blob: 1703068a21888beea27c894ae49f21fcfa7cf321 [file] [log] [blame]
/*
* Copyright 2008 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/core/SkCanvas.h"
#include "include/core/SkBlender.h"
#include "include/core/SkColorFilter.h"
#include "include/core/SkImage.h"
#include "include/core/SkImageFilter.h"
#include "include/core/SkPathEffect.h"
#include "include/core/SkPicture.h"
#include "include/core/SkRRect.h"
#include "include/core/SkRasterHandleAllocator.h"
#include "include/core/SkString.h"
#include "include/core/SkTextBlob.h"
#include "include/core/SkVertices.h"
#include "include/effects/SkRuntimeEffect.h"
#include "include/private/SkTo.h"
#include "include/utils/SkNoDrawCanvas.h"
#include "src/core/SkArenaAlloc.h"
#include "src/core/SkBitmapDevice.h"
#include "src/core/SkCanvasPriv.h"
#include "src/core/SkClipOpPriv.h"
#include "src/core/SkClipStack.h"
#include "src/core/SkColorFilterBase.h"
#include "src/core/SkDraw.h"
#include "src/core/SkGlyphRun.h"
#include "src/core/SkImageFilterCache.h"
#include "src/core/SkImageFilter_Base.h"
#include "src/core/SkLatticeIter.h"
#include "src/core/SkMSAN.h"
#include "src/core/SkMarkerStack.h"
#include "src/core/SkMatrixPriv.h"
#include "src/core/SkMatrixUtils.h"
#include "src/core/SkPaintPriv.h"
#include "src/core/SkRasterClip.h"
#include "src/core/SkSpecialImage.h"
#include "src/core/SkStrikeCache.h"
#include "src/core/SkTLazy.h"
#include "src/core/SkTextFormatParams.h"
#include "src/core/SkTraceEvent.h"
#include "src/core/SkVerticesPriv.h"
#include "src/image/SkImage_Base.h"
#include "src/image/SkSurface_Base.h"
#include "src/utils/SkPatchUtils.h"
#include <memory>
#include <new>
#if SK_SUPPORT_GPU
#include "include/gpu/GrDirectContext.h"
#include "src/gpu/BaseDevice.h"
#include "src/gpu/SkGr.h"
#if defined(SK_BUILD_FOR_ANDROID_FRAMEWORK)
# include "src/gpu/GrRenderTarget.h"
# include "src/gpu/GrRenderTargetProxy.h"
# include "src/gpu/GrSurfaceDrawContext.h"
#endif
#endif
#define RETURN_ON_NULL(ptr) do { if (nullptr == (ptr)) return; } while (0)
#define RETURN_ON_FALSE(pred) do { if (!(pred)) return; } while (0)
// This is a test: static_assert with no message is a c++17 feature,
// and std::max() is constexpr only since the c++14 stdlib.
static_assert(std::max(3,4) == 4);
///////////////////////////////////////////////////////////////////////////////////////////////////
/*
* Return true if the drawing this rect would hit every pixels in the canvas.
*
* Returns false if
* - rect does not contain the canvas' bounds
* - paint is not fill
* - paint would blur or otherwise change the coverage of the rect
*/
bool SkCanvas::wouldOverwriteEntireSurface(const SkRect* rect, const SkPaint* paint,
ShaderOverrideOpacity overrideOpacity) const {
static_assert((int)SkPaintPriv::kNone_ShaderOverrideOpacity ==
(int)kNone_ShaderOverrideOpacity,
"need_matching_enums0");
static_assert((int)SkPaintPriv::kOpaque_ShaderOverrideOpacity ==
(int)kOpaque_ShaderOverrideOpacity,
"need_matching_enums1");
static_assert((int)SkPaintPriv::kNotOpaque_ShaderOverrideOpacity ==
(int)kNotOpaque_ShaderOverrideOpacity,
"need_matching_enums2");
const SkISize size = this->getBaseLayerSize();
const SkRect bounds = SkRect::MakeIWH(size.width(), size.height());
// if we're clipped at all, we can't overwrite the entire surface
{
const SkBaseDevice* base = this->baseDevice();
const SkBaseDevice* top = this->topDevice();
if (base != top) {
return false; // we're in a saveLayer, so conservatively don't assume we'll overwrite
}
if (!base->clipIsWideOpen()) {
return false;
}
}
if (rect) {
if (!this->getTotalMatrix().isScaleTranslate()) {
return false; // conservative
}
SkRect devRect;
this->getTotalMatrix().mapRectScaleTranslate(&devRect, *rect);
if (!devRect.contains(bounds)) {
return false;
}
}
if (paint) {
SkPaint::Style paintStyle = paint->getStyle();
if (!(paintStyle == SkPaint::kFill_Style ||
paintStyle == SkPaint::kStrokeAndFill_Style)) {
return false;
}
if (paint->getMaskFilter() || paint->getPathEffect() || paint->getImageFilter()) {
return false; // conservative
}
}
return SkPaintPriv::Overwrites(paint, (SkPaintPriv::ShaderOverrideOpacity)overrideOpacity);
}
///////////////////////////////////////////////////////////////////////////////////////////////////
// experimental for faster tiled drawing...
//#define SK_TRACE_SAVERESTORE
#ifdef SK_TRACE_SAVERESTORE
static int gLayerCounter;
static void inc_layer() { ++gLayerCounter; printf("----- inc layer %d\n", gLayerCounter); }
static void dec_layer() { --gLayerCounter; printf("----- dec layer %d\n", gLayerCounter); }
static int gRecCounter;
static void inc_rec() { ++gRecCounter; printf("----- inc rec %d\n", gRecCounter); }
static void dec_rec() { --gRecCounter; printf("----- dec rec %d\n", gRecCounter); }
static int gCanvasCounter;
static void inc_canvas() { ++gCanvasCounter; printf("----- inc canvas %d\n", gCanvasCounter); }
static void dec_canvas() { --gCanvasCounter; printf("----- dec canvas %d\n", gCanvasCounter); }
#else
#define inc_layer()
#define dec_layer()
#define inc_rec()
#define dec_rec()
#define inc_canvas()
#define dec_canvas()
#endif
void SkCanvas::predrawNotify(bool willOverwritesEntireSurface) {
if (fSurfaceBase) {
fSurfaceBase->aboutToDraw(willOverwritesEntireSurface
? SkSurface::kDiscard_ContentChangeMode
: SkSurface::kRetain_ContentChangeMode);
}
}
void SkCanvas::predrawNotify(const SkRect* rect, const SkPaint* paint,
ShaderOverrideOpacity overrideOpacity) {
if (fSurfaceBase) {
SkSurface::ContentChangeMode mode = SkSurface::kRetain_ContentChangeMode;
// Since willOverwriteAllPixels() may not be complete free to call, we only do so if
// there is an outstanding snapshot, since w/o that, there will be no copy-on-write
// and therefore we don't care which mode we're in.
//
if (fSurfaceBase->outstandingImageSnapshot()) {
if (this->wouldOverwriteEntireSurface(rect, paint, overrideOpacity)) {
mode = SkSurface::kDiscard_ContentChangeMode;
}
}
fSurfaceBase->aboutToDraw(mode);
}
}
///////////////////////////////////////////////////////////////////////////////
namespace {
// Canvases maintain a sparse stack of layers, where the top-most layer receives the drawing,
// clip, and matrix commands. There is a layer per call to saveLayer() using the
// kFullLayer_SaveLayerStrategy.
struct Layer {
sk_sp<SkBaseDevice> fDevice;
sk_sp<SkImageFilter> fImageFilter; // applied to layer *before* being drawn by paint
SkPaint fPaint;
Layer(sk_sp<SkBaseDevice> device, sk_sp<SkImageFilter> imageFilter, const SkPaint& paint)
: fDevice(std::move(device))
, fImageFilter(std::move(imageFilter))
, fPaint(paint) {
SkASSERT(fDevice);
// Any image filter should have been pulled out and stored in 'imageFilter' so that 'paint'
// can be used as-is to draw the result of the filter to the dst device.
SkASSERT(!fPaint.getImageFilter());
}
};
// Encapsulate state needed to restore from saveBehind()
struct BackImage {
sk_sp<SkSpecialImage> fImage;
SkIPoint fLoc;
};
enum class CheckForOverwrite : bool {
kNo = false,
kYes = true
};
} // namespace
/* This is the record we keep for each save/restore level in the stack.
Since a level optionally copies the matrix and/or stack, we have pointers
for these fields. If the value is copied for this level, the copy is
stored in the ...Storage field, and the pointer points to that. If the
value is not copied for this level, we ignore ...Storage, and just point
at the corresponding value in the previous level in the stack.
*/
class SkCanvas::MCRec {
public:
// If not null, this MCRec corresponds with the saveLayer() record that made the layer.
// The base "layer" is not stored here, since it is stored inline in SkCanvas and has no
// restoration behavior.
std::unique_ptr<Layer> fLayer;
// This points to the device of the top-most layer (which may be lower in the stack), or
// to the canvas's fBaseDevice. The MCRec does not own the device.
SkBaseDevice* fDevice;
std::unique_ptr<BackImage> fBackImage;
SkM44 fMatrix;
int fDeferredSaveCount;
MCRec(SkBaseDevice* device)
: fLayer(nullptr)
, fDevice(device)
, fBackImage(nullptr)
, fDeferredSaveCount(0) {
SkASSERT(fDevice);
fMatrix.setIdentity();
inc_rec();
}
MCRec(const MCRec& prev)
: fLayer(nullptr)
, fDevice(prev.fDevice)
, fMatrix(prev.fMatrix)
, fDeferredSaveCount(0) {
SkASSERT(fDevice);
inc_rec();
}
~MCRec() {
dec_rec();
}
void newLayer(sk_sp<SkBaseDevice> layerDevice, sk_sp<SkImageFilter> filter,
const SkPaint& restorePaint) {
SkASSERT(!fBackImage);
fLayer = std::make_unique<Layer>(std::move(layerDevice), std::move(filter), restorePaint);
fDevice = fLayer->fDevice.get();
}
void reset(SkBaseDevice* device) {
SkASSERT(!fLayer);
SkASSERT(device);
SkASSERT(fDeferredSaveCount == 0);
fDevice = device;
fMatrix.setIdentity();
}
};
class SkCanvas::AutoUpdateQRBounds {
public:
explicit AutoUpdateQRBounds(SkCanvas* canvas) : fCanvas(canvas) {
// pre-condition, fQuickRejectBounds and other state should be valid before anything
// modifies the device's clip.
fCanvas->validateClip();
}
~AutoUpdateQRBounds() {
fCanvas->fQuickRejectBounds = fCanvas->computeDeviceClipBounds();
// post-condition, we should remain valid after re-computing the bounds
fCanvas->validateClip();
}
private:
SkCanvas* fCanvas;
AutoUpdateQRBounds(AutoUpdateQRBounds&&) = delete;
AutoUpdateQRBounds(const AutoUpdateQRBounds&) = delete;
AutoUpdateQRBounds& operator=(AutoUpdateQRBounds&&) = delete;
AutoUpdateQRBounds& operator=(const AutoUpdateQRBounds&) = delete;
};
/////////////////////////////////////////////////////////////////////////////
// Attempts to convert an image filter to its equivalent color filter, which if possible, modifies
// the paint to compose the image filter's color filter into the paint's color filter slot.
// Returns true if the paint has been modified.
// Requires the paint to have an image filter and the copy-on-write be initialized.
static bool image_to_color_filter(SkPaint* paint) {
SkASSERT(SkToBool(paint) && paint->getImageFilter());
SkColorFilter* imgCFPtr;
if (!paint->getImageFilter()->asAColorFilter(&imgCFPtr)) {
return false;
}
sk_sp<SkColorFilter> imgCF(imgCFPtr);
SkColorFilter* paintCF = paint->getColorFilter();
if (paintCF) {
// The paint has both a colorfilter(paintCF) and an imagefilter-that-is-a-colorfilter(imgCF)
// and we need to combine them into a single colorfilter.
imgCF = imgCF->makeComposed(sk_ref_sp(paintCF));
}
paint->setColorFilter(std::move(imgCF));
paint->setImageFilter(nullptr);
return true;
}
/**
* We implement ImageFilters for a given draw by creating a layer, then applying the
* imagefilter to the pixels of that layer (its backing surface/image), and then
* we call restore() to xfer that layer to the main canvas.
*
* 1. SaveLayer (with a paint containing the current imagefilter and xfermode)
* 2. Generate the src pixels:
* Remove the imagefilter and the xfermode from the paint that we (AutoDrawLooper)
* return (fPaint). We then draw the primitive (using srcover) into a cleared
* buffer/surface.
* 3. Restore the layer created in #1
* The imagefilter is passed the buffer/surface from the layer (now filled with the
* src pixels of the primitive). It returns a new "filtered" buffer, which we
* draw onto the previous layer using the xfermode from the original paint.
