| /* |
| * Copyright 2011 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef SkTArray_DEFINED |
| #define SkTArray_DEFINED |
| |
| #include "include/private/base/SkAlignedStorage.h" |
| #include "include/private/base/SkAssert.h" |
| #include "include/private/base/SkAttributes.h" |
| #include "include/private/base/SkContainers.h" |
| #include "include/private/base/SkMalloc.h" |
| #include "include/private/base/SkMath.h" |
| #include "include/private/base/SkSpan_impl.h" |
| #include "include/private/base/SkTo.h" |
| #include "include/private/base/SkTypeTraits.h" // IWYU pragma: keep |
| |
| #include <algorithm> |
| #include <climits> |
| #include <cstddef> |
| #include <cstdint> |
| #include <cstring> |
| #include <initializer_list> |
| #include <new> |
| #include <utility> |
| |
| /** SkTArray<T> implements a typical, mostly std::vector-like array. |
| Each T will be default-initialized on allocation, and ~T will be called on destruction. |
| |
| MEM_MOVE controls the behavior when a T needs to be moved (e.g. when the array is resized) |
| - true: T will be bit-copied via memcpy. |
| - false: T will be moved via move-constructors. |
| |
| Modern implementations of std::vector<T> will generally provide similar performance |
| characteristics when used with appropriate care. Consider using std::vector<T> in new code. |
| */ |
| template <typename T, bool MEM_MOVE = sk_is_trivially_relocatable_v<T>> class SkTArray { |
| public: |
| using value_type = T; |
| |
| /** |
| * Creates an empty array with no initial storage |
| */ |
| SkTArray() : fOwnMemory(true), fCapacity{0} {} |
| |
| /** |
| * Creates an empty array that will preallocate space for reserveCount |
| * elements. |
| */ |
| explicit SkTArray(int reserveCount) : SkTArray() { this->reserve_back(reserveCount); } |
| |
| /** |
| * Copies one array to another. The new array will be heap allocated. |
| */ |
| SkTArray(const SkTArray& that) : SkTArray(that.fData, that.fSize) {} |
| |
| SkTArray(SkTArray&& that) { |
| if (that.fOwnMemory) { |
| this->setData(that); |
| that.setData({}); |
| } else { |
| this->initData(that.fSize); |
| that.move(fData); |
| } |
| fSize = std::exchange(that.fSize, 0); |
| } |
| |
| /** |
| * Creates a SkTArray by copying contents of a standard C array. The new |
| * array will be heap allocated. Be careful not to use this constructor |
| * when you really want the (void*, int) version. |
| */ |
| SkTArray(const T* array, int count) { |
| this->initData(count); |
| this->copy(array); |
| } |
| |
| /** |
| * Creates a SkTArray by copying contents of an initializer list. |
| */ |
| SkTArray(std::initializer_list<T> data) : SkTArray(data.begin(), data.size()) {} |
| |
| SkTArray& operator=(const SkTArray& that) { |
| if (this == &that) { |
| return *this; |
| } |
| this->clear(); |
| this->checkRealloc(that.size(), kExactFit); |
| fSize = that.fSize; |
| this->copy(that.fData); |
| return *this; |
| } |
| SkTArray& operator=(SkTArray&& that) { |
| if (this != &that) { |
| this->clear(); |
| if (that.fOwnMemory) { |
| // The storage is on the heap, so move the data pointer. |
| if (fOwnMemory) { |
| sk_free(fData); |
| } |
| |
| fData = std::exchange(that.fData, nullptr); |
| |
| // Can't use exchange with bitfields. |
| fCapacity = that.fCapacity; |
| that.fCapacity = 0; |
| |
| fOwnMemory = true; |
| } else { |
| // The data is stored inline in that, so move it element-by-element. |
| this->checkRealloc(that.size(), kExactFit); |
| that.move(fData); |
| } |
| fSize = std::exchange(that.fSize, 0); |
| } |
| return *this; |
| } |
| |
| ~SkTArray() { |
| this->destroyAll(); |
| if (fOwnMemory) { |
| sk_free(fData); |
| } |
| } |
| |
| /** |
| * Resets to size() = n newly constructed T objects and resets any reserve count. |
| */ |
| void reset(int n) { |
| SkASSERT(n >= 0); |
| this->clear(); |
| this->checkRealloc(n, kExactFit); |
| fSize = n; |
| for (int i = 0; i < this->size(); ++i) { |
