blob: ae29bcb01b338a0397e183dce4185b113c48f637 [file] [log] [blame]
/*
* Copyright 2012 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkMatrixConvolutionImageFilter.h"
#include "SkBitmap.h"
#include "SkColorPriv.h"
#include "SkReadBuffer.h"
#include "SkWriteBuffer.h"
#include "SkRect.h"
#include "SkUnPreMultiply.h"
#if SK_SUPPORT_GPU
#include "effects/GrMatrixConvolutionEffect.h"
#endif
// We need to be able to read at most SK_MaxS32 bytes, so divide that
// by the size of a scalar to know how many scalars we can read.
static const int32_t gMaxKernelSize = SK_MaxS32 / sizeof(SkScalar);
SkMatrixConvolutionImageFilter::SkMatrixConvolutionImageFilter(
const SkISize& kernelSize,
const SkScalar* kernel,
SkScalar gain,
SkScalar bias,
const SkIPoint& kernelOffset,
TileMode tileMode,
bool convolveAlpha,
SkImageFilter* input,
const CropRect* cropRect,
uint32_t uniqueID)
: INHERITED(1, &input, cropRect, uniqueID),
fKernelSize(kernelSize),
fGain(gain),
fBias(bias),
fKernelOffset(kernelOffset),
fTileMode(tileMode),
fConvolveAlpha(convolveAlpha) {
size_t size = (size_t) sk_64_mul(fKernelSize.width(), fKernelSize.height());
fKernel = SkNEW_ARRAY(SkScalar, size);
memcpy(fKernel, kernel, size * sizeof(SkScalar));
SkASSERT(kernelSize.fWidth >= 1 && kernelSize.fHeight >= 1);
SkASSERT(kernelOffset.fX >= 0 && kernelOffset.fX < kernelSize.fWidth);
SkASSERT(kernelOffset.fY >= 0 && kernelOffset.fY < kernelSize.fHeight);
}
SkMatrixConvolutionImageFilter* SkMatrixConvolutionImageFilter::Create(
const SkISize& kernelSize,
const SkScalar* kernel,
SkScalar gain,
SkScalar bias,
const SkIPoint& kernelOffset,
TileMode tileMode,
bool convolveAlpha,
SkImageFilter* input,
const CropRect* cropRect,
uint32_t uniqueID) {
if (kernelSize.width() < 1 || kernelSize.height() < 1) {
return NULL;
}
if (gMaxKernelSize / kernelSize.fWidth < kernelSize.fHeight) {
return NULL;
}
if (!kernel) {
return NULL;
}
return SkNEW_ARGS(SkMatrixConvolutionImageFilter, (kernelSize, kernel, gain, bias,
kernelOffset, tileMode, convolveAlpha,
input, cropRect, uniqueID));
}
#ifdef SK_SUPPORT_LEGACY_DEEPFLATTENING
static bool tile_mode_is_valid(SkMatrixConvolutionImageFilter::TileMode tileMode) {
switch (tileMode) {
case SkMatrixConvolutionImageFilter::kClamp_TileMode:
case SkMatrixConvolutionImageFilter::kRepeat_TileMode:
case SkMatrixConvolutionImageFilter::kClampToBlack_TileMode:
return true;
default:
break;
}
return false;
}
SkMatrixConvolutionImageFilter::SkMatrixConvolutionImageFilter(SkReadBuffer& buffer)
: INHERITED(1, buffer) {
fKernelSize.fWidth = buffer.readInt();
fKernelSize.fHeight = buffer.readInt();
if ((fKernelSize.fWidth >= 1) && (fKernelSize.fHeight >= 1) &&
// Make sure size won't be larger than a signed int,
// which would still be extremely large for a kernel,
// but we don't impose a hard limit for kernel size
(gMaxKernelSize / fKernelSize.fWidth >= fKernelSize.fHeight)) {
size_t size = fKernelSize.fWidth * fKernelSize.fHeight;
fKernel = SkNEW_ARRAY(SkScalar, size);
SkDEBUGCODE(bool success =) buffer.readScalarArray(fKernel, size);
