| /* |
| * Copyright 2006 The Android Open Source Project |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef SkFloatingPoint_DEFINED |
| #define SkFloatingPoint_DEFINED |
| |
| #include "include/private/base/SkAttributes.h" |
| #include "include/private/base/SkFloatBits.h" |
| #include "include/private/base/SkMath.h" |
| |
| #include <cfloat> |
| #include <cmath> |
| #include <cstdint> |
| #include <cstring> |
| |
| constexpr float SK_FloatSqrt2 = 1.41421356f; |
| constexpr float SK_FloatPI = 3.14159265f; |
| constexpr double SK_DoublePI = 3.14159265358979323846264338327950288; |
| |
| // C++98 cmath std::pow seems to be the earliest portable way to get float pow. |
| // However, on Linux including cmath undefines isfinite. |
| // http://gcc.gnu.org/bugzilla/show_bug.cgi?id=14608 |
| static inline float sk_float_pow(float base, float exp) { |
| return powf(base, exp); |
| } |
| |
| #define sk_float_sqrt(x) sqrtf(x) |
| #define sk_float_sin(x) sinf(x) |
| #define sk_float_cos(x) cosf(x) |
| #define sk_float_tan(x) tanf(x) |
| #define sk_float_floor(x) floorf(x) |
| #define sk_float_ceil(x) ceilf(x) |
| #define sk_float_trunc(x) truncf(x) |
| #ifdef SK_BUILD_FOR_MAC |
| # define sk_float_acos(x) static_cast<float>(acos(x)) |
| # define sk_float_asin(x) static_cast<float>(asin(x)) |
| #else |
| # define sk_float_acos(x) acosf(x) |
| # define sk_float_asin(x) asinf(x) |
| #endif |
| #define sk_float_atan2(y,x) atan2f(y,x) |
| #define sk_float_abs(x) fabsf(x) |
| #define sk_float_copysign(x, y) copysignf(x, y) |
| #define sk_float_mod(x,y) fmodf(x,y) |
| #define sk_float_exp(x) expf(x) |
| #define sk_float_log(x) logf(x) |
| |
| constexpr float sk_float_degrees_to_radians(float degrees) { |
| return degrees * (SK_FloatPI / 180); |
| } |
| |
| constexpr float sk_float_radians_to_degrees(float radians) { |
| return radians * (180 / SK_FloatPI); |
| } |
| |
| // floor(double+0.5) vs. floorf(float+0.5f) give comparable performance, but upcasting to double |
| // means tricky values like 0.49999997 and 2^24 get rounded correctly. If these were rounded |
| // as floatf(x + .5f), they would be 1 higher than expected. |
| #define sk_float_round(x) (float)sk_double_round((double)(x)) |
| |
| // can't find log2f on android, but maybe that just a tool bug? |
| #ifdef SK_BUILD_FOR_ANDROID |
| static inline float sk_float_log2(float x) { |
| const double inv_ln_2 = 1.44269504088896; |
| return (float)(log(x) * inv_ln_2); |
| } |
| #else |
| #define sk_float_log2(x) log2f(x) |
| #endif |
| |
| static inline bool sk_float_isfinite(float x) { |
| return SkFloatBits_IsFinite(SkFloat2Bits(x)); |
| } |
| |
| static inline bool sk_floats_are_finite(float a, float b) { |
| return sk_float_isfinite(a) && sk_float_isfinite(b); |
| } |
| |
| static inline bool sk_floats_are_finite(const float array[], int count) { |
| float prod = 0; |
| for (int i = 0; i < count; ++i) { |
| prod *= array[i]; |
| } |
| // At this point, prod will either be NaN or 0 |
| return prod == 0; // if prod is NaN, this check will return false |
| } |
| |
| static inline bool sk_float_isinf(float x) { |
| return SkFloatBits_IsInf(SkFloat2Bits(x)); |
| } |
| |
| static inline bool sk_float_isnan(float x) { |
| return !(x == x); |
| } |
| |
| #define sk_double_isnan(a) sk_float_isnan(a) |
| |
| #define SK_MaxS32FitsInFloat 2147483520 |
| #define SK_MinS32FitsInFloat -SK_MaxS32FitsInFloat |
| |
| #define SK_MaxS64FitsInFloat (SK_MaxS64 >> (63-24) << (63-24)) // 0x7fffff8000000000 |
| #define SK_MinS64FitsInFloat -SK_MaxS64FitsInFloat |
| |
| /** |
| * Return the closest int for the given float. Returns SK_MaxS32FitsInFloat for NaN. |
| */ |
| static inline int sk_float_saturate2int(float x) { |
| x = x < SK_MaxS32FitsInFloat ? x : SK_MaxS32FitsInFloat; |
| x = x > SK_MinS32FitsInFloat ? x : SK_MinS32FitsInFloat; |
| return (int)x; |
| } |
| |
| /** |
| * Return the closest int for the given double. Returns SK_MaxS32 for NaN. |
| */ |
| static inline int sk_double_saturate2int(double x) { |
| x = x < SK_MaxS32 ? x : SK_MaxS32; |
| x = x > SK_MinS32 ? x : SK_MinS32; |
| return (int)x; |
| } |
| |
| /** |
| * Return the closest int64_t for the given float. Returns SK_MaxS64FitsInFloat for NaN. |
| */ |
| static inline int64_t sk_float_saturate2int64(float x) { |
| x = x < SK_MaxS64FitsInFloat ? x : SK_MaxS64FitsInFloat; |
| x = x > SK_MinS64FitsInFloat ? x : SK_MinS64FitsInFloat; |