*/
class AutoLayerForImageFilter {
public:
// "rawBounds" is the original bounds of the primitive about to be drawn, unmodified by the
// paint. It's used to determine the size of the offscreen layer for filters.
// If null, the clip will be used instead.
//
// Draw functions should use layer->paint() instead of the passed-in paint.
AutoLayerForImageFilter(SkCanvas* canvas,
const SkPaint& paint,
const SkRect* rawBounds = nullptr,
CheckForOverwrite checkOverwrite = CheckForOverwrite::kNo,
SkCanvas::ShaderOverrideOpacity overrideOpacity =
SkCanvas::kNone_ShaderOverrideOpacity)
: fPaint(paint)
, fCanvas(canvas)
, fTempLayerForImageFilter(false) {
SkDEBUGCODE(fSaveCount = canvas->getSaveCount();)
if (checkOverwrite == CheckForOverwrite::kYes) {
canvas->predrawNotify(rawBounds, &fPaint, overrideOpacity);
} else {
canvas->predrawNotify();
}
if (fPaint.getImageFilter() && !image_to_color_filter(&fPaint)) {
// The draw paint has an image filter that couldn't be simplified to an equivalent
// color filter, so we have to inject an automatic saveLayer().
SkPaint restorePaint;
restorePaint.setImageFilter(fPaint.refImageFilter());
restorePaint.setBlender(fPaint.refBlender());
// Remove the restorePaint fields from our "working" paint
fPaint.setImageFilter(nullptr);
fPaint.setBlendMode(SkBlendMode::kSrcOver);
SkRect storage;
if (rawBounds && fPaint.canComputeFastBounds()) {
// Make rawBounds include all paint outsets except for those due to image filters.
// At this point, fPaint's image filter has been moved to 'restorePaint'.
SkASSERT(!fPaint.getImageFilter());
rawBounds = &fPaint.computeFastBounds(*rawBounds, &storage);
}
(void)canvas->internalSaveLayer(SkCanvas::SaveLayerRec(rawBounds, &restorePaint),
SkCanvas::kFullLayer_SaveLayerStrategy);
fTempLayerForImageFilter = true;
}
}
~AutoLayerForImageFilter() {
if (fTempLayerForImageFilter) {
fCanvas->internalRestore();
}
SkASSERT(fCanvas->getSaveCount() == fSaveCount);
}
const SkPaint& paint() const { return fPaint; }
private:
SkPaint fPaint;
SkCanvas* fCanvas;
bool fTempLayerForImageFilter;
SkDEBUGCODE(int fSaveCount;)
};
////////////////////////////////////////////////////////////////////////////
void SkCanvas::resetForNextPicture(const SkIRect& bounds) {
this->restoreToCount(1);
// We're peering through a lot of structs here. Only at this scope do we
// know that the device is a SkNoPixelsDevice.
SkASSERT(fBaseDevice->isNoPixelsDevice());
static_cast<SkNoPixelsDevice*>(fBaseDevice.get())->resetForNextPicture(bounds);
fMCRec->reset(fBaseDevice.get());
fQuickRejectBounds = this->computeDeviceClipBounds();
}
void SkCanvas::init(sk_sp<SkBaseDevice> device) {
// SkCanvas.h declares internal storage for the hidden struct MCRec, and this
// assert ensure it's sufficient. <= is used because the struct has pointer fields, so the
// declared size is an upper bound across architectures. When the size is smaller, more stack
static_assert(sizeof(MCRec) <= kMCRecSize);
if (!device) {
device = sk_make_sp<SkNoPixelsDevice>(SkIRect::MakeEmpty(), fProps);
}
// From this point on, SkCanvas will always have a device
SkASSERT(device);
fSaveCount = 1;
fMCRec = new (fMCStack.push_back()) MCRec(device.get());
fMarkerStack = sk_make_sp<SkMarkerStack>();
// The root device and the canvas should always have the same pixel geometry
SkASSERT(fProps.pixelGeometry() == device->surfaceProps().pixelGeometry());
device->androidFramework_setDeviceClipRestriction(&fClipRestrictionRect);
device->setMarkerStack(fMarkerStack.get());
fSurfaceBase = nullptr;
fBaseDevice = std::move(device);
fScratchGlyphRunBuilder = std::make_unique<SkGlyphRunBuilder>();
fQuickRejectBounds = this->computeDeviceClipBounds();
}
SkCanvas::SkCanvas()
: fMCStack(sizeof(MCRec), fMCRecStorage, sizeof(fMCRecStorage))
, fProps()
{
inc_canvas();
this->init(nullptr);
}
SkCanvas::SkCanvas(int width, int height, const SkSurfaceProps* props)
: fMCStack(sizeof(MCRec), fMCRecStorage, sizeof(fMCRecStorage))
, fProps(SkSurfacePropsCopyOrDefault(props))
{
inc_canvas();
this->init(sk_make_sp<SkNoPixelsDevice>(
SkIRect::MakeWH(std::max(width, 0), std::max(height, 0)), fProps));
}
SkCanvas::SkCanvas(const SkIRect& bounds)
: fMCStack(sizeof(MCRec), fMCRecStorage, sizeof(fMCRecStorage))
, fProps()
{
inc_canvas();
SkIRect r = bounds.isEmpty() ? SkIRect::MakeEmpty() : bounds;
this->init(sk_make_sp<SkNoPixelsDevice>(r, fProps));
}
SkCanvas::SkCanvas(sk_sp<SkBaseDevice> device)
: fMCStack(sizeof(MCRec), fMCRecStorage, sizeof(fMCRecStorage))
, fProps(device->surfaceProps())
{
inc_canvas();
this->init(device);
}
SkCanvas::SkCanvas(const SkBitmap& bitmap, const SkSurfaceProps& props)
: fMCStack(sizeof(MCRec), fMCRecStorage, sizeof(fMCRecStorage))
, fProps(props)
{
inc_canvas();
sk_sp<SkBaseDevice> device(new SkBitmapDevice(bitmap, fProps, nullptr, nullptr));
this->init(device);
}
SkCanvas::SkCanvas(const SkBitmap& bitmap, std::unique_ptr<SkRasterHandleAllocator> alloc,
SkRasterHandleAllocator::Handle hndl)
: fMCStack(sizeof(MCRec), fMCRecStorage, sizeof(fMCRecStorage))
, fProps()
, fAllocator(std::move(alloc))
{
inc_canvas();
sk_sp<SkBaseDevice> device(new SkBitmapDevice(bitmap, fProps, hndl, nullptr));
this->init(device);
}
SkCanvas::SkCanvas(const SkBitmap& bitmap) : SkCanvas(bitmap, nullptr, nullptr) {}
#ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK
SkCanvas::SkCanvas(const SkBitmap& bitmap, ColorBehavior)
: fMCStack(sizeof(MCRec), fMCRecStorage, sizeof(fMCRecStorage)), fProps(), fAllocator(nullptr)
{
inc_canvas();
SkBitmap tmp(bitmap);
*const_cast<SkImageInfo*>(&tmp.info()) = tmp.info().makeColorSpace(nullptr);
sk_sp<SkBaseDevice> device(new SkBitmapDevice(tmp, fProps, nullptr, nullptr));
this->init(device);
}
#endif
SkCanvas::~SkCanvas() {
// free up the contents of our deque
this->restoreToCount(1); // restore everything but the last
this->internalRestore(); // restore the last, since we're going away
dec_canvas();
}
///////////////////////////////////////////////////////////////////////////////
void SkCanvas::flush() {
this->onFlush();
}
void SkCanvas::onFlush() {
#if SK_SUPPORT_GPU
auto dContext = GrAsDirectContext(this->recordingContext());
if (dContext) {
dContext->flushAndSubmit();
}
#endif
}
SkSurface* SkCanvas::getSurface() const {
return fSurfaceBase;
}
SkISize SkCanvas::getBaseLayerSize() const {
return this->baseDevice()->imageInfo().dimensions();
}
SkBaseDevice* SkCanvas::topDevice() const {
SkASSERT(fMCRec->fDevice);
return fMCRec->fDevice;
}
bool SkCanvas::readPixels(const SkPixmap& pm, int x, int y) {
return pm.addr() && this->baseDevice()->readPixels(pm, x, y);
}
bool SkCanvas::readPixels(const SkImageInfo& dstInfo, void* dstP, size_t rowBytes, int x, int y) {
return this->readPixels({ dstInfo, dstP, rowBytes}, x, y);
}
bool SkCanvas::readPixels(const SkBitmap& bm, int x, int y) {
SkPixmap pm;
return bm.peekPixels(&pm) && this->readPixels(pm, x, y);
}
bool SkCanvas::writePixels(const SkBitmap& bitmap, int x, int y) {
SkPixmap pm;
if (bitmap.peekPixels(&pm)) {
return this->writePixels(pm.info(), pm.addr(), pm.rowBytes(), x, y);
}
return false;
}
bool SkCanvas::writePixels(const SkImageInfo& srcInfo, const void* pixels, size_t rowBytes,
int x, int y) {
SkBaseDevice* device = this->baseDevice();
// This check gives us an early out and prevents generation ID churn on the surface.
// This is purely optional: it is a subset of the checks performed by SkWritePixelsRec.
SkIRect srcRect = SkIRect::MakeXYWH(x, y, srcInfo.width(), srcInfo.height());
if (!srcRect.intersect({0, 0, device->width(), device->height()})) {
return false;
}
// Tell our owning surface to bump its generation ID.
const bool completeOverwrite =
srcRect.size() == SkISize::Make(device->width(), device->height());
this->predrawNotify(completeOverwrite);
// This can still fail, most notably in the case of a invalid color type or alpha type
// conversion. We could pull those checks into this function and avoid the unnecessary
// generation ID bump. But then we would be performing those checks twice, since they
// are also necessary at the bitmap/pixmap entry points.
return device->writePixels({srcInfo, pixels, rowBytes}, x, y);
}
//////////////////////////////////////////////////////////////////////////////
void SkCanvas::checkForDeferredSave() {
if (fMCRec->fDeferredSaveCount > 0) {
this->doSave();
}
}
int SkCanvas::getSaveCount() const {
#ifdef SK_DEBUG
int count = 0;
SkDeque::Iter iter(fMCStack, SkDeque::Iter::kFront_IterStart);
for (;;) {
const MCRec* rec = (const MCRec*)iter.next();
if (!rec) {
break;
}
count += 1 + rec->fDeferredSaveCount;
}
SkASSERT(count == fSaveCount);
#endif
return fSaveCount;
}
int SkCanvas::save() {
fSaveCount += 1;
fMCRec->fDeferredSaveCount += 1;
return this->getSaveCount() - 1; // return our prev value
}
void SkCanvas::doSave() {
this->willSave();
SkASSERT(fMCRec->fDeferredSaveCount > 0);
fMCRec->fDeferredSaveCount -= 1;
this->internalSave();
}
void SkCanvas::restore() {
if (fMCRec->fDeferredSaveCount > 0) {
SkASSERT(fSaveCount > 1);
fSaveCount -= 1;
fMCRec->fDeferredSaveCount -= 1;
} else {
// check for underflow
if (fMCStack.count() > 1) {
this->willRestore();
SkASSERT(fSaveCount > 1);
fSaveCount -= 1;
this->internalRestore();
this->didRestore();
}
}
}
void SkCanvas::restoreToCount(int count) {
// safety check
if (count < 1) {
count = 1;
}
int n = this->getSaveCount() - count;
for (int i = 0; i < n; ++i) {
this->restore();
}
}
void SkCanvas::internalSave() {
fMCRec = new (fMCStack.push_back()) MCRec(*fMCRec);
this->topDevice()->save();
}
int SkCanvas::saveLayer(const SkRect* bounds, const SkPaint* paint) {
return this->saveLayer(SaveLayerRec(bounds, paint, 0));
}
int SkCanvas::saveLayer(const SaveLayerRec& rec) {
TRACE_EVENT0("skia", TRACE_FUNC);
if (rec.fPaint && rec.fPaint->nothingToDraw()) {
// no need for the layer (or any of the draws until the matching restore()
this->save();
this->clipRect({0,0,0,0});
} else {
SaveLayerStrategy strategy = this->getSaveLayerStrategy(rec);
fSaveCount += 1;
this->internalSaveLayer(rec, strategy);
}
return this->getSaveCount() - 1;
}
int SkCanvas::only_axis_aligned_saveBehind(const SkRect* bounds) {
if (bounds && !this->getLocalClipBounds().intersects(*bounds)) {
// Assuming clips never expand, if the request bounds is outside of the current clip
// there is no need to copy/restore the area, so just devolve back to a regular save.
this->save();
} else {
bool doTheWork = this->onDoSaveBehind(bounds);
fSaveCount += 1;
this->internalSave();
if (doTheWork) {
this->internalSaveBehind(bounds);
}
}
return this->getSaveCount() - 1;
}
// In our current design/features, we should never have a layer (src) in a different colorspace
// than its parent (dst), so we assert that here. This is called out from other asserts, in case
// we add some feature in the future to allow a given layer/imagefilter to operate in a specific
// colorspace.
static void check_drawdevice_colorspaces(SkColorSpace* src, SkColorSpace* dst) {
SkASSERT(src == dst);
}
// Helper function to compute the center reference point used for scale decomposition under
// non-linear transformations.
static bool compute_decomposition_center(const SkMatrix& dstToLocal,
const skif::ParameterSpace<SkRect>* contentBounds,
const skif::DeviceSpace<SkIRect>& targetOutput,
skif::ParameterSpace<SkPoint>* out) {
// Will use the inverse and center of the device bounds if the content bounds aren't provided.