SkASSERT(success);
} else {
fKernel = 0;
}
fGain = buffer.readScalar();
fBias = buffer.readScalar();
fKernelOffset.fX = buffer.readInt();
fKernelOffset.fY = buffer.readInt();
fTileMode = (TileMode) buffer.readInt();
fConvolveAlpha = buffer.readBool();
buffer.validate((fKernel != 0) &&
SkScalarIsFinite(fGain) &&
SkScalarIsFinite(fBias) &&
tile_mode_is_valid(fTileMode) &&
(fKernelOffset.fX >= 0) && (fKernelOffset.fX < fKernelSize.fWidth) &&
(fKernelOffset.fY >= 0) && (fKernelOffset.fY < fKernelSize.fHeight));
}
#endif
SkFlattenable* SkMatrixConvolutionImageFilter::CreateProc(SkReadBuffer& buffer) {
SK_IMAGEFILTER_UNFLATTEN_COMMON(common, 1);
SkISize kernelSize;
kernelSize.fWidth = buffer.readInt();
kernelSize.fHeight = buffer.readInt();
const int count = buffer.getArrayCount();
const int64_t kernelArea = sk_64_mul(kernelSize.width(), kernelSize.height());
if (!buffer.validate(kernelArea == count)) {
return NULL;
}
SkAutoSTArray<16, SkScalar> kernel(count);
if (!buffer.readScalarArray(kernel.get(), count)) {
return NULL;
}
SkScalar gain = buffer.readScalar();
SkScalar bias = buffer.readScalar();
SkIPoint kernelOffset;
kernelOffset.fX = buffer.readInt();
kernelOffset.fY = buffer.readInt();
TileMode tileMode = (TileMode)buffer.readInt();
bool convolveAlpha = buffer.readBool();
return Create(kernelSize, kernel.get(), gain, bias, kernelOffset, tileMode, convolveAlpha,
common.getInput(0), &common.cropRect(), common.uniqueID());
}
void SkMatrixConvolutionImageFilter::flatten(SkWriteBuffer& buffer) const {
this->INHERITED::flatten(buffer);
buffer.writeInt(fKernelSize.fWidth);
buffer.writeInt(fKernelSize.fHeight);
buffer.writeScalarArray(fKernel, fKernelSize.fWidth * fKernelSize.fHeight);
buffer.writeScalar(fGain);
buffer.writeScalar(fBias);
buffer.writeInt(fKernelOffset.fX);
buffer.writeInt(fKernelOffset.fY);
buffer.writeInt((int) fTileMode);
buffer.writeBool(fConvolveAlpha);
}
SkMatrixConvolutionImageFilter::~SkMatrixConvolutionImageFilter() {
delete[] fKernel;
}
class UncheckedPixelFetcher {
public:
static inline SkPMColor fetch(const SkBitmap& src, int x, int y, const SkIRect& bounds) {
return *src.getAddr32(x, y);
}
};
class ClampPixelFetcher {
public:
static inline SkPMColor fetch(const SkBitmap& src, int x, int y, const SkIRect& bounds) {
x = SkPin32(x, bounds.fLeft, bounds.fRight - 1);
y = SkPin32(y, bounds.fTop, bounds.fBottom - 1);
return *src.getAddr32(x, y);
}
};
class RepeatPixelFetcher {
public:
static inline SkPMColor fetch(const SkBitmap& src, int x, int y, const SkIRect& bounds) {
x = (x - bounds.left()) % bounds.width() + bounds.left();
y = (y - bounds.top()) % bounds.height() + bounds.top();
if (x < bounds.left()) {
x += bounds.width();
}
if (y < bounds.top()) {
y += bounds.height();
}
return *src.getAddr32(x, y);
}
};
class ClampToBlackPixelFetcher {
public:
static inline SkPMColor fetch(const SkBitmap& src, int x, int y, const SkIRect& bounds) {
if (x < bounds.fLeft || x >= bounds.fRight || y < bounds.fTop || y >= bounds.fBottom) {
return 0;
} else {
return *src.getAddr32(x, y);
}
}
};
