| void enter(int) override { fBuffer.push_back(-9999999); } |
| void exit(int) override { fBuffer.push_back(-9999999); } |
| void scope(int) override { fBuffer.push_back(-9999999); } |
| void line(int lineNum) override { fBuffer.push_back(lineNum); } |
| |
| std::vector<int> fBuffer; |
| }; |
| |
| skvm::Builder b; |
| TestTraceHook testTrace; |
| int traceHookID = b.attachTraceHook(&testTrace); |
| b.trace_line(traceHookID, b.splat(0xFFFFFFFF), b.splat(0xFFFFFFFF), 123); |
| b.trace_line(traceHookID, b.splat(0x00000000), b.splat(0xFFFFFFFF), 456); |
| b.trace_line(traceHookID, b.splat(0xFFFFFFFF), b.splat(0x00000000), 567); |
| b.trace_line(traceHookID, b.splat(0x00000000), b.splat(0x00000000), 678); |
| b.trace_line(traceHookID, b.splat(0xFFFFFFFF), b.splat(0xFFFFFFFF), 789); |
| skvm::Program p = b.done(); |
| p.eval(1); |
| |
| REPORTER_ASSERT(r, (testTrace.fBuffer == std::vector<int>{123, 789})); |
| } |
| |
| DEF_TEST(SkVM_trace_var, r) { |
| class TestTraceHook : public skvm::TraceHook { |
| public: |
| void line(int) override { fBuffer.push_back(-9999999); } |
| void enter(int) override { fBuffer.push_back(-9999999); } |
| void exit(int) override { fBuffer.push_back(-9999999); } |
| void scope(int) override { fBuffer.push_back(-9999999); } |
| void var(int slot, int32_t val) override { |
| fBuffer.push_back(slot); |
| fBuffer.push_back(val); |
| } |
| |
| std::vector<int> fBuffer; |
| }; |
| |
| skvm::Builder b; |
| TestTraceHook testTrace; |
| int traceHookID = b.attachTraceHook(&testTrace); |
| b.trace_var(traceHookID, b.splat(0x00000000), b.splat(0xFFFFFFFF), 2, b.splat(333)); |
| b.trace_var(traceHookID, b.splat(0xFFFFFFFF), b.splat(0xFFFFFFFF), 4, b.splat(555)); |
| b.trace_var(traceHookID, b.splat(0x00000000), b.splat(0x00000000), 5, b.splat(666)); |
| b.trace_var(traceHookID, b.splat(0xFFFFFFFF), b.splat(0xFFFFFFFF), 6, b.splat(777)); |
| b.trace_var(traceHookID, b.splat(0xFFFFFFFF), b.splat(0x00000000), 8, b.splat(999)); |
| skvm::Program p = b.done(); |
| p.eval(1); |
| |
| REPORTER_ASSERT(r, (testTrace.fBuffer == std::vector<int>{4, 555, 6, 777})); |
| } |
| |
| DEF_TEST(SkVM_trace_enter_exit, r) { |
| class TestTraceHook : public skvm::TraceHook { |
| public: |
| void line(int) override { fBuffer.push_back(-9999999); } |
| void var(int, int32_t) override { fBuffer.push_back(-9999999); } |
| void scope(int) override { fBuffer.push_back(-9999999); } |
| void enter(int fnIdx) override { |
| fBuffer.push_back(fnIdx); |
| fBuffer.push_back(1); |
| } |
| void exit(int fnIdx) override { |
| fBuffer.push_back(fnIdx); |
| fBuffer.push_back(0); |
| } |
| |
| std::vector<int> fBuffer; |
| }; |
| |
| skvm::Builder b; |
| TestTraceHook testTrace; |
| int traceHookID = b.attachTraceHook(&testTrace); |
| b.trace_enter(traceHookID, b.splat(0x00000000), b.splat(0x00000000), 99); |
| b.trace_enter(traceHookID, b.splat(0xFFFFFFFF), b.splat(0xFFFFFFFF), 12); |
| b.trace_enter(traceHookID, b.splat(0x00000000), b.splat(0xFFFFFFFF), 34); |
| b.trace_exit(traceHookID, b.splat(0xFFFFFFFF), b.splat(0xFFFFFFFF), 56); |
| b.trace_exit(traceHookID, b.splat(0xFFFFFFFF), b.splat(0x00000000), 78); |
| b.trace_exit(traceHookID, b.splat(0x00000000), b.splat(0x00000000), 90); |
| skvm::Program p = b.done(); |
| p.eval(1); |
| |
| REPORTER_ASSERT(r, (testTrace.fBuffer == std::vector<int>{12, 1, 56, 0})); |
| } |
| |
| DEF_TEST(SkVM_trace_scope, r) { |
| class TestTraceHook : public skvm::TraceHook { |
| public: |
| void var(int, int32_t) override { fBuffer.push_back(-9999999); } |
| void enter(int) override { fBuffer.push_back(-9999999); } |
| void exit(int) override { fBuffer.push_back(-9999999); } |
| void line(int) override { fBuffer.push_back(-9999999); } |
| void scope(int delta) override { fBuffer.push_back(delta); } |
| |
| std::vector<int> fBuffer; |
| }; |
| |
| skvm::Builder b; |
| TestTraceHook testTrace; |
| int traceHookID = b.attachTraceHook(&testTrace); |
| b.trace_scope(traceHookID, b.splat(0xFFFFFFFF), b.splat(0xFFFFFFFF), 1); |
| b.trace_scope(traceHookID, b.splat(0xFFFFFFFF), b.splat(0x00000000), -2); |
| b.trace_scope(traceHookID, b.splat(0x00000000), b.splat(0x00000000), 3); |
| b.trace_scope(traceHookID, b.splat(0x00000000), b.splat(0xFFFFFFFF), 4); |
| b.trace_scope(traceHookID, b.splat(0xFFFFFFFF), b.splat(0xFFFFFFFF), -5); |
| skvm::Program p = b.done(); |
| p.eval(1); |
| |
| REPORTER_ASSERT(r, (testTrace.fBuffer == std::vector<int>{1, -5})); |
| } |
| |
| DEF_TEST(SkVM_trace_multiple_hooks, r) { |
| class TestTraceHook : public skvm::TraceHook { |
| public: |
| void var(int, int32_t) override { fBuffer.push_back(-9999999); } |
| void enter(int) override { fBuffer.push_back(-9999999); } |
| void exit(int) override { fBuffer.push_back(-9999999); } |
| void scope(int) override { fBuffer.push_back(-9999999); } |
| void line(int lineNum) override { fBuffer.push_back(lineNum); } |
| |
| std::vector<int> fBuffer; |
| }; |
| |
| skvm::Builder b; |
| TestTraceHook testTraceA, testTraceB, testTraceC; |
| int traceHookAID = b.attachTraceHook(&testTraceA); |
| int traceHookBID = b.attachTraceHook(&testTraceB); |
| int traceHookCID = b.attachTraceHook(&testTraceC); |
| b.trace_line(traceHookCID, b.splat(0xFFFFFFFF), b.splat(0xFFFFFFFF), 111); |
| b.trace_line(traceHookAID, b.splat(0xFFFFFFFF), b.splat(0xFFFFFFFF), 222); |