SkRect rect = contentBounds ? SkRect(*contentBounds) : SkRect::Make(SkIRect(targetOutput));
SkPoint center = {rect.centerX(), rect.centerY()};
if (!contentBounds) {
// Theoretically, the inverse transform could put center's homogeneous coord behind W = 0,
// but that case is handled automatically in DecomposeCTM later.
dstToLocal.mapPoints(&center, 1);
}
*out = skif::ParameterSpace<SkPoint>(center);
return true;
}
// Compute suitable transformations and layer bounds for a new layer that will be used as the source
// input into 'filter' before being drawn into 'dst' via the returned skif::Mapping.
// Null filters are permitted and act as the identity. The returned mapping will be compatible with
// the image filter.
//
// Returns an empty rect if the layer wouldn't draw anything after filtering.
static std::pair<skif::Mapping, skif::LayerSpace<SkIRect>> get_layer_mapping_and_bounds(
const SkImageFilter* filter,
const SkMatrix& localToDst,
const skif::DeviceSpace<SkIRect>& targetOutput,
const skif::ParameterSpace<SkRect>* contentBounds = nullptr,
bool mustCoverDst = true) {
skif::ParameterSpace<SkPoint> center;
SkMatrix dstToLocal;
if (!localToDst.isFinite() ||
!localToDst.invert(&dstToLocal) ||
!compute_decomposition_center(dstToLocal, contentBounds, targetOutput, &center)) {
return {{}, skif::LayerSpace<SkIRect>(SkIRect::MakeEmpty())};
}
// *after* possibly getting a representative point from the provided content bounds, it might
// be necessary to discard the bounds for subsequent layer calculations.
if (mustCoverDst) {
contentBounds = nullptr;
}
// Determine initial mapping and a reasonable maximum dimension to prevent layer-to-device
// transforms with perspective and skew from triggering excessive buffer allocations.
skif::Mapping mapping = skif::Mapping::DecomposeCTM(localToDst, filter, center);
// Perspective and skew could exceed this since mapping.deviceToLayer(targetOutput) is
// theoretically unbounded under those conditions. Under a 45 degree rotation, a layer needs to
// be 2X larger per side of the prior device in order to fully cover it. We use the max of that
// and 2048 for a reasonable upper limit (this allows small layers under extreme transforms to
// use more relative resolution than a larger layer).
static const int kMinDimThreshold = 2048;
int maxLayerDim = std::max(Sk64_pin_to_s32(2 * std::max(SkIRect(targetOutput).width64(),
SkIRect(targetOutput).height64())),
kMinDimThreshold);
skif::LayerSpace<SkIRect> layerBounds;
if (filter) {
layerBounds = as_IFB(filter)->getInputBounds(mapping, targetOutput, contentBounds);
// When a filter is involved, the layer size may be larger than the default maxLayerDim due
// to required inputs for filters (e.g. a displacement map with a large radius).
if (layerBounds.width() > maxLayerDim || layerBounds.height() > maxLayerDim) {
skif::Mapping idealMapping(SkMatrix::I(), mapping.layerMatrix());
auto idealLayerBounds = as_IFB(filter)->getInputBounds(idealMapping, targetOutput,
contentBounds);
maxLayerDim = std::max(std::max(idealLayerBounds.width(), idealLayerBounds.height()),
maxLayerDim);
}
} else {
layerBounds = mapping.deviceToLayer(targetOutput);
if (contentBounds) {
// For better or for worse, user bounds currently act as a hard clip on the layer's
// extent (i.e., they implement the CSS filter-effects 'filter region' feature).
skif::LayerSpace<SkIRect> knownBounds = mapping.paramToLayer(*contentBounds).roundOut();
if (!layerBounds.intersect(knownBounds)) {
layerBounds = skif::LayerSpace<SkIRect>(SkIRect::MakeEmpty());
}
}
}
if (layerBounds.width() > maxLayerDim || layerBounds.height() > maxLayerDim) {
skif::LayerSpace<SkIRect> newLayerBounds(
SkIRect::MakeWH(std::min(layerBounds.width(), maxLayerDim),
std::min(layerBounds.height(), maxLayerDim)));
SkMatrix adjust = SkMatrix::MakeRectToRect(SkRect::Make(SkIRect(layerBounds)),
SkRect::Make(SkIRect(newLayerBounds)),
SkMatrix::kFill_ScaleToFit);
if (!mapping.adjustLayerSpace(adjust)) {
layerBounds = skif::LayerSpace<SkIRect>(SkIRect::MakeEmpty());
} else {
layerBounds = newLayerBounds;
}
}
return {mapping, layerBounds};
}
static SkImageInfo make_layer_info(const SkImageInfo& prev, int w, int h, bool f16) {
SkColorType ct = f16 ? SkColorType::kRGBA_F16_SkColorType : prev.colorType();
if (!f16 &&
prev.bytesPerPixel() <= 4 &&
prev.colorType() != kRGBA_8888_SkColorType &&
prev.colorType() != kBGRA_8888_SkColorType) {
// "Upgrade" A8, G8, 565, 4444, 1010102, 101010x, and 888x to 8888,
// ensuring plenty of alpha bits for the layer, perhaps losing some color bits in return.
ct = kN32_SkColorType;
}
return SkImageInfo::Make(w, h, ct, kPremul_SkAlphaType, prev.refColorSpace());
}
static bool draw_layer_as_sprite(const SkMatrix& matrix, const SkISize& size) {
// Assume anti-aliasing and highest valid filter mode (linear) for drawing layers and image
// filters. If the layer can be drawn as a sprite, these can be downgraded.
SkPaint paint;
paint.setAntiAlias(true);
SkSamplingOptions sampling{SkFilterMode::kLinear};
return SkTreatAsSprite(matrix, size, sampling, paint);
}
void SkCanvas::internalDrawDeviceWithFilter(SkBaseDevice* src,
SkBaseDevice* dst,
const SkImageFilter* filter,
const SkPaint& paint,
DeviceCompatibleWithFilter compat) {
check_drawdevice_colorspaces(dst->imageInfo().colorSpace(),
src->imageInfo().colorSpace());
// 'filter' sees the src device's buffer as the implicit input image, and processes the image
// in this device space (referred to as the "layer" space). However, the filter
// parameters need to respect the current matrix, which is not necessarily the local matrix that
// was set on 'src' (e.g. because we've popped src off the stack already).
// TODO (michaelludwig): Stay in SkM44 once skif::Mapping supports SkM44 instead of SkMatrix.
SkMatrix localToSrc = (src->globalToDevice() * fMCRec->fMatrix).asM33();
SkISize srcDims = src->imageInfo().dimensions();
// Whether or not we need to make a transformed tmp image from 'src', and what that transform is
bool needsIntermediateImage = false;
SkMatrix srcToIntermediate;
skif::Mapping mapping;
skif::LayerSpace<SkIRect> requiredInput;
if (compat == DeviceCompatibleWithFilter::kYes) {
// Just use the relative transform from src to dst and the src's whole image, since
// internalSaveLayer should have already determined what was necessary.
mapping = skif::Mapping(src->getRelativeTransform(*dst), localToSrc);
requiredInput = skif::LayerSpace<SkIRect>(SkIRect::MakeSize(srcDims));
SkASSERT(!requiredInput.isEmpty());
} else {
// Compute the image filter mapping by decomposing the local->device matrix of dst and
// re-determining the required input.
std::tie(mapping, requiredInput) = get_layer_mapping_and_bounds(
filter, dst->localToDevice(), skif::DeviceSpace<SkIRect>(dst->devClipBounds()));
if (requiredInput.isEmpty()) {
return;
}
// The above mapping transforms from local to dst's device space, where the layer space
// represents the intermediate buffer. Now we need to determine the transform from src to
// intermediate to prepare the input to the filter.
if (!localToSrc.invert(&srcToIntermediate)) {
return;
}
srcToIntermediate.postConcat(mapping.layerMatrix());
if (draw_layer_as_sprite(srcToIntermediate, srcDims)) {
// src differs from intermediate by just an integer translation, so it can be applied
// automatically when taking a subset of src if we update the mapping.
skif::LayerSpace<SkIPoint> srcOrigin({(int) srcToIntermediate.getTranslateX(),
(int) srcToIntermediate.getTranslateY()});
mapping.applyOrigin(srcOrigin);
requiredInput.offset(-srcOrigin);
} else {
// The contents of 'src' will be drawn to an intermediate buffer using srcToIntermediate
// and that buffer will be the input to the image filter.
needsIntermediateImage = true;
}
}
sk_sp<SkSpecialImage> filterInput;
if (!needsIntermediateImage) {
// The src device can be snapped directly
skif::LayerSpace<SkIRect> srcSubset(SkIRect::MakeSize(srcDims));
if (srcSubset.intersect(requiredInput)) {
filterInput = src->snapSpecial(SkIRect(srcSubset));
// TODO: For now image filter input images need to have a (0,0) origin. The required
// input's top left has been baked into srcSubset so we use that as the image origin.
mapping.applyOrigin(srcSubset.topLeft());
}
} else {
// We need to produce a temporary image that is equivalent to 'src' but transformed to
// a coordinate space compatible with the image filter
SkASSERT(compat == DeviceCompatibleWithFilter::kUnknown);
SkRect srcRect;
if (!SkMatrixPriv::InverseMapRect(srcToIntermediate, &srcRect,
SkRect::Make(SkIRect(requiredInput)))) {
return;
}
SkIRect srcSubset = srcRect.roundOut();
sk_sp<SkSpecialImage> srcImage;
if (srcSubset.intersect(SkIRect::MakeSize(srcDims)) &&
(srcImage = src->snapSpecial(srcSubset))) {
// Make a new surface and draw 'srcImage' into it with the srcToIntermediate transform
// to produce the final input image for the filter
SkBaseDevice::CreateInfo info(make_layer_info(src->imageInfo(), requiredInput.width(),
requiredInput.height(), false),
SkPixelGeometry::kUnknown_SkPixelGeometry,
SkBaseDevice::TileUsage::kNever_TileUsage,
false, fAllocator.get());
sk_sp<SkBaseDevice> intermediateDevice(src->onCreateDevice(info, &paint));
if (!intermediateDevice) {
return;
}
intermediateDevice->setOrigin(SkM44(srcToIntermediate),
requiredInput.left(), requiredInput.top());
SkMatrix offsetLocalToDevice = intermediateDevice->localToDevice();
offsetLocalToDevice.preTranslate(srcSubset.left(), srcSubset.top());
// We draw with non-AA bilinear since we cover the destination but definitely don't have
// a pixel-aligned transform.
intermediateDevice->drawSpecial(srcImage.get(), offsetLocalToDevice,
SkSamplingOptions{SkFilterMode::kLinear}, {});
filterInput = intermediateDevice->snapSpecial();
// TODO: Like the non-intermediate case, we need to apply the image origin.
mapping.applyOrigin(requiredInput.topLeft());
}
}
if (filterInput) {
const bool use_nn = draw_layer_as_sprite(mapping.deviceMatrix(),
filterInput->subset().size());
SkSamplingOptions sampling{use_nn ? SkFilterMode::kNearest : SkFilterMode::kLinear};
if (filter) {
dst->drawFilteredImage(mapping, filterInput.get(), filter, sampling, paint);
} else {
dst->drawSpecial(filterInput.get(), mapping.deviceMatrix(), sampling, paint);
}
}
}
// This is similar to image_to_color_filter used by AutoLayerForImageFilter, but with key changes:
// - image_to_color_filter requires the entire image filter DAG to be represented as a color filter
// that does not affect transparent black (SkImageFilter::asAColorFilter)
// - when that is met, the image filter's CF is composed around any CF that was on the draw's paint
// since for a draw, the color filtering happens before any image filtering
// - optimize_layer_filter only applies to the last node and does not care about transparent black
// since a layer is being made regardless (SkImageFilter::isColorFilterNode)
// - any extracted CF is composed inside the restore paint's CF because image filters are evaluated
// before the color filter of a restore paint for layers.
//
// Assumes that 'filter', and thus its inputs, will remain owned by the caller. Modifies 'paint'
// to have the updated color filter and returns the image filter to evaluate on restore.