template<class PixelFetcher, bool convolveAlpha>
void SkMatrixConvolutionImageFilter::filterPixels(const SkBitmap& src,
SkBitmap* result,
const SkIRect& r,
const SkIRect& bounds) const {
SkIRect rect(r);
if (!rect.intersect(bounds)) {
return;
}
for (int y = rect.fTop; y < rect.fBottom; ++y) {
SkPMColor* dptr = result->getAddr32(rect.fLeft - bounds.fLeft, y - bounds.fTop);
for (int x = rect.fLeft; x < rect.fRight; ++x) {
SkScalar sumA = 0, sumR = 0, sumG = 0, sumB = 0;
for (int cy = 0; cy < fKernelSize.fHeight; cy++) {
for (int cx = 0; cx < fKernelSize.fWidth; cx++) {
SkPMColor s = PixelFetcher::fetch(src,
x + cx - fKernelOffset.fX,
y + cy - fKernelOffset.fY,
bounds);
SkScalar k = fKernel[cy * fKernelSize.fWidth + cx];
if (convolveAlpha) {
sumA += SkScalarMul(SkIntToScalar(SkGetPackedA32(s)), k);
}
sumR += SkScalarMul(SkIntToScalar(SkGetPackedR32(s)), k);
sumG += SkScalarMul(SkIntToScalar(SkGetPackedG32(s)), k);
sumB += SkScalarMul(SkIntToScalar(SkGetPackedB32(s)), k);
}
}
int a = convolveAlpha
? SkClampMax(SkScalarFloorToInt(SkScalarMul(sumA, fGain) + fBias), 255)
: 255;
int r = SkClampMax(SkScalarFloorToInt(SkScalarMul(sumR, fGain) + fBias), a);
int g = SkClampMax(SkScalarFloorToInt(SkScalarMul(sumG, fGain) + fBias), a);
int b = SkClampMax(SkScalarFloorToInt(SkScalarMul(sumB, fGain) + fBias), a);
if (!convolveAlpha) {
a = SkGetPackedA32(PixelFetcher::fetch(src, x, y, bounds));
*dptr++ = SkPreMultiplyARGB(a, r, g, b);
} else {
*dptr++ = SkPackARGB32(a, r, g, b);
}
}
}
}
template<class PixelFetcher>
void SkMatrixConvolutionImageFilter::filterPixels(const SkBitmap& src,
SkBitmap* result,
const SkIRect& rect,
const SkIRect& bounds) const {
if (fConvolveAlpha) {
filterPixels<PixelFetcher, true>(src, result, rect, bounds);
} else {
filterPixels<PixelFetcher, false>(src, result, rect, bounds);
}
}
void SkMatrixConvolutionImageFilter::filterInteriorPixels(const SkBitmap& src,
SkBitmap* result,
const SkIRect& rect,
const SkIRect& bounds) const {
filterPixels<UncheckedPixelFetcher>(src, result, rect, bounds);
}
void SkMatrixConvolutionImageFilter::filterBorderPixels(const SkBitmap& src,
SkBitmap* result,
const SkIRect& rect,
const SkIRect& bounds) const {
switch (fTileMode) {
case kClamp_TileMode:
filterPixels<ClampPixelFetcher>(src, result, rect, bounds);
break;
case kRepeat_TileMode:
filterPixels<RepeatPixelFetcher>(src, result, rect, bounds);
break;
case kClampToBlack_TileMode:
filterPixels<ClampToBlackPixelFetcher>(src, result, rect, bounds);
break;
}
}
// FIXME: This should be refactored to SkImageFilterUtils for
// use by other filters. For now, we assume the input is always
// premultiplied and unpremultiply it
static SkBitmap unpremultiplyBitmap(const SkBitmap& src)
{
SkAutoLockPixels alp(src);
if (!src.getPixels()) {
return SkBitmap();
}
SkBitmap result;
if (!result.tryAllocPixels(src.info())) {
return SkBitmap();
}
for (int y = 0; y < src.height(); ++y) {
const uint32_t* srcRow = src.getAddr32(0, y);
uint32_t* dstRow = result.getAddr32(0, y);
for (int x = 0; x < src.width(); ++x) {