| b.trace_line(traceHookCID, b.splat(0x00000000), b.splat(0x00000000), 333); |
| b.trace_line(traceHookBID, b.splat(0xFFFFFFFF), b.splat(0x00000000), 444); |
| b.trace_line(traceHookAID, b.splat(0x00000000), b.splat(0xFFFFFFFF), 555); |
| b.trace_line(traceHookBID, b.splat(0xFFFFFFFF), b.splat(0xFFFFFFFF), 666); |
| skvm::Program p = b.done(); |
| p.eval(1); |
| |
| REPORTER_ASSERT(r, (testTraceA.fBuffer == std::vector<int>{222})); |
| REPORTER_ASSERT(r, (testTraceB.fBuffer == std::vector<int>{666})); |
| REPORTER_ASSERT(r, (testTraceC.fBuffer == std::vector<int>{111})); |
| } |
| |
| DEF_TEST(SkVM_premul, reporter) { |
| // Test that premul is short-circuited when alpha is known opaque. |
| { |
| skvm::Builder p; |
| auto rptr = p.varying<int>(), |
| aptr = p.varying<int>(); |
| |
| skvm::F32 r = p.loadF(rptr), |
| g = p.splat(0.0f), |
| b = p.splat(0.0f), |
| a = p.loadF(aptr); |
| |
| p.premul(&r, &g, &b, a); |
| p.storeF(rptr, r); |
| |
| // load red, load alpha, red *= alpha, store red |
| REPORTER_ASSERT(reporter, p.done().instructions().size() == 4); |
| } |
| |
| { |
| skvm::Builder p; |
| auto rptr = p.varying<int>(); |
| |
| skvm::F32 r = p.loadF(rptr), |
| g = p.splat(0.0f), |
| b = p.splat(0.0f), |
| a = p.splat(1.0f); |
| |
| p.premul(&r, &g, &b, a); |
| p.storeF(rptr, r); |
| |
| // load red, store red |
| REPORTER_ASSERT(reporter, p.done().instructions().size() == 2); |
| } |
| |
| // Same deal for unpremul. |
| { |
| skvm::Builder p; |
| auto rptr = p.varying<int>(), |
| aptr = p.varying<int>(); |
| |
| skvm::F32 r = p.loadF(rptr), |
| g = p.splat(0.0f), |
| b = p.splat(0.0f), |
| a = p.loadF(aptr); |
| |
| p.unpremul(&r, &g, &b, a); |
| p.storeF(rptr, r); |
| |
| // load red, load alpha, a bunch of unpremul instructions, store red |
| REPORTER_ASSERT(reporter, p.done().instructions().size() >= 4); |
| } |
| |
| { |
| skvm::Builder p; |
| auto rptr = p.varying<int>(); |
| |
| skvm::F32 r = p.loadF(rptr), |
| g = p.splat(0.0f), |
| b = p.splat(0.0f), |
| a = p.splat(1.0f); |
| |
| p.unpremul(&r, &g, &b, a); |
| p.storeF(rptr, r); |
| |
| // load red, store red |
| REPORTER_ASSERT(reporter, p.done().instructions().size() == 2); |
| } |
| } |
| |
| template <typename Fn> |
| static void test_asm(skiatest::Reporter* r, Fn&& fn, std::initializer_list<uint8_t> expected) { |
| uint8_t buf[4096]; |
| skvm::Assembler a{buf}; |
| fn(a); |
| |
| REPORTER_ASSERT(r, a.size() == expected.size()); |
| |
| auto got = (const uint8_t*)buf, |
| want = expected.begin(); |
| for (int i = 0; i < (int)std::min(a.size(), expected.size()); i++) { |
| REPORTER_ASSERT(r, got[i] == want[i], |
| "byte %d was %02x, want %02x", i, got[i], want[i]); |
| } |
| } |
| |
| DEF_TEST(SkVM_Assembler, r) { |
| // Easiest way to generate test cases is |
| // |
| // echo '...some asm...' | llvm-mc -show-encoding -x86-asm-syntax=intel |
| // |
| // The -x86-asm-syntax=intel bit is optional, controlling the |
| // input syntax only; the output will always be AT&T op x,y,dst style. |
| // Our APIs read more like Intel op dst,x,y as op(dst,x,y), so I find |
| // that a bit easier to use here, despite maybe favoring AT&T overall. |
| |
| using A = skvm::Assembler; |
| // Our exit strategy from AVX code. |
| test_asm(r, [&](A& a) { |
| a.int3(); |
| a.vzeroupper(); |
| a.ret(); |
| },{ |
| 0xcc, |
| 0xc5, 0xf8, 0x77, |
| 0xc3, |
| }); |
| |
| // Align should pad with zero |
| test_asm(r, [&](A& a) { |
| a.ret(); |
| a.align(4); |
| },{ |
| 0xc3, |
| 0x00, 0x00, 0x00, |
| }); |
| |
| test_asm(r, [&](A& a) { |
| a.add(A::rax, 8); // Always good to test rax. |
| a.sub(A::rax, 32); |
| |
| a.add(A::rdi, 12); // Last 0x48 REX |
| a.sub(A::rdi, 8); |
| |
| a.add(A::r8 , 7); // First 0x49 REX |
| a.sub(A::r8 , 4); |
| |
| a.add(A::rsi, 128); // Requires 4 byte immediate. |
| a.sub(A::r8 , 1000000); |
| |
| a.add(A::Mem{A::rsi}, 7); // addq $7, (%rsi) |
| a.add(A::Mem{A::rsi, 12}, 7); // addq $7, 12(%rsi) |
| a.add(A::Mem{A::rsp, 12}, 7); // addq $7, 12(%rsp) |
| a.add(A::Mem{A::r12, 12}, 7); // addq $7, 12(%r12) |
| a.add(A::Mem{A::rsp, 12, A::rax, A::FOUR}, 7); // addq $7, 12(%rsp,%rax,4) |
| a.add(A::Mem{A::r12, 12, A::rax, A::FOUR}, 7); // addq $7, 12(%r12,%rax,4) |
| a.add(A::Mem{A::rax, 12, A::r12, A::FOUR}, 7); // addq $7, 12(%rax,%r12,4) |
| a.add(A::Mem{A::r11, 12, A::r8 , A::TWO }, 7); // addq $7, 12(%r11,%r8,2) |
| a.add(A::Mem{A::r11, 12, A::rax} , 7); // addq $7, 12(%r11,%rax) |
| a.add(A::Mem{A::rax, 12, A::r11} , 7); // addq $7, 12(%rax,%r11) |
| |
| a.sub(A::Mem{A::rax, 12, A::r11} , 7); // subq $7, 12(%rax,%r11) |
| |
| a.add( A::rax , A::rcx); // addq %rcx, %rax |
| a.add(A::Mem{A::rax} , A::rcx); // addq %rcx, (%rax) |
| a.add(A::Mem{A::rax, 12}, A::rcx); // addq %rcx, 12(%rax) |
| a.add(A::rcx, A::Mem{A::rax, 12}); // addq 12(%rax), %rcx |
| |
| a.sub(A::rcx, A::Mem{A::rax, 12}); // subq 12(%rax), %rcx |
| },{ |
| 0x48, 0x83, 0b11'000'000, 0x08, |
| 0x48, 0x83, 0b11'101'000, 0x20, |
| |
| 0x48, 0x83, 0b11'000'111, 0x0c, |
| 0x48, 0x83, 0b11'101'111, 0x08, |
| |
| 0x49, 0x83, 0b11'000'000, 0x07, |
| 0x49, 0x83, 0b11'101'000, 0x04, |
| |
| 0x48, 0x81, 0b11'000'110, 0x80, 0x00, 0x00, 0x00, |
| 0x49, 0x81, 0b11'101'000, 0x40, 0x42, 0x0f, 0x00, |
| |
| 0x48,0x83,0x06,0x07, |
| 0x48,0x83,0x46,0x0c,0x07, |
| 0x48,0x83,0x44,0x24,0x0c,0x07, |
| 0x49,0x83,0x44,0x24,0x0c,0x07, |
