blob: 329812776c19b40e547d2a201a7812e401c63602 [file] [log] [blame]
/*
* Copyright 2020 Google LLC
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/sksl/SkSLInliner.h"
#ifndef SK_ENABLE_OPTIMIZE_SIZE
#include "include/core/SkSpan.h"
#include "include/core/SkTypes.h"
#include "include/private/base/SkTArray.h"
#include "src/base/SkEnumBitMask.h"
#include "src/sksl/SkSLAnalysis.h"
#include "src/sksl/SkSLDefines.h"
#include "src/sksl/SkSLErrorReporter.h"
#include "src/sksl/SkSLOperator.h"
#include "src/sksl/SkSLPosition.h"
#include "src/sksl/analysis/SkSLProgramUsage.h"
#include "src/sksl/ir/SkSLBinaryExpression.h"
#include "src/sksl/ir/SkSLBreakStatement.h"
#include "src/sksl/ir/SkSLChildCall.h"
#include "src/sksl/ir/SkSLConstructor.h"
#include "src/sksl/ir/SkSLConstructorArray.h"
#include "src/sksl/ir/SkSLConstructorArrayCast.h"
#include "src/sksl/ir/SkSLConstructorCompound.h"
#include "src/sksl/ir/SkSLConstructorCompoundCast.h"
#include "src/sksl/ir/SkSLConstructorDiagonalMatrix.h"
#include "src/sksl/ir/SkSLConstructorMatrixResize.h"
#include "src/sksl/ir/SkSLConstructorScalarCast.h"
#include "src/sksl/ir/SkSLConstructorSplat.h"
#include "src/sksl/ir/SkSLConstructorStruct.h"
#include "src/sksl/ir/SkSLContinueStatement.h"
#include "src/sksl/ir/SkSLDiscardStatement.h"
#include "src/sksl/ir/SkSLDoStatement.h"
#include "src/sksl/ir/SkSLEmptyExpression.h"
#include "src/sksl/ir/SkSLExpressionStatement.h"
#include "src/sksl/ir/SkSLFieldAccess.h"
#include "src/sksl/ir/SkSLForStatement.h"
#include "src/sksl/ir/SkSLFunctionCall.h"
#include "src/sksl/ir/SkSLFunctionDeclaration.h"
#include "src/sksl/ir/SkSLFunctionDefinition.h"
#include "src/sksl/ir/SkSLIRNode.h"
#include "src/sksl/ir/SkSLIfStatement.h"
#include "src/sksl/ir/SkSLIndexExpression.h"
#include "src/sksl/ir/SkSLModifierFlags.h"
#include "src/sksl/ir/SkSLNop.h"
#include "src/sksl/ir/SkSLPostfixExpression.h"
#include "src/sksl/ir/SkSLPrefixExpression.h"
#include "src/sksl/ir/SkSLProgramElement.h"
#include "src/sksl/ir/SkSLReturnStatement.h"
#include "src/sksl/ir/SkSLSetting.h"
#include "src/sksl/ir/SkSLStatement.h"
#include "src/sksl/ir/SkSLSwitchCase.h"
#include "src/sksl/ir/SkSLSwitchStatement.h"
#include "src/sksl/ir/SkSLSwizzle.h"
#include "src/sksl/ir/SkSLSymbolTable.h"
#include "src/sksl/ir/SkSLTernaryExpression.h"
#include "src/sksl/ir/SkSLType.h"
#include "src/sksl/ir/SkSLVarDeclarations.h"
#include "src/sksl/ir/SkSLVariable.h"
#include "src/sksl/ir/SkSLVariableReference.h"
#include "src/sksl/transform/SkSLTransform.h"
#include <algorithm>
#include <climits>
#include <cstddef>
#include <memory>
#include <string>
#include <string_view>
#include <utility>
using namespace skia_private;
namespace SkSL {
namespace {
static constexpr int kInlinedStatementLimit = 2500;
static bool is_scopeless_block(Statement* stmt) {
return stmt->is<Block>() && !stmt->as<Block>().isScope();
}
static std::unique_ptr<Statement>* find_parent_statement(
const std::vector<std::unique_ptr<Statement>*>& stmtStack) {
SkASSERT(!stmtStack.empty());
// Walk the statement stack from back to front, ignoring the last element (which is the
// enclosing statement).
