blob: 5f31a651bb3757af7b103471575a363cbb476708 [file] [log] [blame]
/*
* Copyright 2018 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkSpan_DEFINED
#define SkSpan_DEFINED
#include "include/private/base/SkAssert.h"
#include "include/private/base/SkTo.h"
#include <cstddef>
#include <initializer_list>
#include <iterator>
#include <limits>
#include <utility>
// Having this be an export works around IWYU churn related to
// https://github.com/include-what-you-use/include-what-you-use/issues/1121
#include <type_traits> // IWYU pragma: export
// Add macro to check the lifetime of initializer_list arguments. initializer_list has a very
// short life span, and can only be used as a parameter, and not as a variable.
#if defined(__clang__) && defined(__has_cpp_attribute) && __has_cpp_attribute(clang::lifetimebound)
#define SK_CHECK_IL_LIFETIME [[clang::lifetimebound]]
#else
#define SK_CHECK_IL_LIFETIME
#endif
/**
* SkSpan holds a reference to contiguous data of type T along with a count. SkSpan does not own
* the data itself but is merely a reference, therefore you must take care with the lifetime of
* the underlying data.
*
* SkSpan is a count and a pointer into existing array or data type that stores its data in
* contiguous memory like std::vector. Any container that works with std::size() and std::data()
* can be used.
*
* SkSpan makes a convenient parameter for a routine to accept array like things. This allows you to
* write the routine without overloads for all different container types.
*
* Example:
* void routine(SkSpan<const int> a) { ... }
*
* std::vector v = {1, 2, 3, 4, 5};
*
* routine(a);
*
* A word of caution when working with initializer_list, initializer_lists have a lifetime that is
* limited to the current statement. The following is correct and safe:
*
* Example:
* routine({1,2,3,4,5});
*
* The following is undefined, and will result in erratic execution:
*
* Bad Example:
* initializer_list l = {1, 2, 3, 4, 5}; // The data behind l dies at the ;.
* routine(l);
*/
template <typename T>
class SkSpan {
public:
constexpr SkSpan() : fPtr{nullptr}, fSize{0} {}
template <typename Integer, std::enable_if_t<std::is_integral_v<Integer>, bool> = true>
constexpr SkSpan(T* ptr, Integer size) : fPtr{ptr}, fSize{SkToSizeT(size)} {
SkASSERT(ptr || fSize == 0); // disallow nullptr + a nonzero size
SkASSERT(fSize < kMaxSize);
}
template <typename U, typename = std::enable_if_t<std::is_same_v<const U, T>>>
constexpr SkSpan(const SkSpan<U>& that) : fPtr(std::data(that)), fSize(std::size(that)) {}
constexpr SkSpan(const SkSpan& o) = default;
template<size_t N> constexpr SkSpan(T(&a)[N]) : SkSpan(a, N) { }
template<typename Container>
constexpr SkSpan(Container& c) : SkSpan(std::data(c), std::size(c)) { }
SkSpan(std::initializer_list<T> il SK_CHECK_IL_LIFETIME)
: SkSpan(std::data(il), std::size(il)) {}
constexpr SkSpan& operator=(const SkSpan& that) = default;
constexpr T& operator [] (size_t i) const {
SkASSERT(i < this->size());
return fPtr[i];
}
constexpr T& front() const { return fPtr[0]; }
constexpr T& back() const { return fPtr[fSize - 1]; }
constexpr T* begin() const { return fPtr; }
constexpr T* end() const { return fPtr + fSize; }
constexpr auto rbegin() const { return std::make_reverse_iterator(this->end()); }
constexpr auto rend() const { return std::make_reverse_iterator(this->begin()); }
constexpr T* data() const { return this->begin(); }
constexpr size_t size() const { return fSize; }
constexpr bool empty() const { return fSize == 0; }
constexpr size_t size_bytes() const { return fSize * sizeof(T); }
constexpr SkSpan<T> first(size_t prefixLen) const {
SkASSERT(prefixLen <= this->size());
return SkSpan{fPtr, prefixLen};
}
constexpr SkSpan<T> last(size_t postfixLen) const {
SkASSERT(postfixLen <= this->size());
return SkSpan{fPtr + (this->size() - postfixLen), postfixLen};
}
constexpr SkSpan<T> subspan(size_t offset) const {
return this->subspan(offset, this->size() - offset);
}
constexpr SkSpan<T> subspan(size_t offset, size_t count) const {
SkASSERT(offset <= this->size());
SkASSERT(count <= this->size() - offset);
return SkSpan{fPtr + offset, count};
}
private:
static const constexpr size_t kMaxSize = std::numeric_limits<size_t>::max() / sizeof(T);
T* fPtr;
size_t fSize;
};
template <typename Container>
SkSpan(Container&) ->
SkSpan<std::remove_pointer_t<decltype(std::data(std::declval<Container&>()))>>;
template <typename T>
SkSpan(std::initializer_list<T>) ->
SkSpan<std::remove_pointer_t<decltype(std::data(std::declval<std::initializer_list<T>>()))>>;
#endif // SkSpan_DEFINED