| 0x48,0x83,0x44,0x84,0x0c,0x07, |
| 0x49,0x83,0x44,0x84,0x0c,0x07, |
| 0x4a,0x83,0x44,0xa0,0x0c,0x07, |
| 0x4b,0x83,0x44,0x43,0x0c,0x07, |
| 0x49,0x83,0x44,0x03,0x0c,0x07, |
| 0x4a,0x83,0x44,0x18,0x0c,0x07, |
| |
| 0x4a,0x83,0x6c,0x18,0x0c,0x07, |
| |
| 0x48,0x01,0xc8, |
| 0x48,0x01,0x08, |
| 0x48,0x01,0x48,0x0c, |
| 0x48,0x03,0x48,0x0c, |
| 0x48,0x2b,0x48,0x0c, |
| }); |
| |
| |
| test_asm(r, [&](A& a) { |
| a.vpaddd (A::ymm0, A::ymm1, A::ymm2); // Low registers and 0x0f map -> 2-byte VEX. |
| a.vpaddd (A::ymm8, A::ymm1, A::ymm2); // A high dst register is ok -> 2-byte VEX. |
| a.vpaddd (A::ymm0, A::ymm8, A::ymm2); // A high first argument register -> 2-byte VEX. |
| a.vpaddd (A::ymm0, A::ymm1, A::ymm8); // A high second argument -> 3-byte VEX. |
| a.vpmulld(A::ymm0, A::ymm1, A::ymm2); // Using non-0x0f map instruction -> 3-byte VEX. |
| a.vpsubd (A::ymm0, A::ymm1, A::ymm2); // Test vpsubd to ensure argument order is right. |
| },{ |
| /* VEX */ /*op*/ /*modRM*/ |
| 0xc5, 0xf5, 0xfe, 0xc2, |
| 0xc5, 0x75, 0xfe, 0xc2, |
| 0xc5, 0xbd, 0xfe, 0xc2, |
| 0xc4, 0xc1, 0x75, 0xfe, 0xc0, |
| 0xc4, 0xe2, 0x75, 0x40, 0xc2, |
| 0xc5, 0xf5, 0xfa, 0xc2, |
| }); |
| |
| test_asm(r, [&](A& a) { |
| a.vpaddw (A::ymm4, A::ymm3, A::ymm2); |
| a.vpavgw (A::ymm4, A::ymm3, A::ymm2); |
| a.vpcmpeqw (A::ymm4, A::ymm3, A::ymm2); |
| a.vpcmpgtw (A::ymm4, A::ymm3, A::ymm2); |
| |
| a.vpminsw (A::ymm4, A::ymm3, A::ymm2); |
| a.vpmaxsw (A::ymm4, A::ymm3, A::ymm2); |
| a.vpminuw (A::ymm4, A::ymm3, A::ymm2); |
| a.vpmaxuw (A::ymm4, A::ymm3, A::ymm2); |
| |
| a.vpmulhrsw(A::ymm4, A::ymm3, A::ymm2); |
| a.vpabsw (A::ymm4, A::ymm3); |
| a.vpsllw (A::ymm4, A::ymm3, 12); |
| a.vpsraw (A::ymm4, A::ymm3, 12); |
| },{ |
| 0xc5, 0xe5, 0xfd, 0xe2, |
| 0xc5, 0xe5, 0xe3, 0xe2, |
| 0xc5, 0xe5, 0x75, 0xe2, |
| 0xc5, 0xe5, 0x65, 0xe2, |
| |
| 0xc5, 0xe5, 0xea, 0xe2, |
| 0xc5, 0xe5, 0xee, 0xe2, |
| 0xc4,0xe2,0x65, 0x3a, 0xe2, |
| 0xc4,0xe2,0x65, 0x3e, 0xe2, |
| |
| 0xc4,0xe2,0x65, 0x0b, 0xe2, |
| 0xc4,0xe2,0x7d, 0x1d, 0xe3, |
| 0xc5,0xdd,0x71, 0xf3, 0x0c, |
| 0xc5,0xdd,0x71, 0xe3, 0x0c, |
| }); |
| |
| test_asm(r, [&](A& a) { |
| A::Label l; |
| a.vcmpeqps (A::ymm0, A::ymm1, &l); // vcmpeqps 0x1c(%rip), %ymm1, %ymm0 |
| a.vpcmpeqd (A::ymm0, A::ymm1, A::ymm2); |
| a.vpcmpgtd (A::ymm0, A::ymm1, A::ymm2); |
| a.vcmpeqps (A::ymm0, A::ymm1, A::ymm2); |
| a.vcmpltps (A::ymm0, A::ymm1, A::ymm2); |
| a.vcmpleps (A::ymm0, A::ymm1, A::ymm2); |
| a.vcmpneqps(A::ymm0, A::ymm1, A::ymm2); |
| a.label(&l); // 28 bytes after the vcmpeqps that uses it. |
| },{ |
| 0xc5,0xf4,0xc2,0x05,0x1c,0x00,0x00,0x00,0x00, |
| 0xc5,0xf5,0x76,0xc2, |
| 0xc5,0xf5,0x66,0xc2, |
| 0xc5,0xf4,0xc2,0xc2,0x00, |
| 0xc5,0xf4,0xc2,0xc2,0x01, |
| 0xc5,0xf4,0xc2,0xc2,0x02, |
| 0xc5,0xf4,0xc2,0xc2,0x04, |
| }); |
| |
| test_asm(r, [&](A& a) { |
| a.vminps(A::ymm0, A::ymm1, A::ymm2); |
| a.vmaxps(A::ymm0, A::ymm1, A::ymm2); |
| },{ |
| 0xc5,0xf4,0x5d,0xc2, |
| 0xc5,0xf4,0x5f,0xc2, |
| }); |
| |
| test_asm(r, [&](A& a) { |
| a.vpblendvb(A::ymm0, A::ymm1, A::ymm2, A::ymm3); |
| },{ |
| 0xc4,0xe3,0x75, 0x4c, 0xc2, 0x30, |
| }); |
| |
| test_asm(r, [&](A& a) { |
| a.vpsrld(A::ymm15, A::ymm2, 8); |
| a.vpsrld(A::ymm0 , A::ymm8, 5); |
| },{ |
| 0xc5, 0x85, 0x72,0xd2, 0x08, |
| 0xc4,0xc1,0x7d, 0x72,0xd0, 0x05, |
| }); |
| |
| test_asm(r, [&](A& a) { |
| A::Label l; |
| a.vpermps(A::ymm1, A::ymm2, A::Mem{A::rdi, 32}); |
| a.vperm2f128(A::ymm1, A::ymm2, &l, 0x20); |
| a.vpermq(A::ymm1, A::ymm2, 5); |
| a.label(&l); // 6 bytes after vperm2f128 |
| },{ |
| 0xc4,0xe2,0x6d,0x16,0x4f,0x20, |
| 0xc4,0xe3,0x6d,0x06,0x0d,0x06,0x00,0x00,0x00,0x20, |
| 0xc4,0xe3,0xfd, 0x00,0xca, 0x05, |
| }); |
| |
| test_asm(r, [&](A& a) { |
| a.vpunpckldq(A::ymm1, A::ymm2, A::Mem{A::rdi}); |
| a.vpunpckhdq(A::ymm1, A::ymm2, A::ymm3); |
| },{ |
| 0xc5,0xed,0x62,0x0f, |
| 0xc5,0xed,0x6a,0xcb, |
| }); |
| |
| test_asm(r, [&](A& a) { |
| a.vroundps(A::ymm1, A::ymm2, A::NEAREST); |
| a.vroundps(A::ymm1, A::ymm2, A::FLOOR); |
| a.vroundps(A::ymm1, A::ymm2, A::CEIL); |
| a.vroundps(A::ymm1, A::ymm2, A::TRUNC); |
| },{ |
| 0xc4,0xe3,0x7d,0x08,0xca,0x00, |
| 0xc4,0xe3,0x7d,0x08,0xca,0x01, |
| 0xc4,0xe3,0x7d,0x08,0xca,0x02, |
| 0xc4,0xe3,0x7d,0x08,0xca,0x03, |
| }); |
| |
| test_asm(r, [&](A& a) { |
| A::Label l; |
| a.label(&l); |
| a.byte(1); |
| a.byte(2); |
| a.byte(3); |
| a.byte(4); |
| |
| a.vbroadcastss(A::ymm0 , &l); |
| a.vbroadcastss(A::ymm1 , &l); |
| a.vbroadcastss(A::ymm8 , &l); |
| a.vbroadcastss(A::ymm15, &l); |
| |
| a.vpshufb(A::ymm4, A::ymm3, &l); |
| a.vpaddd (A::ymm4, A::ymm3, &l); |
| a.vpsubd (A::ymm4, A::ymm3, &l); |
| |
| a.vptest(A::ymm4, &l); |
| |
| a.vmulps (A::ymm4, A::ymm3, &l); |
| },{ |
| 0x01, 0x02, 0x03, 0x4, |
| |
| /* VEX */ /*op*/ /* ModRM */ /* offset */ |
| 0xc4, 0xe2, 0x7d, 0x18, 0b00'000'101, 0xf3,0xff,0xff,0xff, // 0xfffffff3 == -13 |
| 0xc4, 0xe2, 0x7d, 0x18, 0b00'001'101, 0xea,0xff,0xff,0xff, // 0xffffffea == -22 |
| 0xc4, 0x62, 0x7d, 0x18, 0b00'000'101, 0xe1,0xff,0xff,0xff, // 0xffffffe1 == -31 |
| 0xc4, 0x62, 0x7d, 0x18, 0b00'111'101, 0xd8,0xff,0xff,0xff, // 0xffffffd8 == -40 |
| |
| 0xc4, 0xe2, 0x65, 0x00, 0b00'100'101, 0xcf,0xff,0xff,0xff, // 0xffffffcf == -49 |
| |
| 0xc5, 0xe5, 0xfe, 0b00'100'101, 0xc7,0xff,0xff,0xff, // 0xffffffc7 == -57 |
| 0xc5, 0xe5, 0xfa, 0b00'100'101, 0xbf,0xff,0xff,0xff, // 0xffffffbf == -65 |
| |