| return (int64_t)x; |
| } |
| |
| #define sk_float_floor2int(x) sk_float_saturate2int(sk_float_floor(x)) |
| #define sk_float_round2int(x) sk_float_saturate2int(sk_float_round(x)) |
| #define sk_float_ceil2int(x) sk_float_saturate2int(sk_float_ceil(x)) |
| |
| #define sk_float_floor2int_no_saturate(x) (int)sk_float_floor(x) |
| #define sk_float_round2int_no_saturate(x) (int)sk_float_round(x) |
| #define sk_float_ceil2int_no_saturate(x) (int)sk_float_ceil(x) |
| |
| #define sk_double_floor(x) floor(x) |
| #define sk_double_round(x) floor((x) + 0.5) |
| #define sk_double_ceil(x) ceil(x) |
| #define sk_double_floor2int(x) (int)sk_double_floor(x) |
| #define sk_double_round2int(x) (int)sk_double_round(x) |
| #define sk_double_ceil2int(x) (int)sk_double_ceil(x) |
| |
| // Cast double to float, ignoring any warning about too-large finite values being cast to float. |
| // Clang thinks this is undefined, but it's actually implementation defined to return either |
| // the largest float or infinity (one of the two bracketing representable floats). Good enough! |
| SK_NO_SANITIZE("float-cast-overflow") |
| static inline float sk_double_to_float(double x) { |
| return static_cast<float>(x); |
| } |
| |
| #define SK_FloatNaN std::numeric_limits<float>::quiet_NaN() |
| #define SK_FloatInfinity (+std::numeric_limits<float>::infinity()) |
| #define SK_FloatNegativeInfinity (-std::numeric_limits<float>::infinity()) |
| |
| #define SK_DoubleNaN std::numeric_limits<double>::quiet_NaN() |
| |
| // Returns false if any of the floats are outside of [0...1] |
| // Returns true if count is 0 |
| bool sk_floats_are_unit(const float array[], size_t count); |
| |
| static inline float sk_float_rsqrt_portable(float x) { return 1.0f / sk_float_sqrt(x); } |
| static inline float sk_float_rsqrt (float x) { return 1.0f / sk_float_sqrt(x); } |
| |
| // Returns the log2 of the provided value, were that value to be rounded up to the next power of 2. |
| // Returns 0 if value <= 0: |
| // Never returns a negative number, even if value is NaN. |
| // |
| // sk_float_nextlog2((-inf..1]) -> 0 |
| // sk_float_nextlog2((1..2]) -> 1 |
| // sk_float_nextlog2((2..4]) -> 2 |
| // sk_float_nextlog2((4..8]) -> 3 |
| // ... |
| static inline int sk_float_nextlog2(float x) { |
| uint32_t bits = (uint32_t)SkFloat2Bits(x); |
| bits += (1u << 23) - 1u; // Increment the exponent for non-powers-of-2. |
| int exp = ((int32_t)bits >> 23) - 127; |
| return exp & ~(exp >> 31); // Return 0 for negative or denormalized floats, and exponents < 0. |
| } |
| |
| // This is the number of significant digits we can print in a string such that when we read that |
| // string back we get the floating point number we expect. The minimum value C requires is 6, but |
| // most compilers support 9 |
| #ifdef FLT_DECIMAL_DIG |
| #define SK_FLT_DECIMAL_DIG FLT_DECIMAL_DIG |
| #else |
| #define SK_FLT_DECIMAL_DIG 9 |
| #endif |
| |
| // IEEE defines how float divide behaves for non-finite values and zero-denoms, but C does not |
| // so we have a helper that suppresses the possible undefined-behavior warnings. |
| |
| SK_NO_SANITIZE("float-divide-by-zero") |
| static inline float sk_ieee_float_divide(float numer, float denom) { |
| return numer / denom; |
| } |
| |
| SK_NO_SANITIZE("float-divide-by-zero") |
| static inline double sk_ieee_double_divide(double numer, double denom) { |
| return numer / denom; |
| } |
| |
| // While we clean up divide by zero, we'll replace places that do divide by zero with this TODO. |
| static inline float sk_ieee_float_divide_TODO_IS_DIVIDE_BY_ZERO_SAFE_HERE(float n, float d) { |
| return sk_ieee_float_divide(n,d); |
| } |
| |
| static inline float sk_fmaf(float f, float m, float a) { |
| #if defined(FP_FAST_FMA) |
| return std::fmaf(f,m,a); |
| #else |
| return f*m+a; |
| #endif |
| } |
| |
| // Returns true iff the provided number is within a small epsilon of 0. |
| bool sk_double_nearly_zero(double a); |
| |
| // Comparing floating point numbers is complicated. This helper only works if one or none |
| // of the two inputs is not very close to zero. It also does not work if both inputs could be NaN. |
| // The term "ulps" stands for "units of least precision". Read the following for more nuance: |
| // https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/ |
| bool sk_doubles_nearly_equal_ulps(double a, double b, uint8_t max_ulps_diff=16); |
| |
| #endif |