//
// FIXME: skbug.com/12083 - we modify 'coversDevice' here because for now, only the color filter
// produced from an image filter node is checked for affecting transparent black, even though it's
// better in the long run to have any CF that affects transparent black expand to the clip.
static const SkImageFilter* optimize_layer_filter(const SkImageFilter* filter, SkPaint* paint,
bool* coversDevice=nullptr) {
SkASSERT(paint);
SkColorFilter* cf;
if (filter && filter->isColorFilterNode(&cf)) {
sk_sp<SkColorFilter> inner(cf);
if (paint->getAlphaf() < 1.f) {
// The paint's alpha is applied after the image filter but before the paint's color
// filter. If there is transparency, we have to apply it between the two filters.
// FIXME: The Blend CF should allow composing directly at construction.
inner = SkColorFilters::Compose(
SkColorFilters::Blend(/* src */ paint->getColor(), SkBlendMode::kDstIn),
/* dst */ std::move(inner));
paint->setAlphaf(1.f);
}
// Check if the once-wrapped color filter affects transparent black *before* we combine
// it with any original color filter on the paint.
if (coversDevice) {
*coversDevice = as_CFB(inner)->affectsTransparentBlack();
}
paint->setColorFilter(SkColorFilters::Compose(paint->refColorFilter(), std::move(inner)));
SkASSERT(filter->countInputs() == 1);
return filter->getInput(0);
} else {
if (coversDevice) {
*coversDevice = false;
}
return filter;
}
}
// If there is a backdrop filter, or if the restore paint has a color filter that affects
// transparent black, then the new layer must be sized such that it covers the entire device
// clip bounds of the prior device (otherwise edges of the temporary layer would be visible).
// See skbug.com/8783
static bool must_cover_prior_device(const SkImageFilter* backdrop,
const SkPaint& restorePaint) {
// FIXME(michaelludwig) - see skbug.com/12083, once clients do not depend on user bounds for
// clipping a layer visually, we can respect the fact that the color filter affects transparent
// black and should cover the device.
return SkToBool(backdrop); // ||
// (restorePaint.getColorFilter() &&
// as_CFB(restorePaint.getColorFilter())->affectsTransparentBlack());
}
void SkCanvas::internalSaveLayer(const SaveLayerRec& rec, SaveLayerStrategy strategy) {
TRACE_EVENT0("skia", TRACE_FUNC);
// Do this before we create the layer. We don't call the public save() since that would invoke a
// possibly overridden virtual.
this->internalSave();
if (this->isClipEmpty()) {
// Early out if the layer wouldn't draw anything
return;
}
// Build up the paint for restoring the layer, taking only the pieces of rec.fPaint that are
// relevant. Filtering is automatically chosen in internalDrawDeviceWithFilter based on the
// device's coordinate space.
SkPaint restorePaint(rec.fPaint ? *rec.fPaint : SkPaint());
restorePaint.setMaskFilter(nullptr); // mask filters are ignored for saved layers
restorePaint.setImageFilter(nullptr); // the image filter is held separately
// Smooth non-axis-aligned layer edges; this automatically downgrades to non-AA for aligned
// layer restores. This is done to match legacy behavior where the post-applied MatrixTransform
// bilerp also smoothed cropped edges. See skbug.com/11252
restorePaint.setAntiAlias(true);
bool optimizedCFAffectsTransparent;
const SkImageFilter* filter = optimize_layer_filter(
rec.fPaint ? rec.fPaint->getImageFilter() : nullptr, &restorePaint,
&optimizedCFAffectsTransparent);
// Size the new layer relative to the prior device, which may already be aligned for filters.
SkBaseDevice* priorDevice = this->topDevice();
skif::Mapping newLayerMapping;
skif::LayerSpace<SkIRect> layerBounds;
std::tie(newLayerMapping, layerBounds) = get_layer_mapping_and_bounds(
filter, priorDevice->localToDevice(),
skif::DeviceSpace<SkIRect>(priorDevice->devClipBounds()),
skif::ParameterSpace<SkRect>::Optional(rec.fBounds),
must_cover_prior_device(rec.fBackdrop, restorePaint) || optimizedCFAffectsTransparent);
if (layerBounds.isEmpty()) {
// The filtered content of the layer would not draw anything, so skip the layer
AutoUpdateQRBounds aqr(this);
priorDevice->clipRect(SkRect::MakeEmpty(), SkClipOp::kIntersect, /* aa */ false);
return;
}
sk_sp<SkBaseDevice> newDevice;
if (strategy == kFullLayer_SaveLayerStrategy) {
SkASSERT(!layerBounds.isEmpty());
SkImageInfo info = make_layer_info(priorDevice->imageInfo(),
layerBounds.width(), layerBounds.height(),
SkToBool(rec.fSaveLayerFlags & kF16ColorType));
if (rec.fSaveLayerFlags & kF16ColorType) {
info = info.makeColorType(kRGBA_F16_SkColorType);
}
SkASSERT(info.alphaType() != kOpaque_SkAlphaType);
SkPixelGeometry geo = rec.fSaveLayerFlags & kPreserveLCDText_SaveLayerFlag
? fProps.pixelGeometry()
: kUnknown_SkPixelGeometry;
const bool trackCoverage = SkToBool(
rec.fSaveLayerFlags & kMaskAgainstCoverage_EXPERIMENTAL_DONT_USE_SaveLayerFlag);
const auto createInfo = SkBaseDevice::CreateInfo(info, geo, SkBaseDevice::kNever_TileUsage,
trackCoverage, fAllocator.get());
// Use the original paint as a hint so that it includes the image filter
newDevice.reset(priorDevice->onCreateDevice(createInfo, rec.fPaint));
}
bool initBackdrop = (rec.fSaveLayerFlags & kInitWithPrevious_SaveLayerFlag) || rec.fBackdrop;
if (!newDevice) {
// Either we weren't meant to allocate a full layer, or the full layer creation failed.
// Using an explicit NoPixelsDevice lets us reflect what the layer state would have been
// on success (or kFull_LayerStrategy) while squashing draw calls that target something that
// doesn't exist.
newDevice = sk_make_sp<SkNoPixelsDevice>(SkIRect::MakeWH(layerBounds.width(),
layerBounds.height()),
fProps, this->imageInfo().refColorSpace());
initBackdrop = false;
}
// Configure device to match determined mapping for any image filters.
// The setDeviceCoordinateSystem applies the prior device's global transform since
// 'newLayerMapping' only defines the transforms between the two devices and it must be updated
// to the global coordinate system.
newDevice->setMarkerStack(fMarkerStack.get());
newDevice->setDeviceCoordinateSystem(priorDevice->deviceToGlobal() *
SkM44(newLayerMapping.deviceMatrix()),
SkM44(newLayerMapping.layerMatrix()),
layerBounds.left(), layerBounds.top());
newDevice->androidFramework_setDeviceClipRestriction(&fClipRestrictionRect);
if (initBackdrop) {
SkPaint backdropPaint;
const SkImageFilter* backdropFilter = optimize_layer_filter(rec.fBackdrop, &backdropPaint);
// The new device was constructed to be compatible with 'filter', not necessarily
// 'rec.fBackdrop', so allow DrawDeviceWithFilter to transform the prior device contents
// if necessary to evaluate the backdrop filter. If no filters are involved, then the
// devices differ by integer translations and are always compatible.
auto compat = (filter || backdropFilter) ? DeviceCompatibleWithFilter::kUnknown
: DeviceCompatibleWithFilter::kYes;
this->internalDrawDeviceWithFilter(priorDevice, // src
newDevice.get(), // dst
backdropFilter,
backdropPaint,
compat);
}
fMCRec->newLayer(std::move(newDevice), sk_ref_sp(filter), restorePaint);
fQuickRejectBounds = this->computeDeviceClipBounds();
}
int SkCanvas::saveLayerAlpha(const SkRect* bounds, U8CPU alpha) {
if (0xFF == alpha) {
return this->saveLayer(bounds, nullptr);
} else {
SkPaint tmpPaint;
tmpPaint.setAlpha(alpha);
return this->saveLayer(bounds, &tmpPaint);
}
}
void SkCanvas::internalSaveBehind(const SkRect* localBounds) {
SkBaseDevice* device = this->topDevice();
// Map the local bounds into the top device's coordinate space (this is not
// necessarily the full global CTM transform).
SkIRect devBounds;
if (localBounds) {
SkRect tmp;
device->localToDevice().mapRect(&tmp, *localBounds);
if (!devBounds.intersect(tmp.round(), device->devClipBounds())) {
devBounds.setEmpty();
}
} else {
devBounds = device->devClipBounds();
}
if (devBounds.isEmpty()) {
return;
}
// This is getting the special image from the current device, which is then drawn into (both by
// a client, and the drawClippedToSaveBehind below). Since this is not saving a layer, with its
// own device, we need to explicitly copy the back image contents so that its original content
// is available when we splat it back later during restore.
auto backImage = device->snapSpecial(devBounds, /* copy */ true);
if (!backImage) {
return;
}
// we really need the save, so we can wack the fMCRec
this->checkForDeferredSave();
fMCRec->fBackImage =
std::make_unique<BackImage>(BackImage{std::move(backImage), devBounds.topLeft()});
SkPaint paint;
paint.setBlendMode(SkBlendMode::kClear);
this->drawClippedToSaveBehind(paint);
}
void SkCanvas::internalRestore() {
SkASSERT(fMCStack.count() != 0);
// now detach these from fMCRec so we can pop(). Gets freed after its drawn
std::unique_ptr<Layer> layer = std::move(fMCRec->fLayer);
std::unique_ptr<BackImage> backImage = std::move(fMCRec->fBackImage);
fMarkerStack->restore(fMCRec);
// now do the normal restore()
fMCRec->~MCRec(); // balanced in save()
fMCStack.pop_back();
fMCRec = (MCRec*) fMCStack.back();
if (!fMCRec) {
// This was the last record, restored during the destruction of the SkCanvas
return;
}
this->topDevice()->restore(fMCRec->fMatrix);
if (backImage) {
SkPaint paint;
paint.setBlendMode(SkBlendMode::kDstOver);
this->topDevice()->drawSpecial(backImage->fImage.get(),
SkMatrix::Translate(backImage->fLoc),
SkSamplingOptions(),
paint);
}
// Draw the layer's device contents into the now-current older device. We can't call public
// draw functions since we don't want to record them.
if (layer && !layer->fDevice->isNoPixelsDevice()) {
layer->fDevice->setImmutable();
// Don't go through AutoLayerForImageFilter since device draws are so closely tied to
// internalSaveLayer and internalRestore.
this->predrawNotify();
SkBaseDevice* dstDev = this->topDevice();
if (layer->fImageFilter) {
this->internalDrawDeviceWithFilter(layer->fDevice.get(), // src
dstDev, // dst
layer->fImageFilter.get(),
layer->fPaint,
DeviceCompatibleWithFilter::kYes);
} else {
// NOTE: We don't just call internalDrawDeviceWithFilter with a null filter
// because we want to take advantage of overridden drawDevice functions for
// document-based devices.
SkSamplingOptions sampling;
dstDev->drawDevice(layer->fDevice.get(), sampling, layer->fPaint);
}
}
// Update the quick-reject bounds in case the restore changed the top device or the
// removed save record had included modifications to the clip stack.
fQuickRejectBounds = this->computeDeviceClipBounds();
this->validateClip();
}
sk_sp<SkSurface> SkCanvas::makeSurface(const SkImageInfo& info, const SkSurfaceProps* props) {
if (nullptr == props) {
props = &fProps;
}
return this->onNewSurface(info, *props);
}
sk_sp<SkSurface> SkCanvas::onNewSurface(const SkImageInfo& info, const SkSurfaceProps& props) {
return this->baseDevice()->makeSurface(info, props);
}
SkImageInfo SkCanvas::imageInfo() const {
return this->onImageInfo();
}
SkImageInfo SkCanvas::onImageInfo() const {
return this->baseDevice()->imageInfo();
}
bool SkCanvas::getProps(SkSurfaceProps* props) const {
return this->onGetProps(props);
}
bool SkCanvas::onGetProps(SkSurfaceProps* props) const {
if (props) {
*props = fProps;
}
return true;
}
bool SkCanvas::peekPixels(SkPixmap* pmap) {
return this->onPeekPixels(pmap);
}
bool SkCanvas::onPeekPixels(SkPixmap* pmap) {
return this->baseDevice()->peekPixels(pmap);
}
void* SkCanvas::accessTopLayerPixels(SkImageInfo* info, size_t* rowBytes, SkIPoint* origin) {
SkPixmap pmap;
if (!this->onAccessTopLayerPixels(&pmap)) {
return nullptr;
}
if (info) {
*info = pmap.info();
}
if (rowBytes) {
*rowBytes = pmap.rowBytes();
}
if (origin) {
// If the caller requested the origin, they presumably are expecting the returned pixels to
// be axis-aligned with the root canvas. If the top level device isn't axis aligned, that's
// not the case. Until we update accessTopLayerPixels() to accept a coord space matrix
// instead of an origin, just don't expose the pixels in that case. Note that this means
// that layers with complex coordinate spaces can still report their pixels if the caller
// does not ask for the origin (e.g. just to dump its output to a file, etc).
