blob: 46a06f860597348e0ae510ed9da909cc401623f0 [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "gm/gm.h"
#include "include/core/SkCanvas.h"
#include "include/core/SkColor.h"
#include "include/core/SkColorSpace.h"
#include "include/core/SkImage.h"
#include "include/core/SkPaint.h"
#include "include/core/SkRect.h"
#include "include/core/SkScalar.h"
#include "include/core/SkSize.h"
#include "include/core/SkString.h"
#include "include/core/SkSurface.h"
namespace skiagm {
// This GM exercises anisotropic image scaling.
class AnisotropicGM : public GM {
public:
enum class Mode { kLinear, kMip, kAniso };
AnisotropicGM(Mode mode) : fMode(mode) {
switch (fMode) {
case Mode::kLinear:
fSampling = SkSamplingOptions(SkFilterMode::kLinear);
break;
case Mode::kMip:
fSampling = SkSamplingOptions(SkFilterMode::kLinear, SkMipmapMode::kLinear);
break;
case Mode::kAniso:
fSampling = SkSamplingOptions::Aniso(16);
break;
}
this->setBGColor(0xFFCCCCCC);
}
protected:
SkString onShortName() override {
SkString name("anisotropic_image_scale_");
switch (fMode) {
case Mode::kLinear:
name += "linear";
break;
case Mode::kMip:
name += "mip";
break;
case Mode::kAniso:
name += "aniso";
break;
}
return name;
}
SkISize onISize() override {
return SkISize::Make(2*kImageSize + 3*kSpacer,
kNumVertImages*kImageSize + (kNumVertImages+1)*kSpacer);
}
// Create an image consisting of lines radiating from its center
void onOnceBeforeDraw() override {
constexpr int kNumLines = 100;
constexpr SkScalar kAngleStep = 360.0f / kNumLines;
constexpr int kInnerOffset = 10;
auto info = SkImageInfo::MakeN32(kImageSize, kImageSize, kOpaque_SkAlphaType);
auto surf = SkSurface::MakeRaster(info);
auto canvas = surf->getCanvas();
canvas->clear(SK_ColorWHITE);
SkPaint p;
p.setAntiAlias(true);
SkScalar angle = 0.0f, sin, cos;
canvas->translate(kImageSize/2.0f, kImageSize/2.0f);
for (int i = 0; i < kNumLines; ++i, angle += kAngleStep) {
sin = SkScalarSin(angle);
cos = SkScalarCos(angle);
canvas->drawLine(cos * kInnerOffset, sin * kInnerOffset,
cos * kImageSize/2, sin * kImageSize/2, p);
}
fImage = surf->makeImageSnapshot();
}
void draw(SkCanvas* canvas, int x, int y, int xSize, int ySize) {
SkRect r = SkRect::MakeXYWH(SkIntToScalar(x), SkIntToScalar(y),
SkIntToScalar(xSize), SkIntToScalar(ySize));
canvas->drawImageRect(fImage, r, fSampling);
}
void onDraw(SkCanvas* canvas) override {
SkScalar gScales[] = { 0.9f, 0.8f, 0.75f, 0.6f, 0.5f, 0.4f, 0.25f, 0.2f, 0.1f };
SkASSERT(kNumVertImages-1 == (int)std::size(gScales)/2);
// Minimize vertically
for (int i = 0; i < (int)std::size(gScales); ++i) {
int height = SkScalarFloorToInt(fImage->height() * gScales[i]);
int yOff;
if (i <= (int)std::size(gScales)/2) {
yOff = kSpacer + i * (fImage->height() + kSpacer);
} else {
// Position the more highly squashed images with their less squashed counterparts
yOff = (std::size(gScales) - i) * (fImage->height() + kSpacer) - height;
}
this->draw(canvas, kSpacer, yOff, fImage->width(), height);
}
// Minimize horizontally
for (int i = 0; i < (int)std::size(gScales); ++i) {
int width = SkScalarFloorToInt(fImage->width() * gScales[i]);
int xOff, yOff;
if (i <= (int)std::size(gScales)/2) {
xOff = fImage->width() + 2*kSpacer;
yOff = kSpacer + i * (fImage->height() + kSpacer);
} else {
// Position the more highly squashed images with their less squashed counterparts
xOff = fImage->width() + 2*kSpacer + fImage->width() - width;