auto iter = stmtStack.rbegin();
++iter;
// Anything counts as a parent statement other than a scopeless Block.
for (; iter != stmtStack.rend(); ++iter) {
std::unique_ptr<Statement>* stmt = *iter;
if (!is_scopeless_block(stmt->get())) {
return stmt;
}
}
// There wasn't any parent statement to be found.
return nullptr;
}
std::unique_ptr<Expression> clone_with_ref_kind(const Expression& expr,
VariableReference::RefKind refKind,
Position pos) {
std::unique_ptr<Expression> clone = expr.clone(pos);
Analysis::UpdateVariableRefKind(clone.get(), refKind);
return clone;
}
} // namespace
const Variable* Inliner::RemapVariable(const Variable* variable,
const VariableRewriteMap* varMap) {
std::unique_ptr<Expression>* remap = varMap->find(variable);
if (!remap) {
SkDEBUGFAILF("rewrite map does not contain variable '%.*s'",
(int)variable->name().size(), variable->name().data());
return variable;
}
Expression* expr = remap->get();
SkASSERT(expr);
if (!expr->is<VariableReference>()) {
SkDEBUGFAILF("rewrite map contains non-variable replacement for '%.*s'",
(int)variable->name().size(), variable->name().data());
return variable;
}
return expr->as<VariableReference>().variable();
}
void Inliner::ensureScopedBlocks(Statement* inlinedBody, Statement* parentStmt) {
// No changes necessary if this statement isn't actually a block.
if (!inlinedBody || !inlinedBody->is<Block>()) {
return;
}
// No changes necessary if the parent statement doesn't require a scope.
if (!parentStmt || !(parentStmt->is<IfStatement>() || parentStmt->is<ForStatement>() ||
parentStmt->is<DoStatement>() || is_scopeless_block(parentStmt))) {
return;
}
Block& block = inlinedBody->as<Block>();
// The inliner will create inlined function bodies as a Block containing multiple statements,
// but no scope. Normally, this is fine, but if this block is used as the statement for a
// do/for/if/while, the block needs to be scoped for the generated code to match the intent.
// In the case of Blocks nested inside other Blocks, we add the scope to the outermost block if
// needed.
for (Block* nestedBlock = &block;; ) {
if (nestedBlock->isScope()) {
// We found an explicit scope; all is well.
return;
}
if (nestedBlock->children().size() == 1 && nestedBlock->children()[0]->is<Block>()) {
// This block wraps another unscoped block; we need to go deeper.
nestedBlock = &nestedBlock->children()[0]->as<Block>();
continue;
}
// We found a block containing real statements (not just more blocks), but no scope.
// Let's add a scope to the outermost block.