dstRow[x] = SkUnPreMultiply::PMColorToColor(srcRow[x]);
}
}
return result;
}
bool SkMatrixConvolutionImageFilter::onFilterImage(Proxy* proxy,
const SkBitmap& source,
const Context& ctx,
SkBitmap* result,
SkIPoint* offset) const {
SkBitmap src = source;
SkIPoint srcOffset = SkIPoint::Make(0, 0);
if (getInput(0) && !getInput(0)->filterImage(proxy, source, ctx, &src, &srcOffset)) {
return false;
}
if (src.colorType() != kN32_SkColorType) {
return false;
}
SkIRect bounds;
if (!this->applyCropRect(ctx, proxy, src, &srcOffset, &bounds, &src)) {
return false;
}
if (!fConvolveAlpha && !src.isOpaque()) {
src = unpremultiplyBitmap(src);
}
SkAutoLockPixels alp(src);
if (!src.getPixels()) {
return false;
}
if (!result->tryAllocPixels(src.info().makeWH(bounds.width(), bounds.height()))) {
return false;
}
offset->fX = bounds.fLeft;
offset->fY = bounds.fTop;
bounds.offset(-srcOffset);
SkIRect interior = SkIRect::MakeXYWH(bounds.left() + fKernelOffset.fX,
bounds.top() + fKernelOffset.fY,
bounds.width() - fKernelSize.fWidth + 1,
bounds.height() - fKernelSize.fHeight + 1);
SkIRect top = SkIRect::MakeLTRB(bounds.left(), bounds.top(), bounds.right(), interior.top());
SkIRect bottom = SkIRect::MakeLTRB(bounds.left(), interior.bottom(),
bounds.right(), bounds.bottom());
SkIRect left = SkIRect::MakeLTRB(bounds.left(), interior.top(),
interior.left(), interior.bottom());
SkIRect right = SkIRect::MakeLTRB(interior.right(), interior.top(),
bounds.right(), interior.bottom());
filterBorderPixels(src, result, top, bounds);
filterBorderPixels(src, result, left, bounds);
filterInteriorPixels(src, result, interior, bounds);
filterBorderPixels(src, result, right, bounds);
filterBorderPixels(src, result, bottom, bounds);
return true;
}
bool SkMatrixConvolutionImageFilter::onFilterBounds(const SkIRect& src, const SkMatrix& ctm,
SkIRect* dst) const {
SkIRect bounds = src;
bounds.fRight += fKernelSize.width() - 1;
bounds.fBottom += fKernelSize.height() - 1;
bounds.offset(-fKernelOffset);
if (getInput(0) && !getInput(0)->filterBounds(bounds, ctm, &bounds)) {
return false;
}
*dst = bounds;
return true;
}
#if SK_SUPPORT_GPU
static GrTextureDomain::Mode convert_tilemodes(
SkMatrixConvolutionImageFilter::TileMode tileMode) {
switch (tileMode) {
case SkMatrixConvolutionImageFilter::kClamp_TileMode:
return GrTextureDomain::kClamp_Mode;
case SkMatrixConvolutionImageFilter::kRepeat_TileMode:
return GrTextureDomain::kRepeat_Mode;
case SkMatrixConvolutionImageFilter::kClampToBlack_TileMode:
return GrTextureDomain::kDecal_Mode;
default:
SkASSERT(false);
}
return GrTextureDomain::kIgnore_Mode;
}
bool SkMatrixConvolutionImageFilter::asFragmentProcessor(GrFragmentProcessor** fp,
GrTexture* texture,
const SkMatrix&,
const SkIRect& bounds) const {
if (!fp) {
return fKernelSize.width() * fKernelSize.height() <= MAX_KERNEL_SIZE;
}
SkASSERT(fKernelSize.width() * fKernelSize.height() <= MAX_KERNEL_SIZE);
*fp = GrMatrixConvolutionEffect::Create(texture,
bounds,
fKernelSize,
fKernel,
fGain,
fBias,
fKernelOffset,
convert_tilemodes(fTileMode),
fConvolveAlpha);
return true;
}
#endif