if (this->topDevice()->isPixelAlignedToGlobal()) {
*origin = this->topDevice()->getOrigin();
} else {
return nullptr;
}
}
return pmap.writable_addr();
}
bool SkCanvas::onAccessTopLayerPixels(SkPixmap* pmap) {
return this->topDevice()->accessPixels(pmap);
}
/////////////////////////////////////////////////////////////////////////////
void SkCanvas::translate(SkScalar dx, SkScalar dy) {
if (dx || dy) {
this->checkForDeferredSave();
fMCRec->fMatrix.preTranslate(dx, dy);
this->topDevice()->setGlobalCTM(fMCRec->fMatrix);
this->didTranslate(dx,dy);
}
}
void SkCanvas::scale(SkScalar sx, SkScalar sy) {
if (sx != 1 || sy != 1) {
this->checkForDeferredSave();
fMCRec->fMatrix.preScale(sx, sy);
this->topDevice()->setGlobalCTM(fMCRec->fMatrix);
this->didScale(sx, sy);
}
}
void SkCanvas::rotate(SkScalar degrees) {
SkMatrix m;
m.setRotate(degrees);
this->concat(m);
}
void SkCanvas::rotate(SkScalar degrees, SkScalar px, SkScalar py) {
SkMatrix m;
m.setRotate(degrees, px, py);
this->concat(m);
}
void SkCanvas::skew(SkScalar sx, SkScalar sy) {
SkMatrix m;
m.setSkew(sx, sy);
this->concat(m);
}
void SkCanvas::concat(const SkMatrix& matrix) {
if (matrix.isIdentity()) {
return;
}
this->concat(SkM44(matrix));
}
void SkCanvas::internalConcat44(const SkM44& m) {
this->checkForDeferredSave();
fMCRec->fMatrix.preConcat(m);
this->topDevice()->setGlobalCTM(fMCRec->fMatrix);
}
void SkCanvas::concat(const SkM44& m) {
this->internalConcat44(m);
// notify subclasses
this->didConcat44(m);
}
void SkCanvas::internalSetMatrix(const SkM44& m) {
fMCRec->fMatrix = m;
this->topDevice()->setGlobalCTM(fMCRec->fMatrix);
}
void SkCanvas::setMatrix(const SkMatrix& matrix) {
this->setMatrix(SkM44(matrix));
}
void SkCanvas::setMatrix(const SkM44& m) {
this->checkForDeferredSave();
this->internalSetMatrix(m);
this->didSetM44(m);
}
void SkCanvas::resetMatrix() {
this->setMatrix(SkM44());
}
void SkCanvas::markCTM(const char* name) {
if (SkCanvasPriv::ValidateMarker(name)) {
fMarkerStack->setMarker(SkOpts::hash_fn(name, strlen(name), 0),
this->getLocalToDevice(), fMCRec);
this->onMarkCTM(name);
}
}
bool SkCanvas::findMarkedCTM(const char* name, SkM44* mx) const {
return SkCanvasPriv::ValidateMarker(name) &&
fMarkerStack->findMarker(SkOpts::hash_fn(name, strlen(name), 0), mx);
}
//////////////////////////////////////////////////////////////////////////////
void SkCanvas::clipRect(const SkRect& rect, SkClipOp op, bool doAA) {
if (!rect.isFinite()) {
return;
}
this->checkForDeferredSave();
ClipEdgeStyle edgeStyle = doAA ? kSoft_ClipEdgeStyle : kHard_ClipEdgeStyle;
this->onClipRect(rect.makeSorted(), op, edgeStyle);
}
void SkCanvas::onClipRect(const SkRect& rect, SkClipOp op, ClipEdgeStyle edgeStyle) {
SkASSERT(rect.isSorted());
const bool isAA = kSoft_ClipEdgeStyle == edgeStyle;
AutoUpdateQRBounds aqr(this);
this->topDevice()->clipRect(rect, op, isAA);
}
void SkCanvas::androidFramework_setDeviceClipRestriction(const SkIRect& rect) {
fClipRestrictionRect = rect;
if (!fClipRestrictionRect.isEmpty()) {
// we only resolve deferred saves when we're setting the restriction, not when we're
// removing it (i.e. rect is empty).
this->checkForDeferredSave();
}
AutoUpdateQRBounds aqr(this);
this->topDevice()->androidFramework_setDeviceClipRestriction(&fClipRestrictionRect);
}
void SkCanvas::internal_private_resetClip() {
this->checkForDeferredSave();
this->onResetClip();
}
void SkCanvas::onResetClip() {
SkIRect deviceRestriction = this->imageInfo().bounds();
if (!fClipRestrictionRect.isEmpty()) {
// Always respect the device clip restriction, particularly when expanding the clip.
if (!deviceRestriction.intersect(fClipRestrictionRect)) {
deviceRestriction = SkIRect::MakeEmpty();
}
}
AutoUpdateQRBounds aqr(this);
this->topDevice()->replaceClip(deviceRestriction);
}
void SkCanvas::clipRRect(const SkRRect& rrect, SkClipOp op, bool doAA) {
this->checkForDeferredSave();
ClipEdgeStyle edgeStyle = doAA ? kSoft_ClipEdgeStyle : kHard_ClipEdgeStyle;
if (rrect.isRect()) {
this->onClipRect(rrect.getBounds(), op, edgeStyle);
} else {
this->onClipRRect(rrect, op, edgeStyle);
}
}
void SkCanvas::onClipRRect(const SkRRect& rrect, SkClipOp op, ClipEdgeStyle edgeStyle) {
bool isAA = kSoft_ClipEdgeStyle == edgeStyle;
AutoUpdateQRBounds aqr(this);
this->topDevice()->clipRRect(rrect, op, isAA);
}
void SkCanvas::clipPath(const SkPath& path, SkClipOp op, bool doAA) {
this->checkForDeferredSave();
ClipEdgeStyle edgeStyle = doAA ? kSoft_ClipEdgeStyle : kHard_ClipEdgeStyle;
if (!path.isInverseFillType() && fMCRec->fMatrix.asM33().rectStaysRect()) {
SkRect r;
if (path.isRect(&r)) {
this->onClipRect(r, op, edgeStyle);
return;
}
SkRRect rrect;
if (path.isOval(&r)) {
rrect.setOval(r);
this->onClipRRect(rrect, op, edgeStyle);
return;
}
if (path.isRRect(&rrect)) {
this->onClipRRect(rrect, op, edgeStyle);
return;
}
}
this->onClipPath(path, op, edgeStyle);
}
void SkCanvas::onClipPath(const SkPath& path, SkClipOp op, ClipEdgeStyle edgeStyle) {
bool isAA = kSoft_ClipEdgeStyle == edgeStyle;
AutoUpdateQRBounds aqr(this);
this->topDevice()->clipPath(path, op, isAA);
}
void SkCanvas::clipShader(sk_sp<SkShader> sh, SkClipOp op) {
if (sh) {
if (sh->isOpaque()) {
if (op == SkClipOp::kIntersect) {
// we don't occlude anything, so skip this call
} else {
SkASSERT(op == SkClipOp::kDifference);
// we occlude everything, so set the clip to empty
this->clipRect({0,0,0,0});
}
} else {
this->checkForDeferredSave();
this->onClipShader(std::move(sh), op);
}
}
}
void SkCanvas::onClipShader(sk_sp<SkShader> sh, SkClipOp op) {
AutoUpdateQRBounds aqr(this);
this->topDevice()->clipShader(sh, op);
}
void SkCanvas::clipRegion(const SkRegion& rgn, SkClipOp op) {
this->checkForDeferredSave();
this->onClipRegion(rgn, op);
}
void SkCanvas::onClipRegion(const SkRegion& rgn, SkClipOp op) {
AutoUpdateQRBounds aqr(this);
this->topDevice()->clipRegion(rgn, op);
}
void SkCanvas::validateClip() const {
#ifdef SK_DEBUG
SkRect tmp = this->computeDeviceClipBounds();
if (this->isClipEmpty()) {
SkASSERT(fQuickRejectBounds.isEmpty());
} else {
SkASSERT(tmp == fQuickRejectBounds);
}
#endif
}
bool SkCanvas::androidFramework_isClipAA() const {
return this->topDevice()->onClipIsAA();
}
void SkCanvas::temporary_internal_getRgnClip(SkRegion* rgn) {
rgn->setEmpty();
SkBaseDevice* device = this->topDevice();
if (device && device->isPixelAlignedToGlobal()) {
device->onAsRgnClip(rgn);
SkIPoint origin = device->getOrigin();
if (origin.x() | origin.y()) {
rgn->translate(origin.x(), origin.y());
}
}
}
///////////////////////////////////////////////////////////////////////////////
bool SkCanvas::isClipEmpty() const {
return this->topDevice()->onGetClipType() == SkBaseDevice::ClipType::kEmpty;
}
bool SkCanvas::isClipRect() const {
return this->topDevice()->onGetClipType() == SkBaseDevice::ClipType::kRect;
}
bool SkCanvas::quickReject(const SkRect& src) const {
#ifdef SK_DEBUG
// Verify that fQuickRejectBounds are set properly.
this->validateClip();
#endif
SkRect devRect = SkMatrixPriv::MapRect(fMCRec->fMatrix, src);
return !devRect.isFinite() || !devRect.intersects(fQuickRejectBounds);
}
bool SkCanvas::quickReject(const SkPath& path) const {
return path.isEmpty() || this->quickReject(path.getBounds());
}
bool SkCanvas::internalQuickReject(const SkRect& bounds, const SkPaint& paint,
const SkMatrix* matrix) {
if (!bounds.isFinite() || paint.nothingToDraw()) {
return true;
}
if (paint.canComputeFastBounds()) {
SkRect tmp = matrix ? matrix->mapRect(bounds) : bounds;
return this->quickReject(paint.computeFastBounds(tmp, &tmp));
}
return false;
}
SkRect SkCanvas::getLocalClipBounds() const {
SkIRect ibounds = this->getDeviceClipBounds();
if (ibounds.isEmpty()) {
return SkRect::MakeEmpty();
}
SkMatrix inverse;
// if we can't invert the CTM, we can't return local clip bounds
if (!fMCRec->fMatrix.asM33().invert(&inverse)) {
return SkRect::MakeEmpty();
}
SkRect bounds;
// adjust it outwards in case we are antialiasing
const int margin = 1;
SkRect r = SkRect::Make(ibounds.makeOutset(margin, margin));
inverse.mapRect(&bounds, r);
return bounds;
}
SkIRect SkCanvas::getDeviceClipBounds() const {
return this->computeDeviceClipBounds(/*outsetForAA=*/false).roundOut();
}
SkRect SkCanvas::computeDeviceClipBounds(bool outsetForAA) const {
const SkBaseDevice* dev = this->topDevice();
if (dev->onGetClipType() == SkBaseDevice::ClipType::kEmpty) {
return SkRect::MakeEmpty();
} else {
SkRect devClipBounds =
SkMatrixPriv::MapRect(dev->deviceToGlobal(), SkRect::Make(dev->devClipBounds()));
if (outsetForAA) {
// Expand bounds out by 1 in case we are anti-aliasing. We store the
// bounds as floats to enable a faster quick reject implementation.
devClipBounds.outset(1.f, 1.f);
}
return devClipBounds;
}
}
///////////////////////////////////////////////////////////////////////
SkMatrix SkCanvas::getTotalMatrix() const {
return fMCRec->fMatrix.asM33();
}
SkM44 SkCanvas::getLocalToDevice() const {
return fMCRec->fMatrix;
}
#if defined(SK_BUILD_FOR_ANDROID_FRAMEWORK) && SK_SUPPORT_GPU
#include "src/gpu/GrRenderTarget.h"
#include "src/gpu/GrRenderTargetProxy.h"
#include "src/gpu/GrSurfaceDrawContext.h"
SkIRect SkCanvas::topLayerBounds() const {
return this->topDevice()->getGlobalBounds();
}
GrBackendRenderTarget SkCanvas::topLayerBackendRenderTarget() const {
auto proxy = SkCanvasPriv::TopDeviceTargetProxy(const_cast<SkCanvas*>(this));
if (!proxy) {
return {};
}
const GrRenderTarget* renderTarget = proxy->peekRenderTarget();
return renderTarget ? renderTarget->getBackendRenderTarget() : GrBackendRenderTarget();
}
#endif
GrRecordingContext* SkCanvas::recordingContext() {
#if SK_SUPPORT_GPU
if (auto gpuDevice = this->topDevice()->asGpuDevice()) {
return gpuDevice->recordingContext();
}
#endif
return nullptr;
}
void SkCanvas::drawDRRect(const SkRRect& outer, const SkRRect& inner,
const SkPaint& paint) {
TRACE_EVENT0("skia", TRACE_FUNC);
if (outer.isEmpty()) {
return;
}
if (inner.isEmpty()) {
this->drawRRect(outer, paint);
return;
}
// We don't have this method (yet), but technically this is what we should
// be able to return ...