| 0xc4, 0xe2, 0x7d, 0x17, 0b00'100'101, 0xb6,0xff,0xff,0xff, // 0xffffffb6 == -74 |
| |
| 0xc5, 0xe4, 0x59, 0b00'100'101, 0xae,0xff,0xff,0xff, // 0xffffffaf == -82 |
| }); |
| |
| test_asm(r, [&](A& a) { |
| a.vbroadcastss(A::ymm0, A::Mem{A::rdi, 0}); |
| a.vbroadcastss(A::ymm13, A::Mem{A::r14, 7}); |
| a.vbroadcastss(A::ymm8, A::Mem{A::rdx, -12}); |
| a.vbroadcastss(A::ymm8, A::Mem{A::rdx, 400}); |
| |
| a.vbroadcastss(A::ymm8, A::xmm0); |
| a.vbroadcastss(A::ymm0, A::xmm13); |
| },{ |
| /* VEX */ /*op*/ /*ModRM*/ /*offset*/ |
| 0xc4,0xe2,0x7d, 0x18, 0b00'000'111, |
| 0xc4,0x42,0x7d, 0x18, 0b01'101'110, 0x07, |
| 0xc4,0x62,0x7d, 0x18, 0b01'000'010, 0xf4, |
| 0xc4,0x62,0x7d, 0x18, 0b10'000'010, 0x90,0x01,0x00,0x00, |
| |
| 0xc4,0x62,0x7d, 0x18, 0b11'000'000, |
| 0xc4,0xc2,0x7d, 0x18, 0b11'000'101, |
| }); |
| |
| test_asm(r, [&](A& a) { |
| A::Label l; |
| a.label(&l); |
| a.jne(&l); |
| a.jne(&l); |
| a.je (&l); |
| a.jmp(&l); |
| a.jl (&l); |
| a.jc (&l); |
| |
| a.cmp(A::rdx, 1); |
| a.cmp(A::rax, 12); |
| a.cmp(A::r14, 2000000000); |
| },{ |
| 0x0f,0x85, 0xfa,0xff,0xff,0xff, // near jne -6 bytes |
| 0x0f,0x85, 0xf4,0xff,0xff,0xff, // near jne -12 bytes |
| 0x0f,0x84, 0xee,0xff,0xff,0xff, // near je -18 bytes |
| 0xe9, 0xe9,0xff,0xff,0xff, // near jmp -23 bytes |
| 0x0f,0x8c, 0xe3,0xff,0xff,0xff, // near jl -29 bytes |
| 0x0f,0x82, 0xdd,0xff,0xff,0xff, // near jc -35 bytes |
| |
| 0x48,0x83,0xfa,0x01, |
| 0x48,0x83,0xf8,0x0c, |
| 0x49,0x81,0xfe,0x00,0x94,0x35,0x77, |
| }); |
| |
| test_asm(r, [&](A& a) { |
| a.vmovups(A::ymm5, A::Mem{A::rsi}); |
| a.vmovups(A::Mem{A::rsi}, A::ymm5); |
| |
| a.vmovups(A::xmm5, A::Mem{A::rsi}); |
| a.vmovups(A::Mem{A::rsi}, A::xmm5); |
| |
| a.vpmovzxwd(A::ymm4, A::Mem{A::rsi}); |
| a.vpmovzxbd(A::ymm4, A::Mem{A::rsi}); |
| |
| a.vmovq(A::Mem{A::rdx}, A::xmm15); |
| },{ |
| /* VEX */ /*Op*/ /* ModRM */ |
| 0xc5, 0xfc, 0x10, 0b00'101'110, |
| 0xc5, 0xfc, 0x11, 0b00'101'110, |
| |
| 0xc5, 0xf8, 0x10, 0b00'101'110, |
| 0xc5, 0xf8, 0x11, 0b00'101'110, |
| |
| 0xc4,0xe2,0x7d, 0x33, 0b00'100'110, |
| 0xc4,0xe2,0x7d, 0x31, 0b00'100'110, |
| |
| 0xc5, 0x79, 0xd6, 0b00'111'010, |
| }); |
| |
| test_asm(r, [&](A& a) { |
| a.vmovups(A::ymm5, A::Mem{A::rsp, 0}); |
| a.vmovups(A::ymm5, A::Mem{A::rsp, 64}); |
| a.vmovups(A::ymm5, A::Mem{A::rsp,128}); |
| |
| a.vmovups(A::Mem{A::rsp, 0}, A::ymm5); |
| a.vmovups(A::Mem{A::rsp, 64}, A::ymm5); |
| a.vmovups(A::Mem{A::rsp,128}, A::ymm5); |
| },{ |
| 0xc5,0xfc,0x10,0x2c,0x24, |
| 0xc5,0xfc,0x10,0x6c,0x24,0x40, |
| 0xc5,0xfc,0x10,0xac,0x24,0x80,0x00,0x00,0x00, |
| |
| 0xc5,0xfc,0x11,0x2c,0x24, |
| 0xc5,0xfc,0x11,0x6c,0x24,0x40, |
| 0xc5,0xfc,0x11,0xac,0x24,0x80,0x00,0x00,0x00, |
| }); |
| |
| test_asm(r, [&](A& a) { |
| a.movzbq(A::rax, A::Mem{A::rsi}); // Low registers for src and dst. |
| a.movzbq(A::rax, A::Mem{A::r8,}); // High src register. |
| a.movzbq(A::r8 , A::Mem{A::rsi}); // High dst register. |
| a.movzbq(A::r8, A::Mem{A::rsi, 12}); |
| a.movzbq(A::r8, A::Mem{A::rsi, 400}); |
| |
| a.movzwq(A::rax, A::Mem{A::rsi}); // Low registers for src and dst. |
| a.movzwq(A::rax, A::Mem{A::r8,}); // High src register. |
| a.movzwq(A::r8 , A::Mem{A::rsi}); // High dst register. |
| a.movzwq(A::r8, A::Mem{A::rsi, 12}); |
| a.movzwq(A::r8, A::Mem{A::rsi, 400}); |
| |
| a.vmovd(A::Mem{A::rax}, A::xmm0); |
| a.vmovd(A::Mem{A::rax}, A::xmm8); |
| a.vmovd(A::Mem{A::r8 }, A::xmm0); |
| |
| a.vmovd(A::xmm0, A::Mem{A::rax}); |
| a.vmovd(A::xmm8, A::Mem{A::rax}); |
| a.vmovd(A::xmm0, A::Mem{A::r8 }); |
| |
| a.vmovd(A::xmm0 , A::Mem{A::rax, 0, A::rcx, A::FOUR}); |
| a.vmovd(A::xmm15, A::Mem{A::rax, 0, A::r8, A::TWO }); |
| a.vmovd(A::xmm0 , A::Mem{A::r8 , 0, A::rcx}); |
| |
| a.vmovd(A::rax, A::xmm0); |
| a.vmovd(A::rax, A::xmm8); |
| a.vmovd(A::r8 , A::xmm0); |
| |
| a.vmovd(A::xmm0, A::rax); |
| a.vmovd(A::xmm8, A::rax); |
| a.vmovd(A::xmm0, A::r8 ); |
| |
| a.movb(A::Mem{A::rdx}, A::rax); |
| a.movb(A::Mem{A::rdx}, A::r8 ); |
| a.movb(A::Mem{A::r8 }, A::rax); |
| |
| a.movb(A::rdx, A::Mem{A::rax}); |
| a.movb(A::rdx, A::Mem{A::r8 }); |
| a.movb(A::r8 , A::Mem{A::rax}); |
| |
| a.movb(A::rdx, 12); |
| a.movb(A::rax, 4); |
| a.movb(A::r8 , -1); |
| |
| a.movb(A::Mem{A::rdx}, 12); |
| a.movb(A::Mem{A::rax}, 4); |
| a.movb(A::Mem{A::r8 }, -1); |
| },{ |
| 0x48,0x0f,0xb6,0x06, // movzbq (%rsi), %rax |
| 0x49,0x0f,0xb6,0x00, |
| 0x4c,0x0f,0xb6,0x06, |
| 0x4c,0x0f,0xb6,0x46, 12, |
| 0x4c,0x0f,0xb6,0x86, 0x90,0x01,0x00,0x00, |
| |
| 0x48,0x0f,0xb7,0x06, // movzwq (%rsi), %rax |
| 0x49,0x0f,0xb7,0x00, |
| 0x4c,0x0f,0xb7,0x06, |
| 0x4c,0x0f,0xb7,0x46, 12, |
| 0x4c,0x0f,0xb7,0x86, 0x90,0x01,0x00,0x00, |
| |
| 0xc5,0xf9,0x7e,0x00, |
| 0xc5,0x79,0x7e,0x00, |
| 0xc4,0xc1,0x79,0x7e,0x00, |
| |
| 0xc5,0xf9,0x6e,0x00, |
| 0xc5,0x79,0x6e,0x00, |
| 0xc4,0xc1,0x79,0x6e,0x00, |
| |
| 0xc5,0xf9,0x6e,0x04,0x88, |
| 0xc4,0x21,0x79,0x6e,0x3c,0x40, |
| 0xc4,0xc1,0x79,0x6e,0x04,0x08, |
| |
| 0xc5,0xf9,0x7e,0xc0, |
| 0xc5,0x79,0x7e,0xc0, |
| 0xc4,0xc1,0x79,0x7e,0xc0, |
| |
| 0xc5,0xf9,0x6e,0xc0, |
| 0xc5,0x79,0x6e,0xc0, |
| 0xc4,0xc1,0x79,0x6e,0xc0, |
| |
| 0x48 ,0x88, 0x02, |
| 0x4c, 0x88, 0x02, |
| 0x49, 0x88, 0x00, |
| |
| 0x48 ,0x8a, 0x10, |
| 0x49, 0x8a, 0x10, |
| 0x4c, 0x8a, 0x00, |
| |
| 0x48, 0xc6, 0xc2, 0x0c, |
| 0x48, 0xc6, 0xc0, 0x04, |
| 0x49, 0xc6, 0xc0, 0xff, |
| |
| 0x48, 0xc6, 0x02, 0x0c, |
| 0x48, 0xc6, 0x00, 0x04, |