| new (fData + i) T; |
| } |
| } |
| |
| /** |
| * Resets to a copy of a C array and resets any reserve count. |
| */ |
| void reset(const T* array, int count) { |
| SkASSERT(count >= 0); |
| this->clear(); |
| this->checkRealloc(count, kExactFit); |
| fSize = count; |
| this->copy(array); |
| } |
| |
| /** |
| * Ensures there is enough reserved space for n elements. |
| */ |
| void reserve(int n) { |
| SkASSERT(n >= 0); |
| if (n >= this->size()) { |
| this->reserve_back(n - size()); |
| } |
| } |
| |
| /** |
| * Ensures there is enough reserved space for n additional elements. The is guaranteed at least |
| * until the array size grows above n and subsequently shrinks below n, any version of reset() |
| * is called, or reserve_back() is called again. |
| */ |
| void reserve_back(int n) { |
| SkASSERT(n >= 0); |
| if (n > 0) { |
| this->checkRealloc(n, kExactFit); |
| } |
| } |
| |
| void removeShuffle(int n) { |
| SkASSERT(n < this->size()); |
| int newCount = fSize - 1; |
| fSize = newCount; |
| fData[n].~T(); |
| if (n != newCount) { |
| this->move(n, newCount); |
| } |
| } |
| |
| // Is the array empty. |
| bool empty() const { return fSize == 0; } |
| |
| /** |
| * Adds 1 new default-initialized T value and returns it by reference. Note |
| * the reference only remains valid until the next call that adds or removes |
| * elements. |
| */ |
| T& push_back() { |
| void* newT = this->push_back_raw(1); |
| return *new (newT) T; |
| } |
| |
| /** |
| * Version of above that uses a copy constructor to initialize the new item |
| */ |
| T& push_back(const T& t) { |
| void* newT = this->push_back_raw(1); |
| return *new (newT) T(t); |
| } |
| |
| /** |
| * Version of above that uses a move constructor to initialize the new item |
| */ |
| T& push_back(T&& t) { |
| void* newT = this->push_back_raw(1); |
| return *new (newT) T(std::move(t)); |
| } |
| |
| /** |
| * Construct a new T at the back of this array. |
| */ |
| template<class... Args> T& emplace_back(Args&&... args) { |
| void* newT = this->push_back_raw(1); |
| return *new (newT) T(std::forward<Args>(args)...); |
| } |
| |
| /** |
| * Allocates n more default-initialized T values, and returns the address of |
| * the start of that new range. Note: this address is only valid until the |
| * next API call made on the array that might add or remove elements. |
| */ |
| T* push_back_n(int n) { |
| SkASSERT(n >= 0); |
| T* newTs = TCast(this->push_back_raw(n)); |
| for (int i = 0; i < n; ++i) { |
| new (&newTs[i]) T; |
| } |
| return newTs; |
| } |
| |
| /** |
| * Version of above that uses a copy constructor to initialize all n items |
| * to the same T. |
| */ |
| T* push_back_n(int n, const T& t) { |
| SkASSERT(n >= 0); |
| T* newTs = TCast(this->push_back_raw(n)); |
| for (int i = 0; i < n; ++i) { |
| new (&newTs[i]) T(t); |
| } |
| return static_cast<T*>(newTs); |
| } |
| |
| /** |
| * Version of above that uses a copy constructor to initialize the n items |
| * to separate T values. |
| */ |
| T* push_back_n(int n, const T t[]) { |
| SkASSERT(n >= 0); |
| this->checkRealloc(n, kGrowing); |
| T* end = this->end(); |
| for (int i = 0; i < n; ++i) { |
| new (end + i) T(t[i]); |
| } |
| fSize += n; |
| return end; |
| } |
| |
| /** |
| * Version of above that uses the move constructor to set n items. |
| */ |
| T* move_back_n(int n, T* t) { |
| SkASSERT(n >= 0); |
| this->checkRealloc(n, kGrowing); |
| T* end = this->end(); |
| for (int i = 0; i < n; ++i) { |
| new (end + i) T(std::move(t[i])); |
| } |
| fSize += n; |
| return end; |
| } |
| |
| /** |
| * Removes the last element. Not safe to call when size() == 0. |
| */ |
| void pop_back() { |
| SkASSERT(fSize > 0); |
| --fSize; |
| fData[fSize].~T(); |
| } |
| |
| /** |
| * Removes the last n elements. Not safe to call when size() < n. |
| */ |
| void pop_back_n(int n) { |
| SkASSERT(n >= 0); |
| SkASSERT(this->size() >= n); |
| int i = fSize; |
| while (i-- > fSize - n) { |