// if (!outer.contains(inner))) {
//
// For now at least check for containment of bounds
if (!outer.getBounds().contains(inner.getBounds())) {
return;
}
this->onDrawDRRect(outer, inner, paint);
}
void SkCanvas::drawPaint(const SkPaint& paint) {
TRACE_EVENT0("skia", TRACE_FUNC);
this->onDrawPaint(paint);
}
void SkCanvas::drawRect(const SkRect& r, const SkPaint& paint) {
TRACE_EVENT0("skia", TRACE_FUNC);
// To avoid redundant logic in our culling code and various backends, we always sort rects
// before passing them along.
this->onDrawRect(r.makeSorted(), paint);
}
void SkCanvas::drawClippedToSaveBehind(const SkPaint& paint) {
TRACE_EVENT0("skia", TRACE_FUNC);
this->onDrawBehind(paint);
}
void SkCanvas::drawRegion(const SkRegion& region, const SkPaint& paint) {
TRACE_EVENT0("skia", TRACE_FUNC);
if (region.isEmpty()) {
return;
}
if (region.isRect()) {
return this->drawIRect(region.getBounds(), paint);
}
this->onDrawRegion(region, paint);
}
void SkCanvas::drawOval(const SkRect& r, const SkPaint& paint) {
TRACE_EVENT0("skia", TRACE_FUNC);
// To avoid redundant logic in our culling code and various backends, we always sort rects
// before passing them along.
this->onDrawOval(r.makeSorted(), paint);
}
void SkCanvas::drawRRect(const SkRRect& rrect, const SkPaint& paint) {
TRACE_EVENT0("skia", TRACE_FUNC);
this->onDrawRRect(rrect, paint);
}
void SkCanvas::drawPoints(PointMode mode, size_t count, const SkPoint pts[], const SkPaint& paint) {
TRACE_EVENT0("skia", TRACE_FUNC);
this->onDrawPoints(mode, count, pts, paint);
}
void SkCanvas::drawVertices(const sk_sp<SkVertices>& vertices, SkBlendMode mode,
const SkPaint& paint) {
this->drawVertices(vertices.get(), mode, paint);
}
void SkCanvas::drawVertices(const SkVertices* vertices, SkBlendMode mode, const SkPaint& paint) {
TRACE_EVENT0("skia", TRACE_FUNC);
RETURN_ON_NULL(vertices);
// We expect fans to be converted to triangles when building or deserializing SkVertices.
SkASSERT(vertices->priv().mode() != SkVertices::kTriangleFan_VertexMode);
#ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK
// Preserve legacy behavior for Android: ignore the SkShader if there are no texCoords present
if (paint.getShader() && !vertices->priv().hasTexCoords()) {
SkPaint noShaderPaint(paint);
noShaderPaint.setShader(nullptr);
this->onDrawVerticesObject(vertices, mode, noShaderPaint);
return;
}
#endif
this->onDrawVerticesObject(vertices, mode, paint);
}
void SkCanvas::drawPath(const SkPath& path, const SkPaint& paint) {
TRACE_EVENT0("skia", TRACE_FUNC);
this->onDrawPath(path, paint);
}
// Returns true if the rect can be "filled" : non-empty and finite
static bool fillable(const SkRect& r) {
SkScalar w = r.width();
SkScalar h = r.height();
return SkScalarIsFinite(w) && w > 0 && SkScalarIsFinite(h) && h > 0;
}
static SkPaint clean_paint_for_lattice(const SkPaint* paint) {
SkPaint cleaned;
if (paint) {
cleaned = *paint;
cleaned.setMaskFilter(nullptr);
cleaned.setAntiAlias(false);
}
return cleaned;
}
void SkCanvas::drawImageNine(const SkImage* image, const SkIRect& center, const SkRect& dst,
SkFilterMode filter, const SkPaint* paint) {
RETURN_ON_NULL(image);
const int xdivs[] = {center.fLeft, center.fRight};
const int ydivs[] = {center.fTop, center.fBottom};
Lattice lat;
lat.fXDivs = xdivs;
lat.fYDivs = ydivs;
lat.fRectTypes = nullptr;
lat.fXCount = lat.fYCount = 2;
lat.fBounds = nullptr;
lat.fColors = nullptr;
this->drawImageLattice(image, lat, dst, filter, paint);
}
void SkCanvas::drawImageLattice(const SkImage* image, const Lattice& lattice, const SkRect& dst,
SkFilterMode filter, const SkPaint* paint) {
TRACE_EVENT0("skia", TRACE_FUNC);
RETURN_ON_NULL(image);
if (dst.isEmpty()) {
return;
}
SkIRect bounds;
Lattice latticePlusBounds = lattice;
if (!latticePlusBounds.fBounds) {
bounds = SkIRect::MakeWH(image->width(), image->height());
latticePlusBounds.fBounds = &bounds;
}
if (SkLatticeIter::Valid(image->width(), image->height(), latticePlusBounds)) {
SkPaint latticePaint = clean_paint_for_lattice(paint);
this->onDrawImageLattice2(image, latticePlusBounds, dst, filter, &latticePaint);
} else {
this->drawImageRect(image, SkRect::MakeIWH(image->width(), image->height()), dst,
SkSamplingOptions(filter), paint, kStrict_SrcRectConstraint);
}
}
void SkCanvas::drawAtlas(const SkImage* atlas, const SkRSXform xform[], const SkRect tex[],
const SkColor colors[], int count, SkBlendMode mode,
const SkSamplingOptions& sampling, const SkRect* cull,
const SkPaint* paint) {
TRACE_EVENT0("skia", TRACE_FUNC);
RETURN_ON_NULL(atlas);
if (count <= 0) {
return;
}
SkASSERT(atlas);
SkASSERT(tex);
this->onDrawAtlas2(atlas, xform, tex, colors, count, mode, sampling, cull, paint);
}
void SkCanvas::drawAnnotation(const SkRect& rect, const char key[], SkData* value) {
TRACE_EVENT0("skia", TRACE_FUNC);
if (key) {
this->onDrawAnnotation(rect, key, value);
}
}
void SkCanvas::private_draw_shadow_rec(const SkPath& path, const SkDrawShadowRec& rec) {
TRACE_EVENT0("skia", TRACE_FUNC);
this->onDrawShadowRec(path, rec);
}
void SkCanvas::onDrawShadowRec(const SkPath& path, const SkDrawShadowRec& rec) {
// We don't test quickReject because the shadow outsets the path's bounds.
// TODO(michaelludwig): Is it worth calling SkDrawShadowMetrics::GetLocalBounds here?
this->predrawNotify();
this->topDevice()->drawShadow(path, rec);
}
void SkCanvas::experimental_DrawEdgeAAQuad(const SkRect& rect, const SkPoint clip[4],
QuadAAFlags aaFlags, const SkColor4f& color,
SkBlendMode mode) {
TRACE_EVENT0("skia", TRACE_FUNC);
// Make sure the rect is sorted before passing it along
this->onDrawEdgeAAQuad(rect.makeSorted(), clip, aaFlags, color, mode);
}
void SkCanvas::experimental_DrawEdgeAAImageSet(const ImageSetEntry imageSet[], int cnt,
const SkPoint dstClips[],
const SkMatrix preViewMatrices[],
const SkSamplingOptions& sampling,
const SkPaint* paint,
SrcRectConstraint constraint) {
TRACE_EVENT0("skia", TRACE_FUNC);
this->onDrawEdgeAAImageSet2(imageSet, cnt, dstClips, preViewMatrices, sampling, paint,
constraint);
}
//////////////////////////////////////////////////////////////////////////////
// These are the virtual drawing methods
//////////////////////////////////////////////////////////////////////////////
void SkCanvas::onDiscard() {
if (fSurfaceBase) {
fSurfaceBase->aboutToDraw(SkSurface::kDiscard_ContentChangeMode);
}
}
void SkCanvas::onDrawPaint(const SkPaint& paint) {
this->internalDrawPaint(paint);
}
void SkCanvas::internalDrawPaint(const SkPaint& paint) {
// drawPaint does not call internalQuickReject() because computing its geometry is not free
// (see getLocalClipBounds(), and the two conditions below are sufficient.
if (paint.nothingToDraw() || this->isClipEmpty()) {
return;
}
AutoLayerForImageFilter layer(this, paint, nullptr, CheckForOverwrite::kYes);
this->topDevice()->drawPaint(layer.paint());
}
void SkCanvas::onDrawPoints(PointMode mode, size_t count, const SkPoint pts[],
const SkPaint& paint) {
if ((long)count <= 0 || paint.nothingToDraw()) {
return;
}
SkASSERT(pts != nullptr);
SkRect bounds;
// Compute bounds from points (common for drawing a single line)
if (count == 2) {
bounds.set(pts[0], pts[1]);
} else {
bounds.setBounds(pts, SkToInt(count));
}
// Enforce paint style matches implicit behavior of drawPoints
SkPaint strokePaint = paint;
strokePaint.setStyle(SkPaint::kStroke_Style);
if (this->internalQuickReject(bounds, strokePaint)) {
return;
}
AutoLayerForImageFilter layer(this, strokePaint, &bounds);
this->topDevice()->drawPoints(mode, count, pts, layer.paint());
}
void SkCanvas::onDrawRect(const SkRect& r, const SkPaint& paint) {
SkASSERT(r.isSorted());
if (this->internalQuickReject(r, paint)) {
return;
}
AutoLayerForImageFilter layer(this, paint, &r, CheckForOverwrite::kYes);
this->topDevice()->drawRect(r, layer.paint());
}
void SkCanvas::onDrawRegion(const SkRegion& region, const SkPaint& paint) {
const SkRect bounds = SkRect::Make(region.getBounds());
if (this->internalQuickReject(bounds, paint)) {
return;
}
AutoLayerForImageFilter layer(this, paint, &bounds);
this->topDevice()->drawRegion(region, layer.paint());
}
void SkCanvas::onDrawBehind(const SkPaint& paint) {
SkBaseDevice* dev = this->topDevice();
if (!dev) {
return;
}
SkIRect bounds;
SkDeque::Iter iter(fMCStack, SkDeque::Iter::kBack_IterStart);
for (;;) {
const MCRec* rec = (const MCRec*)iter.prev();
if (!rec) {
return; // no backimages, so nothing to draw
}
if (rec->fBackImage) {
// drawBehind should only have been called when the saveBehind record is active;
// if this fails, it means a real saveLayer was made w/o being restored first.
SkASSERT(dev == rec->fDevice);
bounds = SkIRect::MakeXYWH(rec->fBackImage->fLoc.fX, rec->fBackImage->fLoc.fY,
rec->fBackImage->fImage->width(),
rec->fBackImage->fImage->height());
break;
}
}
// The backimage location (and thus bounds) were defined in the device's space, so mark it
// as a clip. We use a clip instead of just drawing a rect in case the paint has an image
// filter on it (which is applied before any auto-layer so the filter is clipped).
dev->save();
{
// We also have to temporarily whack the device matrix since clipRegion is affected by the
// global-to-device matrix and clipRect is affected by the local-to-device.
SkAutoDeviceTransformRestore adtr(dev, SkMatrix::I());
dev->clipRect(SkRect::Make(bounds), SkClipOp::kIntersect, /* aa */ false);
// ~adtr will reset the local-to-device matrix so that drawPaint() shades correctly.