yOff = kSpacer + (std::size(gScales) - i - 1) * (fImage->height() + kSpacer);
}
this->draw(canvas, xOff, yOff, width, fImage->height());
}
}
private:
inline static constexpr int kImageSize = 256;
inline static constexpr int kSpacer = 10;
inline static constexpr int kNumVertImages = 5;
sk_sp<SkImage> fImage;
SkSamplingOptions fSampling;
Mode fMode;
using INHERITED = GM;
};
//////////////////////////////////////////////////////////////////////////////
DEF_GM(return new AnisotropicGM(AnisotropicGM::Mode::kLinear);)
DEF_GM(return new AnisotropicGM(AnisotropicGM::Mode::kMip);)
DEF_GM(return new AnisotropicGM(AnisotropicGM::Mode::kAniso);)
//////////////////////////////////////////////////////////////////////////////
class AnisoMipsGM : public GM {
public:
AnisoMipsGM() = default;
protected:
SkString onShortName() override { return SkString("anisomips"); }
SkISize onISize() override { return SkISize::Make(520, 260); }
sk_sp<SkImage> updateImage(SkSurface* surf, SkColor color) {
surf->getCanvas()->clear(color);
SkPaint paint;
paint.setColor(~color | 0xFF000000);
surf->getCanvas()->drawRect(SkRect::MakeLTRB(surf->width() *2/5.f,
surf->height()*2/5.f,
surf->width() *3/5.f,
surf->height()*3/5.f),
paint);
return surf->makeImageSnapshot()->withDefaultMipmaps();
}
void onDraw(SkCanvas* canvas) override {
auto ct = canvas->imageInfo().colorType() == kUnknown_SkColorType
? kRGBA_8888_SkColorType
: canvas->imageInfo().colorType();
auto ii = SkImageInfo::Make(kImageSize,
kImageSize,
ct,
kPremul_SkAlphaType,
canvas->imageInfo().refColorSpace());
// In GPU mode we want a surface that is created with mipmaps to ensure that we exercise the
// case where the SkSurface and SkImage share a texture. If the surface texture isn't
// created with MIPs then asking for a mipmapped image will cause a copy to a mipped
// texture.
sk_sp<SkSurface> surface;
if (auto rc = canvas->recordingContext()) {
surface = SkSurface::MakeRenderTarget(rc,
skgpu::Budgeted::kYes,
ii,
1,
kTopLeft_GrSurfaceOrigin,
/*surfaceProps=*/nullptr,
/*shouldCreateWithMips=*/true);
if (!surface) {
// We could be in an abandoned context situation.
return;
}
} else {
surface = canvas->makeSurface(ii);
if (!surface) { // could be a recording canvas.
surface = SkSurface::MakeRaster(ii);
}
}
static constexpr float kScales[] = {1.f, 0.5f, 0.25f, 0.125f};
SkColor kColors[] = {0xFFF0F0F0, SK_ColorBLUE, SK_ColorGREEN, SK_ColorRED};
static const SkSamplingOptions kSampling = SkSamplingOptions::Aniso(16);
for (bool shader : {false, true}) {
int c = 0;
canvas->save();
for (float sy : kScales) {
canvas->save();
for (float sx : kScales) {
canvas->save();
canvas->scale(sx, sy);
auto image = this->updateImage(surface.get(), kColors[c]);
if (shader) {
SkPaint paint;
paint.setShader(image->makeShader(kSampling));
canvas->drawRect(SkRect::Make(image->dimensions()), paint);
} else {
canvas->drawImage(image, 0, 0, kSampling);
}
canvas->restore();
canvas->translate(ii.width() * sx + kPad, 0);
c = (c + 1) % std::size(kColors);
}
canvas->restore();
canvas->translate(0, ii.width() * sy + kPad);
}
canvas->restore();
for (float sx : kScales) {
canvas->translate(ii.width() * sx + kPad, 0);
}
}
}
private:
inline static constexpr int kImageSize = 128;
inline static constexpr int kPad = 5;
using INHERITED = GM;
};
//////////////////////////////////////////////////////////////////////////////
DEF_GM(return new AnisoMipsGM();)
} // namespace skiagm