| (*this)[i].~T(); |
| } |
| fSize -= n; |
| } |
| |
| /** |
| * Pushes or pops from the back to resize. Pushes will be default |
| * initialized. |
| */ |
| void resize_back(int newCount) { |
| SkASSERT(newCount >= 0); |
| |
| if (newCount > this->size()) { |
| this->push_back_n(newCount - fSize); |
| } else if (newCount < this->size()) { |
| this->pop_back_n(fSize - newCount); |
| } |
| } |
| |
| /** Swaps the contents of this array with that array. Does a pointer swap if possible, |
| otherwise copies the T values. */ |
| void swap(SkTArray& that) { |
| using std::swap; |
| if (this == &that) { |
| return; |
| } |
| if (fOwnMemory && that.fOwnMemory) { |
| swap(fData, that.fData); |
| swap(fSize, that.fSize); |
| |
| // Can't use swap because fCapacity is a bit field. |
| auto allocCount = fCapacity; |
| fCapacity = that.fCapacity; |
| that.fCapacity = allocCount; |
| } else { |
| // This could be more optimal... |
| SkTArray copy(std::move(that)); |
| that = std::move(*this); |
| *this = std::move(copy); |
| } |
| } |
| |
| T* begin() { |
| return fData; |
| } |
| const T* begin() const { |
| return fData; |
| } |
| |
| // It's safe to use fItemArray + fSize because if fItemArray is nullptr then adding 0 is |
| // valid and returns nullptr. See [expr.add] in the C++ standard. |
| T* end() { |
| if (fData == nullptr) { |
| SkASSERT(fSize == 0); |
| } |
| return fData + fSize; |
| } |
| const T* end() const { |
| if (fData == nullptr) { |
| SkASSERT(fSize == 0); |
| } |
| return fData + fSize; |
| } |
| T* data() { return fData; } |
| const T* data() const { return fData; } |
| int size() const { return fSize; } |
| size_t size_bytes() const { return this->bytes(fSize); } |
| void resize(size_t count) { this->resize_back((int)count); } |
| |
| void clear() { |
| this->destroyAll(); |
| fSize = 0; |
| } |
| |
| void shrink_to_fit() { |
| if (!fOwnMemory || fSize == fCapacity) { |
| return; |
| } |
| if (fSize == 0) { |
| sk_free(fData); |
| fData = nullptr; |
| fCapacity = 0; |
| } else { |
| SkSpan<std::byte> allocation = Allocate(fSize); |
| this->move(TCast(allocation.data())); |
| if (fOwnMemory) { |
| sk_free(fData); |
| } |
| this->setDataFromBytes(allocation); |
| } |
| } |
| |
| /** |
| * Get the i^th element. |
| */ |
| T& operator[] (int i) { |
| SkASSERT(i < this->size()); |
| SkASSERT(i >= 0); |
| return fData[i]; |
| } |
| |
| const T& operator[] (int i) const { |
| SkASSERT(i < this->size()); |
| SkASSERT(i >= 0); |
| return fData[i]; |
| } |
| |
| T& at(int i) { return (*this)[i]; } |
| const T& at(int i) const { return (*this)[i]; } |
| |
| /** |
| * equivalent to operator[](0) |
| */ |
| T& front() { SkASSERT(fSize > 0); return fData[0];} |
| |
| const T& front() const { SkASSERT(fSize > 0); return fData[0];} |
| |
| /** |
| * equivalent to operator[](size() - 1) |
| */ |
| T& back() { SkASSERT(fSize); return fData[fSize - 1];} |
| |
| const T& back() const { SkASSERT(fSize > 0); return fData[fSize - 1];} |
| |
| /** |
| * equivalent to operator[](size()-1-i) |
| */ |
| T& fromBack(int i) { |
| SkASSERT(i >= 0); |
| SkASSERT(i < this->size()); |
| return fData[fSize - i - 1]; |
| } |
| |
| const T& fromBack(int i) const { |
| SkASSERT(i >= 0); |
| SkASSERT(i < this->size()); |
| return fData[fSize - i - 1]; |
| } |
| |
| bool operator==(const SkTArray<T, MEM_MOVE>& right) const { |
| int leftCount = this->size(); |
| if (leftCount != right.size()) { |
| return false; |
| } |
| for (int index = 0; index < leftCount; ++index) { |
| if (fData[index] != right.fData[index]) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool operator!=(const SkTArray<T, MEM_MOVE>& right) const { |
| return !(*this == right); |
| } |
| |
| int capacity() const { |
| return fCapacity; |
| } |
| |
| protected: |
| // Creates an empty array that will use the passed storage block until it is insufficiently |
| // large to hold the entire array. |
| template <int InitialCapacity> |