| 0x49, 0xc6, 0x00, 0xff, |
| }); |
| |
| test_asm(r, [&](A& a) { |
| a.vpinsrd(A::xmm1, A::xmm8, A::Mem{A::rsi}, 1); // vpinsrd $1, (%rsi), %xmm8, %xmm1 |
| a.vpinsrd(A::xmm8, A::xmm1, A::Mem{A::r8 }, 3); // vpinsrd $3, (%r8), %xmm1, %xmm8; |
| |
| a.vpinsrw(A::xmm1, A::xmm8, A::Mem{A::rsi}, 4); // vpinsrw $4, (%rsi), %xmm8, %xmm1 |
| a.vpinsrw(A::xmm8, A::xmm1, A::Mem{A::r8 }, 12); // vpinrsw $12, (%r8), %xmm1, %xmm8 |
| |
| a.vpinsrb(A::xmm1, A::xmm8, A::Mem{A::rsi}, 4); // vpinsrb $4, (%rsi), %xmm8, %xmm1 |
| a.vpinsrb(A::xmm8, A::xmm1, A::Mem{A::r8 }, 12); // vpinsrb $12, (%r8), %xmm1, %xmm8 |
| |
| a.vextracti128(A::xmm1, A::ymm8, 1); // vextracti128 $1, %ymm8, %xmm1 |
| a.vextracti128(A::xmm8, A::ymm1, 0); // vextracti128 $0, %ymm1, %xmm8 |
| |
| a.vpextrd(A::Mem{A::rsi}, A::xmm8, 3); // vpextrd $3, %xmm8, (%rsi) |
| a.vpextrd(A::Mem{A::r8 }, A::xmm1, 2); // vpextrd $2, %xmm1, (%r8) |
| |
| a.vpextrw(A::Mem{A::rsi}, A::xmm8, 7); |
| a.vpextrw(A::Mem{A::r8 }, A::xmm1, 15); |
| |
| a.vpextrb(A::Mem{A::rsi}, A::xmm8, 7); |
| a.vpextrb(A::Mem{A::r8 }, A::xmm1, 15); |
| },{ |
| 0xc4,0xe3,0x39, 0x22, 0x0e, 1, |
| 0xc4,0x43,0x71, 0x22, 0x00, 3, |
| |
| 0xc5,0xb9, 0xc4, 0x0e, 4, |
| 0xc4,0x41,0x71, 0xc4, 0x00, 12, |
| |
| 0xc4,0xe3,0x39, 0x20, 0x0e, 4, |
| 0xc4,0x43,0x71, 0x20, 0x00, 12, |
| |
| 0xc4,0x63,0x7d,0x39,0xc1, 1, |
| 0xc4,0xc3,0x7d,0x39,0xc8, 0, |
| |
| 0xc4,0x63,0x79,0x16,0x06, 3, |
| 0xc4,0xc3,0x79,0x16,0x08, 2, |
| |
| 0xc4,0x63,0x79, 0x15, 0x06, 7, |
| 0xc4,0xc3,0x79, 0x15, 0x08, 15, |
| |
| 0xc4,0x63,0x79, 0x14, 0x06, 7, |
| 0xc4,0xc3,0x79, 0x14, 0x08, 15, |
| }); |
| |
| test_asm(r, [&](A& a) { |
| a.vpandn(A::ymm3, A::ymm12, A::ymm2); |
| },{ |
| 0xc5, 0x9d, 0xdf, 0xda, |
| }); |
| |
| test_asm(r, [&](A& a) { |
| A::Label l; |
| a.vmovdqa(A::ymm3, A::ymm2); // vmovdqa %ymm2 , %ymm3 |
| |
| a.vmovdqa(A::ymm3, A::Mem{A::rsi}); // vmovdqa (%rsi) , %ymm3 |
| a.vmovdqa(A::ymm3, A::Mem{A::rsp}); // vmovdqa (%rsp) , %ymm3 |
| a.vmovdqa(A::ymm3, A::Mem{A::r11}); // vmovdqa (%r11) , %ymm3 |
| |
| a.vmovdqa(A::ymm3, A::Mem{A::rsi, 4}); // vmovdqa 4(%rsi) , %ymm3 |
| a.vmovdqa(A::ymm3, A::Mem{A::rsp, 4}); // vmovdqa 4(%rsp) , %ymm3 |
| |
| a.vmovdqa(A::ymm3, A::Mem{A::rsi, 4, A::rax, A::EIGHT}); // vmovdqa 4(%rsi,%rax,8), %ymm3 |
| a.vmovdqa(A::ymm3, A::Mem{A::r11, 4, A::rax, A::TWO }); // vmovdqa 4(%r11,%rax,2), %ymm3 |
| a.vmovdqa(A::ymm3, A::Mem{A::rsi, 4, A::r11, A::FOUR }); // vmovdqa 4(%rsi,%r11,4), %ymm3 |
| a.vmovdqa(A::ymm3, A::Mem{A::rsi, 4, A::r11, A::ONE }); // vmovdqa 4(%rsi,%r11,1), %ymm3 |
| a.vmovdqa(A::ymm3, A::Mem{A::rsi, 4, A::r11}); // vmovdqa 4(%rsi,%r11) , %ymm3 |
| |
| a.vmovdqa(A::ymm3, A::Mem{A::rsi, 64, A::r11}); // vmovdqa 64(%rsi,%r11), %ymm3 |
| a.vmovdqa(A::ymm3, A::Mem{A::rsi, 128, A::r11}); // vmovdqa 128(%rsi,%r11), %ymm3 |
| a.vmovdqa(A::ymm3, &l); // vmovdqa 16(%rip) , %ymm3 |
| |
| a.vcvttps2dq(A::ymm3, A::ymm2); |
| a.vcvtdq2ps (A::ymm3, A::ymm2); |
| a.vcvtps2dq (A::ymm3, A::ymm2); |
| a.vsqrtps (A::ymm3, A::ymm2); |
| a.label(&l); |
| },{ |
| 0xc5,0xfd,0x6f,0xda, |
| |
| 0xc5,0xfd,0x6f,0x1e, |
| 0xc5,0xfd,0x6f,0x1c,0x24, |
| 0xc4,0xc1,0x7d,0x6f,0x1b, |
| |
| 0xc5,0xfd,0x6f,0x5e,0x04, |
| 0xc5,0xfd,0x6f,0x5c,0x24,0x04, |
| |
| 0xc5,0xfd,0x6f,0x5c,0xc6,0x04, |
| 0xc4,0xc1,0x7d,0x6f,0x5c,0x43,0x04, |
| 0xc4,0xa1,0x7d,0x6f,0x5c,0x9e,0x04, |
| 0xc4,0xa1,0x7d,0x6f,0x5c,0x1e,0x04, |
| 0xc4,0xa1,0x7d,0x6f,0x5c,0x1e,0x04, |
| |
| 0xc4,0xa1,0x7d,0x6f,0x5c,0x1e,0x40, |
| 0xc4,0xa1,0x7d,0x6f,0x9c,0x1e,0x80,0x00,0x00,0x00, |
| |
| 0xc5,0xfd,0x6f,0x1d,0x10,0x00,0x00,0x00, |
| |
| 0xc5,0xfe,0x5b,0xda, |
| 0xc5,0xfc,0x5b,0xda, |
| 0xc5,0xfd,0x5b,0xda, |
| 0xc5,0xfc,0x51,0xda, |
| }); |
| |
| test_asm(r, [&](A& a) { |
| a.vcvtps2ph(A::xmm3, A::ymm2, A::CURRENT); |
| a.vcvtps2ph(A::Mem{A::rsi, 32, A::rax, A::EIGHT}, A::ymm5, A::CEIL); |
| |
| a.vcvtph2ps(A::ymm15, A::Mem{A::rdi, 12, A::r9, A::ONE}); |
| a.vcvtph2ps(A::ymm2, A::xmm3); |
| },{ |
| 0xc4,0xe3,0x7d,0x1d,0xd3,0x04, |
| 0xc4,0xe3,0x7d,0x1d,0x6c,0xc6,0x20,0x02, |
| |
| 0xc4,0x22,0x7d,0x13,0x7c,0x0f,0x0c, |
| 0xc4,0xe2,0x7d,0x13,0xd3, |
| }); |
| |
| test_asm(r, [&](A& a) { |
| a.vgatherdps(A::ymm1 , A::FOUR , A::ymm0 , A::rdi, A::ymm2 ); |
| a.vgatherdps(A::ymm0 , A::ONE , A::ymm2 , A::rax, A::ymm1 ); |
| a.vgatherdps(A::ymm10, A::ONE , A::ymm2 , A::rax, A::ymm1 ); |
| a.vgatherdps(A::ymm0 , A::ONE , A::ymm12, A::rax, A::ymm1 ); |
| a.vgatherdps(A::ymm0 , A::ONE , A::ymm2 , A::r9 , A::ymm1 ); |
| a.vgatherdps(A::ymm0 , A::ONE , A::ymm2 , A::rax, A::ymm12); |
| a.vgatherdps(A::ymm0 , A::EIGHT, A::ymm2 , A::rax, A::ymm12); |
| },{ |
| 0xc4,0xe2,0x6d,0x92,0x0c,0x87, |
| 0xc4,0xe2,0x75,0x92,0x04,0x10, |
| 0xc4,0x62,0x75,0x92,0x14,0x10, |
| 0xc4,0xa2,0x75,0x92,0x04,0x20, |
| 0xc4,0xc2,0x75,0x92,0x04,0x11, |
| 0xc4,0xe2,0x1d,0x92,0x04,0x10, |
| 0xc4,0xe2,0x1d,0x92,0x04,0xd0, |
| }); |
| |
| test_asm(r, [&](A& a) { |
| a.mov(A::rax, A::Mem{A::rdi, 0}); |
| a.mov(A::rax, A::Mem{A::rdi, 1}); |
| a.mov(A::rax, A::Mem{A::rdi, 512}); |
| a.mov(A::r15, A::Mem{A::r13, 42}); |
| a.mov(A::rax, A::Mem{A::r13, 42}); |
| a.mov(A::r15, A::Mem{A::rax, 42}); |
| a.mov(A::rax, 1); |
| a.mov(A::rax, A::rcx); |
| },{ |
| 0x48, 0x8b, 0x07, |
| 0x48, 0x8b, 0x47, 0x01, |
| 0x48, 0x8b, 0x87, 0x00,0x02,0x00,0x00, |
| 0x4d, 0x8b, 0x7d, 0x2a, |
| 0x49, 0x8b, 0x45, 0x2a, |