block.setBlockKind(Block::Kind::kBracedScope);
return;
}
}
std::unique_ptr<Expression> Inliner::inlineExpression(Position pos,
VariableRewriteMap* varMap,
SymbolTable* symbolTableForExpression,
const Expression& expression) {
auto expr = [&](const std::unique_ptr<Expression>& e) -> std::unique_ptr<Expression> {
if (e) {
return this->inlineExpression(pos, varMap, symbolTableForExpression, *e);
}
return nullptr;
};
auto argList = [&](const ExpressionArray& originalArgs) -> ExpressionArray {
ExpressionArray args;
args.reserve_exact(originalArgs.size());
for (const std::unique_ptr<Expression>& arg : originalArgs) {
args.push_back(expr(arg));
}
return args;
};
switch (expression.kind()) {
case Expression::Kind::kBinary: {
const BinaryExpression& binaryExpr = expression.as<BinaryExpression>();
return BinaryExpression::Make(*fContext,
pos,
expr(binaryExpr.left()),
binaryExpr.getOperator(),
expr(binaryExpr.right()));
}
case Expression::Kind::kEmpty:
return expression.clone(pos);
case Expression::Kind::kLiteral:
return expression.clone(pos);
case Expression::Kind::kChildCall: {
const ChildCall& childCall = expression.as<ChildCall>();
return ChildCall::Make(*fContext,
pos,
childCall.type().clone(*fContext, symbolTableForExpression),
childCall.child(),
argList(childCall.arguments()));
}
case Expression::Kind::kConstructorArray: {
const ConstructorArray& ctor = expression.as<ConstructorArray>();
return ConstructorArray::Make(*fContext,
pos,
*ctor.type().clone(*fContext, symbolTableForExpression),
argList(ctor.arguments()));
}
case Expression::Kind::kConstructorArrayCast: {
const ConstructorArrayCast& ctor = expression.as<ConstructorArrayCast>();
return ConstructorArrayCast::Make(
*fContext,
pos,
*ctor.type().clone(*fContext, symbolTableForExpression),
expr(ctor.argument()));
}
case Expression::Kind::kConstructorCompound: {
const ConstructorCompound& ctor = expression.as<ConstructorCompound>();
return ConstructorCompound::Make(
*fContext,
pos,
*ctor.type().clone(*fContext, symbolTableForExpression),
argList(ctor.arguments()));
}
case Expression::Kind::kConstructorCompoundCast: {
const ConstructorCompoundCast& ctor = expression.as<ConstructorCompoundCast>();
return ConstructorCompoundCast::Make(
*fContext,
pos,
*ctor.type().clone(*fContext, symbolTableForExpression),
expr(ctor.argument()));
}
case Expression::Kind::kConstructorDiagonalMatrix: {
const ConstructorDiagonalMatrix& ctor = expression.as<ConstructorDiagonalMatrix>();
return ConstructorDiagonalMatrix::Make(
*fContext,
pos,
*ctor.type().clone(*fContext, symbolTableForExpression),
expr(ctor.argument()));
}
case Expression::Kind::kConstructorMatrixResize: {
const ConstructorMatrixResize& ctor = expression.as<ConstructorMatrixResize>();
return ConstructorMatrixResize::Make(
*fContext,
pos,
*ctor.type().clone(*fContext, symbolTableForExpression),
expr(ctor.argument()));
}
case Expression::Kind::kConstructorScalarCast: {
const ConstructorScalarCast& ctor = expression.as<ConstructorScalarCast>();
return ConstructorScalarCast::Make(
*fContext,
pos,
*ctor.type().clone(*fContext, symbolTableForExpression),
expr(ctor.argument()));
}
case Expression::Kind::kConstructorSplat: {
const ConstructorSplat& ctor = expression.as<ConstructorSplat>();
return ConstructorSplat::Make(*fContext,
pos,
*ctor.type().clone(*fContext, symbolTableForExpression),
expr(ctor.argument()));
}
case Expression::Kind::kConstructorStruct: {
const ConstructorStruct& ctor = expression.as<ConstructorStruct>();
return ConstructorStruct::Make(*fContext,
pos,
*ctor.type().clone(*fContext, symbolTableForExpression),
argList(ctor.arguments()));
}
case Expression::Kind::kFieldAccess: {
const FieldAccess& f = expression.as<FieldAccess>();
return FieldAccess::Make(*fContext, pos, expr(f.base()), f.fieldIndex(), f.ownerKind());
}
case Expression::Kind::kFunctionCall: {
const FunctionCall& funcCall = expression.as<FunctionCall>();
return FunctionCall::Make(*fContext,
pos,
funcCall.type().clone(*fContext, symbolTableForExpression),
funcCall.function(),
argList(funcCall.arguments()));
}