| SkTArray(SkAlignedSTStorage<InitialCapacity, T>* storage, int size = 0) { |
| static_assert(InitialCapacity >= 0); |
| SkASSERT(size >= 0); |
| SkASSERT(storage->get() != nullptr); |
| if (size > InitialCapacity) { |
| this->initData(size); |
| } else { |
| this->setDataFromBytes(*storage); |
| fSize = size; |
| |
| // setDataFromBytes always sets fOwnMemory to true, but we are actually using static |
| // storage here, which shouldn't ever be freed. |
| fOwnMemory = false; |
| } |
| } |
| |
| // Copy a C array, using pre-allocated storage if preAllocCount >= count. Otherwise, storage |
| // will only be used when array shrinks to fit. |
| template <int InitialCapacity> |
| SkTArray(const T* array, int size, SkAlignedSTStorage<InitialCapacity, T>* storage) |
| : SkTArray{storage, size} |
| { |
| this->copy(array); |
| } |
| |
| private: |
| // Growth factors for checkRealloc. |
| static constexpr double kExactFit = 1.0; |
| static constexpr double kGrowing = 1.5; |
| |
| static constexpr int kMinHeapAllocCount = 8; |
| static_assert(SkIsPow2(kMinHeapAllocCount), "min alloc count not power of two."); |
| |
| // Note for 32-bit machines kMaxCapacity will be <= SIZE_MAX. For 64-bit machines it will |
| // just be INT_MAX if the sizeof(T) < 2^32. |
| static constexpr int kMaxCapacity = SkToInt(std::min(SIZE_MAX / sizeof(T), (size_t)INT_MAX)); |
| |
| void setDataFromBytes(SkSpan<std::byte> allocation) { |
| T* data = TCast(allocation.data()); |
| // We have gotten extra bytes back from the allocation limit, pin to kMaxCapacity. It |
| // would seem like the SkContainerAllocator should handle the divide, but it would have |
| // to a full divide instruction. If done here the size is known at compile, and usually |
| // can be implemented by a right shift. The full divide takes ~50X longer than the shift. |
| size_t size = std::min(allocation.size() / sizeof(T), SkToSizeT(kMaxCapacity)); |
| setData(SkSpan<T>(data, size)); |
| } |
| |
| void setData(SkSpan<T> array) { |
| fData = array.data(); |
| fCapacity = SkToU32(array.size()); |
| fOwnMemory = true; |
| } |
| |
| // We disable Control-Flow Integrity sanitization (go/cfi) when casting item-array buffers. |
| // CFI flags this code as dangerous because we are casting `buffer` to a T* while the buffer's |
| // contents might still be uninitialized memory. When T has a vtable, this is especially risky |
| // because we could hypothetically access a virtual method on fItemArray and jump to an |
| // unpredictable location in memory. Of course, SkTArray won't actually use fItemArray in this |
| // way, and we don't want to construct a T before the user requests one. There's no real risk |
| // here, so disable CFI when doing these casts. |
| SK_NO_SANITIZE("cfi") |
| static T* TCast(void* buffer) { |
| return (T*)buffer; |
| } |
| |
| size_t bytes(int n) const { |
| SkASSERT(n <= kMaxCapacity); |
| return SkToSizeT(n) * sizeof(T); |
| } |
| |
| static SkSpan<std::byte> Allocate(int capacity, double growthFactor = 1.0) { |
| return SkContainerAllocator{sizeof(T), kMaxCapacity}.allocate(capacity, growthFactor); |
| } |
| |
| void initData(int count) { |
| this->setDataFromBytes(Allocate(count)); |
| fSize = count; |
| } |
| |
| void destroyAll() { |
| if (!this->empty()) { |
| T* cursor = this->begin(); |
| T* const end = this->end(); |
| do { |
| cursor->~T(); |
| cursor++; |
| } while (cursor < end); |
| } |
| } |
| |
| /** In the following move and copy methods, 'dst' is assumed to be uninitialized raw storage. |
| * In the following move methods, 'src' is destroyed leaving behind uninitialized raw storage. |
| */ |
| void copy(const T* src) { |
| if constexpr (std::is_trivially_copyable_v<T>) { |
| if (!this->empty() && src != nullptr) { |
| sk_careful_memcpy(fData, src, this->size_bytes()); |
| } |
| } else { |
| for (int i = 0; i < this->size(); ++i) { |
| new (fData + i) T(src[i]); |
| } |
| } |
| } |