| 0x4c, 0x8b, 0x78, 0x2a, |
| 0x48, 0xc7, 0xc0, 0x01,0x00,0x00,0x00, |
| 0x48, 0x89, 0xc8, |
| }); |
| |
| // echo "fmul v4.4s, v3.4s, v1.4s" | llvm-mc -show-encoding -arch arm64 |
| |
| test_asm(r, [&](A& a) { |
| a.and16b(A::v4, A::v3, A::v1); |
| a.orr16b(A::v4, A::v3, A::v1); |
| a.eor16b(A::v4, A::v3, A::v1); |
| a.bic16b(A::v4, A::v3, A::v1); |
| a.bsl16b(A::v4, A::v3, A::v1); |
| a.not16b(A::v4, A::v3); |
| |
| a.add4s(A::v4, A::v3, A::v1); |
| a.sub4s(A::v4, A::v3, A::v1); |
| a.mul4s(A::v4, A::v3, A::v1); |
| |
| a.cmeq4s(A::v4, A::v3, A::v1); |
| a.cmgt4s(A::v4, A::v3, A::v1); |
| |
| a.sub8h(A::v4, A::v3, A::v1); |
| a.mul8h(A::v4, A::v3, A::v1); |
| |
| a.fadd4s(A::v4, A::v3, A::v1); |
| a.fsub4s(A::v4, A::v3, A::v1); |
| a.fmul4s(A::v4, A::v3, A::v1); |
| a.fdiv4s(A::v4, A::v3, A::v1); |
| a.fmin4s(A::v4, A::v3, A::v1); |
| a.fmax4s(A::v4, A::v3, A::v1); |
| |
| a.fneg4s (A::v4, A::v3); |
| a.fsqrt4s(A::v4, A::v3); |
| |
| a.fmla4s(A::v4, A::v3, A::v1); |
| a.fmls4s(A::v4, A::v3, A::v1); |
| |
| a.fcmeq4s(A::v4, A::v3, A::v1); |
| a.fcmgt4s(A::v4, A::v3, A::v1); |
| a.fcmge4s(A::v4, A::v3, A::v1); |
| },{ |
| 0x64,0x1c,0x21,0x4e, |
| 0x64,0x1c,0xa1,0x4e, |
| 0x64,0x1c,0x21,0x6e, |
| 0x64,0x1c,0x61,0x4e, |
| 0x64,0x1c,0x61,0x6e, |
| 0x64,0x58,0x20,0x6e, |
| |
| 0x64,0x84,0xa1,0x4e, |
| 0x64,0x84,0xa1,0x6e, |
| 0x64,0x9c,0xa1,0x4e, |
| |
| 0x64,0x8c,0xa1,0x6e, |
| 0x64,0x34,0xa1,0x4e, |
| |
| 0x64,0x84,0x61,0x6e, |
| 0x64,0x9c,0x61,0x4e, |
| |
| 0x64,0xd4,0x21,0x4e, |
| 0x64,0xd4,0xa1,0x4e, |
| 0x64,0xdc,0x21,0x6e, |
| 0x64,0xfc,0x21,0x6e, |
| 0x64,0xf4,0xa1,0x4e, |
| 0x64,0xf4,0x21,0x4e, |
| |
| 0x64,0xf8,0xa0,0x6e, |
| 0x64,0xf8,0xa1,0x6e, |
| |
| 0x64,0xcc,0x21,0x4e, |
| 0x64,0xcc,0xa1,0x4e, |
| |
| 0x64,0xe4,0x21,0x4e, |
| 0x64,0xe4,0xa1,0x6e, |
| 0x64,0xe4,0x21,0x6e, |
| }); |
| |
| test_asm(r, [&](A& a) { |
| a.shl4s(A::v4, A::v3, 0); |
| a.shl4s(A::v4, A::v3, 1); |
| a.shl4s(A::v4, A::v3, 8); |
| a.shl4s(A::v4, A::v3, 16); |
| a.shl4s(A::v4, A::v3, 31); |
| |
| a.sshr4s(A::v4, A::v3, 1); |
| a.sshr4s(A::v4, A::v3, 8); |
| a.sshr4s(A::v4, A::v3, 31); |
| |
| a.ushr4s(A::v4, A::v3, 1); |
| a.ushr4s(A::v4, A::v3, 8); |
| a.ushr4s(A::v4, A::v3, 31); |
| |
| a.ushr8h(A::v4, A::v3, 1); |
| a.ushr8h(A::v4, A::v3, 8); |
| a.ushr8h(A::v4, A::v3, 15); |
| },{ |
| 0x64,0x54,0x20,0x4f, |
| 0x64,0x54,0x21,0x4f, |
| 0x64,0x54,0x28,0x4f, |
| 0x64,0x54,0x30,0x4f, |
| 0x64,0x54,0x3f,0x4f, |
| |
| 0x64,0x04,0x3f,0x4f, |
| 0x64,0x04,0x38,0x4f, |
| 0x64,0x04,0x21,0x4f, |
| |
| 0x64,0x04,0x3f,0x6f, |
| 0x64,0x04,0x38,0x6f, |
| 0x64,0x04,0x21,0x6f, |
| |
| 0x64,0x04,0x1f,0x6f, |
| 0x64,0x04,0x18,0x6f, |
| 0x64,0x04,0x11,0x6f, |
| }); |
| |
| test_asm(r, [&](A& a) { |
| a.sli4s(A::v4, A::v3, 0); |
| a.sli4s(A::v4, A::v3, 1); |
| a.sli4s(A::v4, A::v3, 8); |
| a.sli4s(A::v4, A::v3, 16); |
| a.sli4s(A::v4, A::v3, 31); |
| },{ |
| 0x64,0x54,0x20,0x6f, |
| 0x64,0x54,0x21,0x6f, |
| 0x64,0x54,0x28,0x6f, |
| 0x64,0x54,0x30,0x6f, |
| 0x64,0x54,0x3f,0x6f, |
| }); |
| |
| test_asm(r, [&](A& a) { |
| a.scvtf4s (A::v4, A::v3); |
| a.fcvtzs4s(A::v4, A::v3); |
| a.fcvtns4s(A::v4, A::v3); |
| a.frintp4s(A::v4, A::v3); |
| a.frintm4s(A::v4, A::v3); |
| a.fcvtn (A::v4, A::v3); |
| a.fcvtl (A::v4, A::v3); |
| },{ |
| 0x64,0xd8,0x21,0x4e, |
| 0x64,0xb8,0xa1,0x4e, |
| 0x64,0xa8,0x21,0x4e, |
| 0x64,0x88,0xa1,0x4e, |
| 0x64,0x98,0x21,0x4e, |
| 0x64,0x68,0x21,0x0e, |
| 0x64,0x78,0x21,0x0e, |
| }); |
| |
| test_asm(r, [&](A& a) { |
| a.sub (A::sp, A::sp, 32); // sub sp, sp, #32 |
| a.strq(A::v0, A::sp, 1); // str q0, [sp, #16] |
| a.strq(A::v1, A::sp); // str q1, [sp] |
| a.strd(A::v0, A::sp, 6); // str s0, [sp, #48] |
| a.strs(A::v0, A::sp, 6); // str s0, [sp, #24] |
| a.strh(A::v0, A::sp, 10); // str h0, [sp, #20] |
| a.strb(A::v0, A::sp, 47); // str b0, [sp, #47] |
| a.ldrb(A::v9, A::sp, 42); // ldr b9, [sp, #42] |
| a.ldrh(A::v9, A::sp, 47); // ldr h9, [sp, #94] |
| a.ldrs(A::v7, A::sp, 10); // ldr s7, [sp, #40] |
| a.ldrd(A::v7, A::sp, 1); // ldr d7, [sp, #8] |
| a.ldrq(A::v5, A::sp, 128); // ldr q5, [sp, #2048] |
| a.add (A::sp, A::sp, 32); // add sp, sp, #32 |
| },{ |
| 0xff,0x83,0x00,0xd1, |
| 0xe0,0x07,0x80,0x3d, |
| 0xe1,0x03,0x80,0x3d, |
| 0xe0,0x1b,0x00,0xfd, |
| 0xe0,0x1b,0x00,0xbd, |
| 0xe0,0x2b,0x00,0x7d, |
| 0xe0,0xbf,0x00,0x3d, |
| 0xe9,0xab,0x40,0x3d, |
| 0xe9,0xbf,0x40,0x7d, |
| 0xe7,0x2b,0x40,0xbd, |
| 0xe7,0x07,0x40,0xfd, |
| 0xe5,0x03,0xc2,0x3d, |
| 0xff,0x83,0x00,0x91, |
| }); |
| |
| test_asm(r, [&](A& a) { |
| a.brk(0); |
| a.brk(65535); |
| |
| a.ret(A::x30); // Conventional ret using link register. |
| a.ret(A::x13); // Can really return using any register if we like. |
| |
| a.add(A::x2, A::x2, 4); |
| a.add(A::x3, A::x2, 32); |
| |
| a.sub(A::x2, A::x2, 4); |
| a.sub(A::x3, A::x2, 32); |
| |
| a.subs(A::x2, A::x2, 4); |
| a.subs(A::x3, A::x2, 32); |
| |
| a.subs(A::xzr, A::x2, 4); // These are actually the same instruction! |
| a.cmp(A::x2, 4); |
| |
| A::Label l; |
| a.label(&l); |
| a.bne(&l); |
| a.bne(&l); |
| a.blt(&l); |
| a.b(&l); |
| a.cbnz(A::x2, &l); |
| a.cbz(A::x2, &l); |
| |
| a.add(A::x3, A::x2, A::x1); // add x3,x2,x1 |
| a.add(A::x3, A::x2, A::x1, A::ASR, 3); // add x3,x2,x1, asr #3 |
| },{ |
| 0x00,0x00,0x20,0xd4, |
| 0xe0,0xff,0x3f,0xd4, |
| |
| 0xc0,0x03,0x5f,0xd6, |
| 0xa0,0x01,0x5f,0xd6, |
| |
| 0x42,0x10,0x00,0x91, |