}
AutoLayerForImageFilter layer(this, paint);
this->topDevice()->drawPaint(layer.paint());
dev->restore(fMCRec->fMatrix);
}
void SkCanvas::onDrawOval(const SkRect& oval, const SkPaint& paint) {
SkASSERT(oval.isSorted());
if (this->internalQuickReject(oval, paint)) {
return;
}
AutoLayerForImageFilter layer(this, paint, &oval);
this->topDevice()->drawOval(oval, layer.paint());
}
void SkCanvas::onDrawArc(const SkRect& oval, SkScalar startAngle,
SkScalar sweepAngle, bool useCenter,
const SkPaint& paint) {
SkASSERT(oval.isSorted());
if (this->internalQuickReject(oval, paint)) {
return;
}
AutoLayerForImageFilter layer(this, paint, &oval);
this->topDevice()->drawArc(oval, startAngle, sweepAngle, useCenter, layer.paint());
}
void SkCanvas::onDrawRRect(const SkRRect& rrect, const SkPaint& paint) {
const SkRect& bounds = rrect.getBounds();
// Delegating to simpler draw operations
if (rrect.isRect()) {
// call the non-virtual version
this->SkCanvas::drawRect(bounds, paint);
return;
} else if (rrect.isOval()) {
// call the non-virtual version
this->SkCanvas::drawOval(bounds, paint);
return;
}
if (this->internalQuickReject(bounds, paint)) {
return;
}
AutoLayerForImageFilter layer(this, paint, &bounds);
this->topDevice()->drawRRect(rrect, layer.paint());
}
void SkCanvas::onDrawDRRect(const SkRRect& outer, const SkRRect& inner, const SkPaint& paint) {
const SkRect& bounds = outer.getBounds();
if (this->internalQuickReject(bounds, paint)) {
return;
}
AutoLayerForImageFilter layer(this, paint, &bounds);
this->topDevice()->drawDRRect(outer, inner, layer.paint());
}
void SkCanvas::onDrawPath(const SkPath& path, const SkPaint& paint) {
if (!path.isFinite()) {
return;
}
const SkRect& pathBounds = path.getBounds();
if (!path.isInverseFillType() && this->internalQuickReject(pathBounds, paint)) {
return;
}
if (path.isInverseFillType() && pathBounds.width() <= 0 && pathBounds.height() <= 0) {
this->internalDrawPaint(paint);
return;
}
AutoLayerForImageFilter layer(this, paint, &pathBounds);
this->topDevice()->drawPath(path, layer.paint());
}
bool SkCanvas::canDrawBitmapAsSprite(SkScalar x, SkScalar y, int w, int h,
const SkSamplingOptions& sampling, const SkPaint& paint) {
if (!paint.getImageFilter()) {
return false;
}
const SkMatrix& ctm = this->getTotalMatrix();
if (!SkTreatAsSprite(ctm, SkISize::Make(w, h), sampling, paint)) {
return false;
}
// The other paint effects need to be applied before the image filter, but the sprite draw
// applies the filter explicitly first.
if (paint.getAlphaf() < 1.f || paint.getColorFilter() || paint.getMaskFilter()) {
return false;
}
// Currently we can only use the filterSprite code if we are clipped to the bitmap's bounds.
// Once we can filter and the filter will return a result larger than itself, we should be
// able to remove this constraint.
// skbug.com/4526
//
SkPoint pt;
ctm.mapXY(x, y, &pt);
SkIRect ir = SkIRect::MakeXYWH(SkScalarRoundToInt(pt.x()), SkScalarRoundToInt(pt.y()), w, h);
// quick bounds have been outset by 1px compared to overall device bounds, so this makes the
// contains check equivalent to between ir and device bounds
ir.outset(1, 1);
return ir.contains(fQuickRejectBounds);
}
// Clean-up the paint to match the drawing semantics for drawImage et al. (skbug.com/7804).
static SkPaint clean_paint_for_drawImage(const SkPaint* paint) {
SkPaint cleaned;
if (paint) {
cleaned = *paint;
cleaned.setStyle(SkPaint::kFill_Style);
cleaned.setPathEffect(nullptr);
}
return cleaned;
}
// drawVertices fills triangles and ignores mask filter and path effect,
// so canonicalize the paint before checking quick reject.
static SkPaint clean_paint_for_drawVertices(SkPaint paint) {
paint.setStyle(SkPaint::kFill_Style);
paint.setMaskFilter(nullptr);
paint.setPathEffect(nullptr);
return paint;
}
void SkCanvas::onDrawImage2(const SkImage* image, SkScalar x, SkScalar y,
const SkSamplingOptions& sampling, const SkPaint* paint) {
SkPaint realPaint = clean_paint_for_drawImage(paint);
SkRect bounds = SkRect::MakeXYWH(x, y, image->width(), image->height());
if (this->internalQuickReject(bounds, realPaint)) {
return;
}
if (realPaint.getImageFilter() &&
this->canDrawBitmapAsSprite(x, y, image->width(), image->height(), sampling, realPaint) &&
!image_to_color_filter(&realPaint)) {
// Evaluate the image filter directly on the input image and then draw the result, instead
// of first drawing the image to a temporary layer and filtering.
SkBaseDevice* device = this->topDevice();
sk_sp<SkSpecialImage> special;
if ((special = device->makeSpecial(image))) {
sk_sp<SkImageFilter> filter = realPaint.refImageFilter();
realPaint.setImageFilter(nullptr);
// TODO(michaelludwig) - Many filters could probably be evaluated like this even if the
// CTM is not translate-only; the post-transformation of the filtered image by the CTM
// will probably look just as good and not require an extra layer.
// TODO(michaelludwig) - Once image filter implementations can support source images
// with non-(0,0) origins, we can just mark the origin as (x,y) instead of doing a
// pre-concat here.
SkMatrix layerToDevice = device->localToDevice();
layerToDevice.preTranslate(x, y);
skif::Mapping mapping(layerToDevice, SkMatrix::Translate(-x, -y));
this->predrawNotify();
device->drawFilteredImage(mapping, special.get(), filter.get(), sampling, realPaint);
return;
} // else fall through to regular drawing path
}
AutoLayerForImageFilter layer(this, realPaint, &bounds);
this->topDevice()->drawImageRect(image, nullptr, bounds, sampling,
layer.paint(), kStrict_SrcRectConstraint);
}
void SkCanvas::onDrawImageRect2(const SkImage* image, const SkRect& src, const SkRect& dst,
const SkSamplingOptions& sampling, const SkPaint* paint,
SrcRectConstraint constraint) {
SkPaint realPaint = clean_paint_for_drawImage(paint);
if (this->internalQuickReject(dst, realPaint)) {
return;
}
AutoLayerForImageFilter layer(this, realPaint, &dst, CheckForOverwrite::kYes,
image->isOpaque() ? kOpaque_ShaderOverrideOpacity
: kNotOpaque_ShaderOverrideOpacity);
this->topDevice()->drawImageRect(image, &src, dst, sampling, layer.paint(), constraint);
}
void SkCanvas::onDrawImageLattice2(const SkImage* image, const Lattice& lattice, const SkRect& dst,
SkFilterMode filter, const SkPaint* paint) {
SkPaint realPaint = clean_paint_for_drawImage(paint);
if (this->internalQuickReject(dst, realPaint)) {
return;
}
AutoLayerForImageFilter layer(this, realPaint, &dst);
this->topDevice()->drawImageLattice(image, lattice, dst, filter, layer.paint());
}
void SkCanvas::drawImage(const SkImage* image, SkScalar x, SkScalar y,
const SkSamplingOptions& sampling, const SkPaint* paint) {
TRACE_EVENT0("skia", TRACE_FUNC);
RETURN_ON_NULL(image);
this->onDrawImage2(image, x, y, sampling, paint);
}
void SkCanvas::drawImageRect(const SkImage* image, const SkRect& src, const SkRect& dst,
const SkSamplingOptions& sampling, const SkPaint* paint,
SrcRectConstraint constraint) {
RETURN_ON_NULL(image);
if (!fillable(dst) || !fillable(src)) {
return;
}
this->onDrawImageRect2(image, src, dst, sampling, paint, constraint);
}
void SkCanvas::drawImageRect(const SkImage* image, const SkRect& dst,
const SkSamplingOptions& sampling, const SkPaint* paint) {
RETURN_ON_NULL(image);
this->drawImageRect(image, SkRect::MakeIWH(image->width(), image->height()), dst, sampling,
paint, kFast_SrcRectConstraint);
}
void SkCanvas::onDrawTextBlob(const SkTextBlob* blob, SkScalar x, SkScalar y,
const SkPaint& paint) {
auto glyphRunList = fScratchGlyphRunBuilder->blobToGlyphRunList(*blob, {x, y});
this->onDrawGlyphRunList(glyphRunList, paint);
}
void SkCanvas::onDrawGlyphRunList(const SkGlyphRunList& glyphRunList, const SkPaint& paint) {
SkRect bounds = glyphRunList.sourceBounds();
if (this->internalQuickReject(bounds, paint)) {
return;
}
AutoLayerForImageFilter layer(this, paint, &bounds);
this->topDevice()->drawGlyphRunList(glyphRunList, layer.paint());
}
// These call the (virtual) onDraw... method
void SkCanvas::drawSimpleText(const void* text, size_t byteLength, SkTextEncoding encoding,
SkScalar x, SkScalar y, const SkFont& font, const SkPaint& paint) {
TRACE_EVENT0("skia", TRACE_FUNC);
if (byteLength) {
sk_msan_assert_initialized(text, SkTAddOffset<const void>(text, byteLength));
const SkGlyphRunList& glyphRunList =
fScratchGlyphRunBuilder->textToGlyphRunList(
font, paint, text, byteLength, {x, y}, encoding);
if (!glyphRunList.empty()) {
this->onDrawGlyphRunList(glyphRunList, paint);
}
}
}
void SkCanvas::drawGlyphs(int count, const SkGlyphID* glyphs, const SkPoint* positions,
const uint32_t* clusters, int textByteCount, const char* utf8text,
SkPoint origin, const SkFont& font, const SkPaint& paint) {
if (count <= 0) { return; }
SkGlyphRun glyphRun {
font,
SkMakeSpan(positions, count),
SkMakeSpan(glyphs, count),
SkMakeSpan(utf8text, textByteCount),
SkMakeSpan(clusters, count),
SkSpan<SkVector>()
};
SkGlyphRunList glyphRunList {
glyphRun,
glyphRun.sourceBounds(paint).makeOffset(origin),
origin
};
this->onDrawGlyphRunList(glyphRunList, paint);
}
void SkCanvas::drawGlyphs(int count, const SkGlyphID glyphs[], const SkPoint positions[],
SkPoint origin, const SkFont& font, const SkPaint& paint) {
if (count <= 0) { return; }
SkGlyphRun glyphRun {
font,
SkMakeSpan(positions, count),
SkMakeSpan(glyphs, count),
SkSpan<const char>(),
SkSpan<const uint32_t>(),
SkSpan<SkVector>()
};
SkGlyphRunList glyphRunList {
glyphRun,
glyphRun.sourceBounds(paint).makeOffset(origin),
origin
};
this->onDrawGlyphRunList(glyphRunList, paint);
}
void SkCanvas::drawGlyphs(int count, const SkGlyphID glyphs[], const SkRSXform xforms[],
SkPoint origin, const SkFont& font, const SkPaint& paint) {
if (count <= 0) { return; }
auto [positions, rotateScales] =
fScratchGlyphRunBuilder->convertRSXForm(SkMakeSpan(xforms, count));
SkGlyphRun glyphRun {
font,
positions,
SkMakeSpan(glyphs, count),
SkSpan<const char>(),
SkSpan<const uint32_t>(),
rotateScales
};
SkGlyphRunList glyphRunList {
glyphRun,
glyphRun.sourceBounds(paint).makeOffset(origin),
origin
};
this->onDrawGlyphRunList(glyphRunList, paint);
}
void SkCanvas::drawTextBlob(const SkTextBlob* blob, SkScalar x, SkScalar y,
const SkPaint& paint) {
TRACE_EVENT0("skia", TRACE_FUNC);
RETURN_ON_NULL(blob);
RETURN_ON_FALSE(blob->bounds().makeOffset(x, y).isFinite());
// Overflow if more than 2^21 glyphs stopping a buffer overflow latter in the stack.
// See chromium:1080481
// TODO: can consider unrolling a few at a time if this limit becomes a problem.
int totalGlyphCount = 0;
constexpr int kMaxGlyphCount = 1 << 21;
SkTextBlob::Iter i(*blob);
SkTextBlob::Iter::Run r;
while (i.next(&r)) {
int glyphsLeft = kMaxGlyphCount - totalGlyphCount;
RETURN_ON_FALSE(r.fGlyphCount <= glyphsLeft);
totalGlyphCount += r.fGlyphCount;
}
this->onDrawTextBlob(blob, x, y, paint);
}
void SkCanvas::onDrawVerticesObject(const SkVertices* vertices, SkBlendMode bmode,
const SkPaint& paint) {
SkPaint simplePaint = clean_paint_for_drawVertices(paint);
const SkRect& bounds = vertices->bounds();
if (this->internalQuickReject(bounds, simplePaint)) {
return;
}
AutoLayerForImageFilter layer(this, simplePaint, &bounds);
this->topDevice()->drawVertices(vertices, bmode, layer.paint());
}
void SkCanvas::drawPatch(const SkPoint cubics[12], const SkColor colors[4],
const SkPoint texCoords[4], SkBlendMode bmode,
const SkPaint& paint) {
TRACE_EVENT0("skia", TRACE_FUNC);
if (nullptr == cubics) {
return;
}
this->onDrawPatch(cubics, colors, texCoords, bmode, paint);
}
void SkCanvas::onDrawPatch(const SkPoint cubics[12], const SkColor colors[4],
const SkPoint texCoords[4], SkBlendMode bmode,
const SkPaint& paint) {
// drawPatch has the same behavior restrictions as drawVertices
SkPaint simplePaint = clean_paint_for_drawVertices(paint);
// Since a patch is always within the convex hull of the control points, we discard it when its
// bounding rectangle is completely outside the current clip.