| |
| void move(int dst, int src) { |
| if constexpr (MEM_MOVE) { |
| memcpy(static_cast<void*>(&fData[dst]), |
| static_cast<const void*>(&fData[src]), |
| sizeof(T)); |
| } else { |
| new (&fData[dst]) T(std::move(fData[src])); |
| fData[src].~T(); |
| } |
| } |
| |
| void move(void* dst) { |
| if constexpr (MEM_MOVE) { |
| sk_careful_memcpy(dst, fData, this->bytes(fSize)); |
| } else { |
| for (int i = 0; i < this->size(); ++i) { |
| new (static_cast<char*>(dst) + this->bytes(i)) T(std::move(fData[i])); |
| fData[i].~T(); |
| } |
| } |
| } |
| |
| // Helper function that makes space for n objects, adjusts the count, but does not initialize |
| // the new objects. |
| void* push_back_raw(int n) { |
| this->checkRealloc(n, kGrowing); |
| void* ptr = fData + fSize; |
| fSize += n; |
| return ptr; |
| } |
| |
| void checkRealloc(int delta, double growthFactor) { |
| // This constant needs to be declared in the function where it is used to work around |
| // MSVC's persnickety nature about template definitions. |
| SkASSERT(delta >= 0); |
| SkASSERT(fSize >= 0); |
| SkASSERT(fCapacity >= 0); |
| |
| // Return if there are enough remaining allocated elements to satisfy the request. |
| if (this->capacity() - fSize >= delta) { |
| return; |
| } |
| |
| // Don't overflow fSize or size_t later in the memory allocation. Overflowing memory |
| // allocation really only applies to fSizes on 32-bit machines; on 64-bit machines this |
| // will probably never produce a check. Since kMaxCapacity is bounded above by INT_MAX, |
| // this also checks the bounds of fSize. |
| if (delta > kMaxCapacity - fSize) { |
| sk_report_container_overflow_and_die(); |
| } |
| const int newCount = fSize + delta; |
| |
| SkSpan<std::byte> allocation = Allocate(newCount, growthFactor); |
| |
| this->move(TCast(allocation.data())); |
| if (fOwnMemory) { |
| sk_free(fData); |
| } |
| this->setDataFromBytes(allocation); |
| SkASSERT(this->capacity() >= newCount); |
| SkASSERT(fData != nullptr); |
| } |
| |
| T* fData{nullptr}; |
| int fSize{0}; |
| uint32_t fOwnMemory : 1; |
| uint32_t fCapacity : 31; |
| }; |
| |
| template <typename T, bool M> static inline void swap(SkTArray<T, M>& a, SkTArray<T, M>& b) { |
| a.swap(b); |
| } |
| |
| /** |
| * Subclass of SkTArray that contains a preallocated memory block for the array. |
| */ |
| template <int N, typename T, bool MEM_MOVE = sk_is_trivially_relocatable_v<T>> |
| class SkSTArray : private SkAlignedSTStorage<N,T>, public SkTArray<T, MEM_MOVE> { |
| private: |
| static_assert(N > 0); |
| using STORAGE = SkAlignedSTStorage<N,T>; |
| using INHERITED = SkTArray<T, MEM_MOVE>; |
| |
| public: |
| SkSTArray() |
| : STORAGE{}, INHERITED(static_cast<STORAGE*>(this)) {} |
| |
| SkSTArray(const T* array, int count) |
| : STORAGE{}, INHERITED(array, count, static_cast<STORAGE*>(this)) {} |
| |
| SkSTArray(std::initializer_list<T> data) : SkSTArray(data.begin(), SkToInt(data.size())) {} |
| |
| explicit SkSTArray(int reserveCount) : SkSTArray() { |
| this->reserve_back(reserveCount); |
| } |
| |
| SkSTArray (const SkSTArray& that) : SkSTArray() { *this = that; } |
| explicit SkSTArray(const INHERITED& that) : SkSTArray() { *this = that; } |
| SkSTArray ( SkSTArray&& that) : SkSTArray() { *this = std::move(that); } |
| explicit SkSTArray( INHERITED&& that) : SkSTArray() { *this = std::move(that); } |
| |
| SkSTArray& operator=(const SkSTArray& that) { |
| INHERITED::operator=(that); |
| return *this; |
| } |
| SkSTArray& operator=(const INHERITED& that) { |
| INHERITED::operator=(that); |
| return *this; |
| } |
| |
| SkSTArray& operator=(SkSTArray&& that) { |
| INHERITED::operator=(std::move(that)); |
| return *this; |
| } |
| SkSTArray& operator=(INHERITED&& that) { |
| INHERITED::operator=(std::move(that)); |
| return *this; |
| } |
| |
| // Force the use of SkTArray for data() and size(). |
| using INHERITED::data; |
| using INHERITED::size; |
| }; |
| |
| #endif |