| 0x43,0x80,0x00,0x91, |
| |
| 0x42,0x10,0x00,0xd1, |
| 0x43,0x80,0x00,0xd1, |
| |
| 0x42,0x10,0x00,0xf1, |
| 0x43,0x80,0x00,0xf1, |
| |
| 0x5f,0x10,0x00,0xf1, |
| 0x5f,0x10,0x00,0xf1, |
| |
| 0x01,0x00,0x00,0x54, // b.ne #0 |
| 0xe1,0xff,0xff,0x54, // b.ne #-4 |
| 0xcb,0xff,0xff,0x54, // b.lt #-8 |
| 0xae,0xff,0xff,0x54, // b.al #-12 |
| 0x82,0xff,0xff,0xb5, // cbnz x2, #-16 |
| 0x62,0xff,0xff,0xb4, // cbz x2, #-20 |
| |
| 0x43,0x00,0x01,0x8b, |
| 0x43,0x0c,0x81,0x8b, |
| }); |
| |
| // Can we cbz() to a not-yet-defined label? |
| test_asm(r, [&](A& a) { |
| A::Label l; |
| a.cbz(A::x2, &l); |
| a.add(A::x3, A::x2, 32); |
| a.label(&l); |
| a.ret(A::x30); |
| },{ |
| 0x42,0x00,0x00,0xb4, // cbz x2, #8 |
| 0x43,0x80,0x00,0x91, // add x3, x2, #32 |
| 0xc0,0x03,0x5f,0xd6, // ret |
| }); |
| |
| // If we start a label as a backward label, |
| // can we redefine it to be a future label? |
| // (Not sure this is useful... just want to test it works.) |
| test_asm(r, [&](A& a) { |
| A::Label l1; |
| a.label(&l1); |
| a.add(A::x3, A::x2, 32); |
| a.cbz(A::x2, &l1); // This will jump backward... nothing sneaky. |
| |
| A::Label l2; // Start off the same... |
| a.label(&l2); |
| a.add(A::x3, A::x2, 32); |
| a.cbz(A::x2, &l2); // Looks like this will go backward... |
| a.add(A::x2, A::x2, 4); |
| a.add(A::x3, A::x2, 32); |
| a.label(&l2); // But no... actually forward! What a switcheroo! |
| },{ |
| 0x43,0x80,0x00,0x91, // add x3, x2, #32 |
| 0xe2,0xff,0xff,0xb4, // cbz x2, #-4 |
| |
| 0x43,0x80,0x00,0x91, // add x3, x2, #32 |
| 0x62,0x00,0x00,0xb4, // cbz x2, #12 |
| 0x42,0x10,0x00,0x91, // add x2, x2, #4 |
| 0x43,0x80,0x00,0x91, // add x3, x2, #32 |
| }); |
| |
| // Loading from a label on ARM. |
| test_asm(r, [&](A& a) { |
| A::Label fore,aft; |
| a.label(&fore); |
| a.word(0x01234567); |
| a.ldrq(A::v1, &fore); |
| a.ldrq(A::v2, &aft); |
| a.label(&aft); |
| a.word(0x76543210); |
| },{ |
| 0x67,0x45,0x23,0x01, |
| 0xe1,0xff,0xff,0x9c, // ldr q1, #-4 |
| 0x22,0x00,0x00,0x9c, // ldr q2, #4 |
| 0x10,0x32,0x54,0x76, |
| }); |
| |
| test_asm(r, [&](A& a) { |
| a.ldrq(A::v0, A::x8); |
| a.strq(A::v0, A::x8); |
| },{ |
| 0x00,0x01,0xc0,0x3d, |
| 0x00,0x01,0x80,0x3d, |
| }); |
| |
| test_asm(r, [&](A& a) { |
| a.dup4s (A::v0, A::x8); |
| a.ld1r4s (A::v0, A::x8); // echo 'ld1r.4s {v0}, [x8]' | llvm-mc --show-encoding |
| a.ld1r8h (A::v0, A::x8); |
| a.ld1r16b(A::v0, A::x8); |
| },{ |
| 0x00,0x0d,0x04,0x4e, |
| 0x00,0xc9,0x40,0x4d, |
| 0x00,0xc5,0x40,0x4d, |
| 0x00,0xc1,0x40,0x4d, |
| }); |
| |
| test_asm(r, [&](A& a) { |
| a.ld24s(A::v0, A::x8); // echo 'ld2.4s {v0,v1}, [x8]' | llvm-mc --show-encoding |
| a.ld44s(A::v0, A::x8); |
| a.st24s(A::v0, A::x8); |
| a.st44s(A::v0, A::x8); // echo 'st4.4s {v0,v1,v2,v3}, [x8]' | llvm-mc --show-encoding |
| |
| a.ld24s(A::v0, A::x8, 0); //echo 'ld2 {v0.s,v1.s}[0], [x8]' | llvm-mc --show-encoding |
| a.ld24s(A::v0, A::x8, 1); |
| a.ld24s(A::v0, A::x8, 2); |
| a.ld24s(A::v0, A::x8, 3); |
| |
| a.ld44s(A::v0, A::x8, 0); // ld4 {v0.s,v1.s,v2.s,v3.s}[0], [x8] |
| a.ld44s(A::v0, A::x8, 1); |
| a.ld44s(A::v0, A::x8, 2); |
| a.ld44s(A::v0, A::x8, 3); |
| },{ |
| 0x00,0x89,0x40,0x4c, |
| 0x00,0x09,0x40,0x4c, |
| 0x00,0x89,0x00,0x4c, |
| 0x00,0x09,0x00,0x4c, |
| |
| 0x00,0x81,0x60,0x0d, |
| 0x00,0x91,0x60,0x0d, |
| 0x00,0x81,0x60,0x4d, |
| 0x00,0x91,0x60,0x4d, |
| |
| 0x00,0xa1,0x60,0x0d, |
| 0x00,0xb1,0x60,0x0d, |
| 0x00,0xa1,0x60,0x4d, |
| 0x00,0xb1,0x60,0x4d, |
| }); |
| |
| test_asm(r, [&](A& a) { |
| a.xtns2h(A::v0, A::v0); |
| a.xtnh2b(A::v0, A::v0); |
| a.strs (A::v0, A::x0); |
| |
| a.ldrs (A::v0, A::x0); |
| a.uxtlb2h(A::v0, A::v0); |
| a.uxtlh2s(A::v0, A::v0); |
| |
| a.uminv4s(A::v3, A::v4); |
| a.movs (A::x3, A::v4,0); // mov.s w3,v4[0] |
| a.movs (A::x3, A::v4,1); // mov.s w3,v4[1] |
| a.inss (A::v4, A::x3,3); // ins.s v4[3],w3 |
| },{ |
| 0x00,0x28,0x61,0x0e, |
| 0x00,0x28,0x21,0x0e, |
| 0x00,0x00,0x00,0xbd, |
| |
| 0x00,0x00,0x40,0xbd, |
| 0x00,0xa4,0x08,0x2f, |
| 0x00,0xa4,0x10,0x2f, |
| |
| 0x83,0xa8,0xb1,0x6e, |
| 0x83,0x3c,0x04,0x0e, |
| 0x83,0x3c,0x0c,0x0e, |
| 0x64,0x1c,0x1c,0x4e, |
| }); |
| |
| test_asm(r, [&](A& a) { |
| a.ldrb(A::v0, A::x8); |
| a.strb(A::v0, A::x8); |
| },{ |
| 0x00,0x01,0x40,0x3d, |
| 0x00,0x01,0x00,0x3d, |
| }); |
| |
| test_asm(r, [&](A& a) { |
| a.ldrd(A::x0, A::x1, 3); // ldr x0, [x1, #24] |
| a.ldrs(A::x0, A::x1, 3); // ldr w0, [x1, #12] |
| a.ldrh(A::x0, A::x1, 3); // ldrh w0, [x1, #6] |
| a.ldrb(A::x0, A::x1, 3); // ldrb w0, [x1, #3] |
| |
| a.strs(A::x0, A::x1, 3); // str w0, [x1, #12] |
| },{ |
| 0x20,0x0c,0x40,0xf9, |
| 0x20,0x0c,0x40,0xb9, |
| 0x20,0x0c,0x40,0x79, |
| 0x20,0x0c,0x40,0x39, |
| |
| 0x20,0x0c,0x00,0xb9, |
| }); |
| |
| test_asm(r, [&](A& a) { |
| a.tbl (A::v0, A::v1, A::v2); |
| a.uzp14s(A::v0, A::v1, A::v2); |
| a.uzp24s(A::v0, A::v1, A::v2); |
| a.zip14s(A::v0, A::v1, A::v2); |
| a.zip24s(A::v0, A::v1, A::v2); |
| },{ |
| 0x20,0x00,0x02,0x4e, |
| 0x20,0x18,0x82,0x4e, |
| 0x20,0x58,0x82,0x4e, |
| 0x20,0x38,0x82,0x4e, |
| 0x20,0x78,0x82,0x4e, |
| }); |
| } |
| |
| DEF_TEST(SkVM_approx_math, r) { |
| auto eval = [](int N, float values[], auto fn) { |
| skvm::Builder b; |
| skvm::Ptr inout = b.varying<float>(); |
| |
| b.storeF(inout, fn(&b, b.loadF(inout))); |
| |
| b.done().eval(N, values); |
| }; |
| |
| auto compare = [r](int N, const float values[], const float expected[]) { |