SkRect bounds;
bounds.setBounds(cubics, SkPatchUtils::kNumCtrlPts);
if (this->internalQuickReject(bounds, simplePaint)) {
return;
}
AutoLayerForImageFilter layer(this, simplePaint, &bounds);
this->topDevice()->drawPatch(cubics, colors, texCoords, bmode, layer.paint());
}
void SkCanvas::drawDrawable(SkDrawable* dr, SkScalar x, SkScalar y) {
#ifndef SK_BUILD_FOR_ANDROID_FRAMEWORK
TRACE_EVENT0("skia", TRACE_FUNC);
#endif
RETURN_ON_NULL(dr);
if (x || y) {
SkMatrix matrix = SkMatrix::Translate(x, y);
this->onDrawDrawable(dr, &matrix);
} else {
this->onDrawDrawable(dr, nullptr);
}
}
void SkCanvas::drawDrawable(SkDrawable* dr, const SkMatrix* matrix) {
#ifndef SK_BUILD_FOR_ANDROID_FRAMEWORK
TRACE_EVENT0("skia", TRACE_FUNC);
#endif
RETURN_ON_NULL(dr);
if (matrix && matrix->isIdentity()) {
matrix = nullptr;
}
this->onDrawDrawable(dr, matrix);
}
void SkCanvas::onDrawDrawable(SkDrawable* dr, const SkMatrix* matrix) {
// drawable bounds are no longer reliable (e.g. android displaylist)
// so don't use them for quick-reject
this->predrawNotify();
this->baseDevice()->drawDrawable(dr, matrix, this);
}
void SkCanvas::onDrawAtlas2(const SkImage* atlas, const SkRSXform xform[], const SkRect tex[],
const SkColor colors[], int count, SkBlendMode bmode,
const SkSamplingOptions& sampling, const SkRect* cull,
const SkPaint* paint) {
// drawAtlas is a combination of drawVertices and drawImage...
SkPaint realPaint = clean_paint_for_drawVertices(clean_paint_for_drawImage(paint));
if (cull && this->internalQuickReject(*cull, realPaint)) {
return;
}
AutoLayerForImageFilter layer(this, realPaint);
this->topDevice()->drawAtlas(atlas, xform, tex, colors, count, bmode, sampling, layer.paint());
}
void SkCanvas::onDrawAnnotation(const SkRect& rect, const char key[], SkData* value) {
SkASSERT(key);
this->predrawNotify();
this->topDevice()->drawAnnotation(rect, key, value);
}
void SkCanvas::onDrawEdgeAAQuad(const SkRect& r, const SkPoint clip[4], QuadAAFlags edgeAA,
const SkColor4f& color, SkBlendMode mode) {
SkASSERT(r.isSorted());
SkPaint paint{color};
paint.setBlendMode(mode);
if (this->internalQuickReject(r, paint)) {
return;
}
this->predrawNotify();
this->topDevice()->drawEdgeAAQuad(r, clip, edgeAA, color, mode);
}
void SkCanvas::onDrawEdgeAAImageSet2(const ImageSetEntry imageSet[], int count,
const SkPoint dstClips[], const SkMatrix preViewMatrices[],
const SkSamplingOptions& sampling, const SkPaint* paint,
SrcRectConstraint constraint) {
if (count <= 0) {
// Nothing to draw
return;
}
SkPaint realPaint = clean_paint_for_drawImage(paint);
// We could calculate the set's dstRect union to always check quickReject(), but we can't reject
// individual entries and Chromium's occlusion culling already makes it likely that at least one
// entry will be visible. So, we only calculate the draw bounds when it's trivial (count == 1),
// or we need it for the autolooper (since it greatly improves image filter perf).
bool needsAutoLayer = SkToBool(realPaint.getImageFilter());
bool setBoundsValid = count == 1 || needsAutoLayer;
SkRect setBounds = imageSet[0].fDstRect;
if (imageSet[0].fMatrixIndex >= 0) {
// Account for the per-entry transform that is applied prior to the CTM when drawing
preViewMatrices[imageSet[0].fMatrixIndex].mapRect(&setBounds);
}
if (needsAutoLayer) {
for (int i = 1; i < count; ++i) {
SkRect entryBounds = imageSet[i].fDstRect;
if (imageSet[i].fMatrixIndex >= 0) {
preViewMatrices[imageSet[i].fMatrixIndex].mapRect(&entryBounds);
}
setBounds.joinPossiblyEmptyRect(entryBounds);
}
}
// If we happen to have the draw bounds, though, might as well check quickReject().
if (setBoundsValid && this->internalQuickReject(setBounds, realPaint)) {
return;
}
AutoLayerForImageFilter layer(this, realPaint, setBoundsValid ? &setBounds : nullptr);
this->topDevice()->drawEdgeAAImageSet(imageSet, count, dstClips, preViewMatrices, sampling,
layer.paint(), constraint);
}
//////////////////////////////////////////////////////////////////////////////
// These methods are NOT virtual, and therefore must call back into virtual
// methods, rather than actually drawing themselves.
//////////////////////////////////////////////////////////////////////////////
void SkCanvas::drawColor(const SkColor4f& c, SkBlendMode mode) {
SkPaint paint;
paint.setColor(c);
paint.setBlendMode(mode);
this->drawPaint(paint);
}
void SkCanvas::drawPoint(SkScalar x, SkScalar y, const SkPaint& paint) {
const SkPoint pt = { x, y };
this->drawPoints(kPoints_PointMode, 1, &pt, paint);
}
void SkCanvas::drawLine(SkScalar x0, SkScalar y0, SkScalar x1, SkScalar y1, const SkPaint& paint) {
SkPoint pts[2];
pts[0].set(x0, y0);
pts[1].set(x1, y1);
this->drawPoints(kLines_PointMode, 2, pts, paint);
}
void SkCanvas::drawCircle(SkScalar cx, SkScalar cy, SkScalar radius, const SkPaint& paint) {
if (radius < 0) {
radius = 0;
}
SkRect r;
r.setLTRB(cx - radius, cy - radius, cx + radius, cy + radius);
this->drawOval(r, paint);
}
void SkCanvas::drawRoundRect(const SkRect& r, SkScalar rx, SkScalar ry,
const SkPaint& paint) {
if (rx > 0 && ry > 0) {
SkRRect rrect;
rrect.setRectXY(r, rx, ry);
this->drawRRect(rrect, paint);
} else {
this->drawRect(r, paint);
}
}
void SkCanvas::drawArc(const SkRect& oval, SkScalar startAngle,
SkScalar sweepAngle, bool useCenter,
const SkPaint& paint) {
TRACE_EVENT0("skia", TRACE_FUNC);
if (oval.isEmpty() || !sweepAngle) {
return;
}
this->onDrawArc(oval, startAngle, sweepAngle, useCenter, paint);
}
///////////////////////////////////////////////////////////////////////////////
#ifdef SK_DISABLE_SKPICTURE
void SkCanvas::drawPicture(const SkPicture* picture, const SkMatrix* matrix, const SkPaint* paint) {}
void SkCanvas::onDrawPicture(const SkPicture* picture, const SkMatrix* matrix,
const SkPaint* paint) {}
#else
void SkCanvas::drawPicture(const SkPicture* picture, const SkMatrix* matrix, const SkPaint* paint) {
TRACE_EVENT0("skia", TRACE_FUNC);
RETURN_ON_NULL(picture);
if (matrix && matrix->isIdentity()) {
matrix = nullptr;
}
if (picture->approximateOpCount() <= kMaxPictureOpsToUnrollInsteadOfRef) {
SkAutoCanvasMatrixPaint acmp(this, matrix, paint, picture->cullRect());
picture->playback(this);
} else {
this->onDrawPicture(picture, matrix, paint);
}
}
void SkCanvas::onDrawPicture(const SkPicture* picture, const SkMatrix* matrix,
const SkPaint* paint) {
if (this->internalQuickReject(picture->cullRect(), paint ? *paint : SkPaint{}, matrix)) {
return;
}
SkAutoCanvasMatrixPaint acmp(this, matrix, paint, picture->cullRect());
picture->playback(this);
}
#endif
///////////////////////////////////////////////////////////////////////////////
SkCanvas::ImageSetEntry::ImageSetEntry() = default;
SkCanvas::ImageSetEntry::~ImageSetEntry() = default;
SkCanvas::ImageSetEntry::ImageSetEntry(const ImageSetEntry&) = default;
SkCanvas::ImageSetEntry& SkCanvas::ImageSetEntry::operator=(const ImageSetEntry&) = default;
SkCanvas::ImageSetEntry::ImageSetEntry(sk_sp<const SkImage> image, const SkRect& srcRect,
const SkRect& dstRect, int matrixIndex, float alpha,
unsigned aaFlags, bool hasClip)
: fImage(std::move(image))
, fSrcRect(srcRect)
, fDstRect(dstRect)
, fMatrixIndex(matrixIndex)
, fAlpha(alpha)
, fAAFlags(aaFlags)
, fHasClip(hasClip) {}
SkCanvas::ImageSetEntry::ImageSetEntry(sk_sp<const SkImage> image, const SkRect& srcRect,
const SkRect& dstRect, float alpha, unsigned aaFlags)
: fImage(std::move(image))
, fSrcRect(srcRect)
, fDstRect(dstRect)
, fAlpha(alpha)
, fAAFlags(aaFlags) {}
///////////////////////////////////////////////////////////////////////////////
std::unique_ptr<SkCanvas> SkCanvas::MakeRasterDirect(const SkImageInfo& info, void* pixels,
size_t rowBytes, const SkSurfaceProps* props) {
if (!SkSurfaceValidateRasterInfo(info, rowBytes)) {
return nullptr;
}
SkBitmap bitmap;
if (!bitmap.installPixels(info, pixels, rowBytes)) {
return nullptr;
}
return props ?
std::make_unique<SkCanvas>(bitmap, *props) :
std::make_unique<SkCanvas>(bitmap);
}
///////////////////////////////////////////////////////////////////////////////
SkNoDrawCanvas::SkNoDrawCanvas(int width, int height)
: INHERITED(SkIRect::MakeWH(width, height)) {}
SkNoDrawCanvas::SkNoDrawCanvas(const SkIRect& bounds)
: INHERITED(bounds) {}
SkNoDrawCanvas::SkNoDrawCanvas(sk_sp<SkBaseDevice> device)
: INHERITED(device) {}
SkCanvas::SaveLayerStrategy SkNoDrawCanvas::getSaveLayerStrategy(const SaveLayerRec& rec) {
(void)this->INHERITED::getSaveLayerStrategy(rec);
return kNoLayer_SaveLayerStrategy;
}
bool SkNoDrawCanvas::onDoSaveBehind(const SkRect*) {
return false;
}
///////////////////////////////////////////////////////////////////////////////
static_assert((int)SkRegion::kDifference_Op == (int)kDifference_SkClipOp, "");
static_assert((int)SkRegion::kIntersect_Op == (int)kIntersect_SkClipOp, "");
static_assert((int)SkRegion::kUnion_Op == (int)kUnion_SkClipOp, "");
static_assert((int)SkRegion::kXOR_Op == (int)kXOR_SkClipOp, "");
static_assert((int)SkRegion::kReverseDifference_Op == (int)kReverseDifference_SkClipOp, "");
static_assert((int)SkRegion::kReplace_Op == (int)kReplace_SkClipOp, "");
///////////////////////////////////////////////////////////////////////////////////////////////////
SkRasterHandleAllocator::Handle SkCanvas::accessTopRasterHandle() const {
const SkBaseDevice* dev = this->topDevice();
if (fAllocator) {
SkRasterHandleAllocator::Handle handle = dev->getRasterHandle();
SkIRect clip = dev->devClipBounds();
if (!clip.intersect({0, 0, dev->width(), dev->height()})) {
clip.setEmpty();
}
fAllocator->updateHandle(handle, dev->localToDevice(), clip);
return handle;
}
return nullptr;
}
static bool install(SkBitmap* bm, const SkImageInfo& info,
const SkRasterHandleAllocator::Rec& rec) {
return bm->installPixels(info, rec.fPixels, rec.fRowBytes, rec.fReleaseProc, rec.fReleaseCtx);
}
SkRasterHandleAllocator::Handle SkRasterHandleAllocator::allocBitmap(const SkImageInfo& info,
SkBitmap* bm) {
SkRasterHandleAllocator::Rec rec;
if (!this->allocHandle(info, &rec) || !install(bm, info, rec)) {
return nullptr;
}
return rec.fHandle;
}
std::unique_ptr<SkCanvas>
SkRasterHandleAllocator::MakeCanvas(std::unique_ptr<SkRasterHandleAllocator> alloc,
const SkImageInfo& info, const Rec* rec) {
if (!alloc || !SkSurfaceValidateRasterInfo(info, rec ? rec->fRowBytes : kIgnoreRowBytesValue)) {
return nullptr;
}
SkBitmap bm;
Handle hndl;
if (rec) {
hndl = install(&bm, info, *rec) ? rec->fHandle : nullptr;
} else {
hndl = alloc->allocBitmap(info, &bm);
}
return hndl ? std::unique_ptr<SkCanvas>(new SkCanvas(bm, std::move(alloc), hndl)) : nullptr;
}
///////////////////////////////////////////////////////////////////////////////////////////////////