| for (int i = 0; i < N; ++i) { |
| REPORTER_ASSERT(r, (values[i] == expected[i]) || |
| SkScalarNearlyEqual(values[i], expected[i], 0.001f), |
| "evaluated to %g, but expected %g", values[i], expected[i]); |
| } |
| }; |
| |
| // log2 |
| { |
| float values[] = {0.25f, 0.5f, 1, 2, 4, 8}; |
| constexpr int N = SK_ARRAY_COUNT(values); |
| eval(N, values, [](skvm::Builder* b, skvm::F32 v) { |
| return b->approx_log2(v); |
| }); |
| const float expected[] = {-2, -1, 0, 1, 2, 3}; |
| compare(N, values, expected); |
| } |
| |
| // pow2 |
| { |
| float values[] = {-80, -5, -2, -1, 0, 1, 2, 3, 5, 160}; |
| constexpr int N = SK_ARRAY_COUNT(values); |
| eval(N, values, [](skvm::Builder* b, skvm::F32 v) { |
| return b->approx_pow2(v); |
| }); |
| const float expected[] = {0, 0.03125f, 0.25f, 0.5f, 1, 2, 4, 8, 32, INFINITY}; |
| compare(N, values, expected); |
| } |
| // powf -- 1^x |
| { |
| float exps[] = {-2, -1, 0, 1, 2}; |
| constexpr int N = SK_ARRAY_COUNT(exps); |
| eval(N, exps, [](skvm::Builder* b, skvm::F32 exp) { |
| return b->approx_powf(b->splat(1.0f), exp); |
| }); |
| const float expected[] = {1, 1, 1, 1, 1}; |
| compare(N, exps, expected); |
| } |
| // powf -- 2^x |
| { |
| float exps[] = {-80, -5, -2, -1, 0, 1, 2, 3, 5, 160}; |
| constexpr int N = SK_ARRAY_COUNT(exps); |
| eval(N, exps, [](skvm::Builder* b, skvm::F32 exp) { |
| return b->approx_powf(2.0, exp); |
| }); |
| const float expected[] = {0, 0.03125f, 0.25f, 0.5f, 1, 2, 4, 8, 32, INFINITY}; |
| compare(N, exps, expected); |
| } |
| // powf -- 3^x |
| { |
| float exps[] = {-2, -1, 0, 1, 2}; |
| constexpr int N = SK_ARRAY_COUNT(exps); |
| eval(N, exps, [](skvm::Builder* b, skvm::F32 exp) { |
| return b->approx_powf(b->splat(3.0f), exp); |
| }); |
| const float expected[] = {1/9.0f, 1/3.0f, 1, 3, 9}; |
| compare(N, exps, expected); |
| } |
| // powf -- x^0.5 |
| { |
| float bases[] = {0, 1, 4, 9, 16}; |
| constexpr int N = SK_ARRAY_COUNT(bases); |
| eval(N, bases, [](skvm::Builder* b, skvm::F32 base) { |
| return b->approx_powf(base, b->splat(0.5f)); |
| }); |
| const float expected[] = {0, 1, 2, 3, 4}; |
| compare(N, bases, expected); |
| } |
| // powf -- x^1 |
| { |
| float bases[] = {0, 1, 2, 3, 4}; |
| constexpr int N = SK_ARRAY_COUNT(bases); |
| eval(N, bases, [](skvm::Builder* b, skvm::F32 base) { |
| return b->approx_powf(base, b->splat(1.0f)); |
| }); |
| const float expected[] = {0, 1, 2, 3, 4}; |
| compare(N, bases, expected); |
| } |
| // powf -- x^2 |
| { |
| float bases[] = {0, 1, 2, 3, 4}; |
| constexpr int N = SK_ARRAY_COUNT(bases); |
| eval(N, bases, [](skvm::Builder* b, skvm::F32 base) { |
| return b->approx_powf(base, b->splat(2.0f)); |
| }); |
| const float expected[] = {0, 1, 4, 9, 16}; |
| compare(N, bases, expected); |
| } |
| |
| auto test = [r](float arg, float expected, float tolerance, auto prog) { |
| skvm::Builder b; |
| skvm::Ptr inout = b.varying<float>(); |
| b.storeF(inout, prog(b.loadF(inout))); |
| float actual = arg; |
| b.done().eval(1, &actual); |
| |
| float err = std::abs(actual - expected); |
| |
| if (err > tolerance) { |
| // SkDebugf("arg %g, expected %g, actual %g\n", arg, expected, actual); |
| REPORTER_ASSERT(r, true); |
| } |
| return err; |
| }; |
| |
| auto test2 = [r](float arg0, float arg1, float expected, float tolerance, auto prog) { |
| skvm::Builder b; |
| skvm::Ptr in0 = b.varying<float>(); |
| skvm::Ptr in1 = b.varying<float>(); |
| skvm::Ptr out = b.varying<float>(); |
| b.storeF(out, prog(b.loadF(in0), b.loadF(in1))); |
| float actual; |
| b.done().eval(1, &arg0, &arg1, &actual); |
| |
| float err = std::abs(actual - expected); |
| |
| if (err > tolerance) { |
| // SkDebugf("[%g, %g]: expected %g, actual %g\n", arg0, arg1, expected, actual); |
| REPORTER_ASSERT(r, true); |
| } |
| return err; |
| }; |
| |
| // sine, cosine, tangent |
| { |
| constexpr float P = SK_ScalarPI; |
| constexpr float tol = 0.00175f; |
| for (float rad = -5*P; rad <= 5*P; rad += 0.1f) { |
| test(rad, sk_float_sin(rad), tol, [](skvm::F32 x) { |
| return approx_sin(x); |
| }); |
| test(rad, sk_float_cos(rad), tol, [](skvm::F32 x) { |
| return approx_cos(x); |
| }); |
| } |
| |
| // Our tangent diverge more as we get near infinities (x near +- Pi/2), |
| // so bring in the domain a little. |
| constexpr float eps = 0.16f; |
| float err = 0; |
| for (float rad = -P/2 + eps; rad <= P/2 - eps; rad += 0.01f) { |
| err += test(rad, sk_float_tan(rad), tol, [](skvm::F32 x) { |
| return approx_tan(x); |
| }); |
| // try again with some multiples of P, to check our periodicity |
| test(rad, sk_float_tan(rad), tol, [=](skvm::F32 x) { |
| return approx_tan(x + 3*P); |
| }); |
| test(rad, sk_float_tan(rad), tol, [=](skvm::F32 x) { |
| return approx_tan(x - 3*P); |
| }); |
| } |
| if ((false)) { SkDebugf("tan error %g\n", err); } |
| } |
| |
| // asin, acos, atan |
| { |
| constexpr float tol = 0.00175f; |
| float err = 0; |
| for (float x = -1; x <= 1; x += 1.0f/64) { |
| err += test(x, asin(x), tol, [](skvm::F32 x) { |
| return approx_asin(x); |
| }); |
| test(x, acos(x), tol, [](skvm::F32 x) { |
| return approx_acos(x); |
| }); |
| } |
| if ((false)) { SkDebugf("asin error %g\n", err); } |
| |
| err = 0; |
| for (float x = -10; x <= 10; x += 1.0f/16) { |
| err += test(x, atan(x), tol, [](skvm::F32 x) { |
| return approx_atan(x); |
| }); |
|