case Expression::Kind::kFunctionReference:
return expression.clone(pos);
case Expression::Kind::kIndex: {
const IndexExpression& idx = expression.as<IndexExpression>();
return IndexExpression::Make(*fContext, pos, expr(idx.base()), expr(idx.index()));
}
case Expression::Kind::kMethodReference:
return expression.clone(pos);
case Expression::Kind::kPrefix: {
const PrefixExpression& p = expression.as<PrefixExpression>();
return PrefixExpression::Make(*fContext, pos, p.getOperator(), expr(p.operand()));
}
case Expression::Kind::kPostfix: {
const PostfixExpression& p = expression.as<PostfixExpression>();
return PostfixExpression::Make(*fContext, pos, expr(p.operand()), p.getOperator());
}
case Expression::Kind::kSetting: {
const Setting& s = expression.as<Setting>();
return Setting::Make(*fContext, pos, s.capsPtr());
}
case Expression::Kind::kSwizzle: {
const Swizzle& s = expression.as<Swizzle>();
return Swizzle::Make(*fContext, pos, expr(s.base()), s.components());
}
case Expression::Kind::kTernary: {
const TernaryExpression& t = expression.as<TernaryExpression>();
return TernaryExpression::Make(*fContext, pos, expr(t.test()),
expr(t.ifTrue()), expr(t.ifFalse()));
}
case Expression::Kind::kTypeReference:
return expression.clone(pos);
case Expression::Kind::kVariableReference: {
const VariableReference& v = expression.as<VariableReference>();
std::unique_ptr<Expression>* remap = varMap->find(v.variable());
if (remap) {
return clone_with_ref_kind(**remap, v.refKind(), pos);
}
return expression.clone(pos);
}
default:
SkDEBUGFAILF("unsupported expression: %s", expression.description().c_str());
return nullptr;
}
}
std::unique_ptr<Statement> Inliner::inlineStatement(Position pos,
VariableRewriteMap* varMap,
SymbolTable* symbolTableForStatement,
std::unique_ptr<Expression>* resultExpr,
Analysis::ReturnComplexity returnComplexity,
const Statement& statement,
const ProgramUsage& usage,
bool isBuiltinCode) {
auto stmt = [&](const std::unique_ptr<Statement>& s) -> std::unique_ptr<Statement> {
if (s) {
return this->inlineStatement(pos, varMap, symbolTableForStatement, resultExpr,
returnComplexity, *s, usage, isBuiltinCode);
}
return nullptr;
};
auto expr = [&](const std::unique_ptr<Expression>& e) -> std::unique_ptr<Expression> {
if (e) {
return this->inlineExpression(pos, varMap, symbolTableForStatement, *e);
}
return nullptr;
};
auto variableModifiers = [&](const Variable& variable,
const Expression* initialValue) -> ModifierFlags {
return Transform::AddConstToVarModifiers(variable, initialValue, &usage);
};
auto makeWithChildSymbolTable = [&](auto callback) -> std::unique_ptr<Statement> {
SymbolTable* origSymbolTable = symbolTableForStatement;
auto childSymbols = std::make_unique<SymbolTable>(origSymbolTable, isBuiltinCode);
symbolTableForStatement = childSymbols.get();
std::unique_ptr<Statement> stmt = callback(std::move(childSymbols));
symbolTableForStatement = origSymbolTable;
return stmt;
};
++fInlinedStatementCounter;
switch (statement.kind()) {
case Statement::Kind::kBlock:
return makeWithChildSymbolTable([&](std::unique_ptr<SymbolTable> symbolTable) {
const Block& block = statement.as<Block>();
StatementArray statements;
statements.reserve_exact(block.children().size());
for (const std::unique_ptr<Statement>& child : block.children()) {
statements.push_back(stmt(child));
}
return Block::Make(pos,
std::move(statements),
block.blockKind(),
std::move(symbolTable));
});
case Statement::Kind::kBreak:
return BreakStatement::Make(pos);
case Statement::Kind::kContinue:
return ContinueStatement::Make(pos);
case Statement::Kind::kDiscard:
return DiscardStatement::Make(*fContext, pos);
case Statement::Kind::kDo: {
const DoStatement& d = statement.as<DoStatement>();
return DoStatement::Make(*fContext, pos, stmt(d.statement()), expr(d.test()));
}
case Statement::Kind::kExpression: {
const ExpressionStatement& e = statement.as<ExpressionStatement>();
return ExpressionStatement::Make(*fContext, expr(e.expression()));
}
case Statement::Kind::kFor:
return makeWithChildSymbolTable([&](std::unique_ptr<SymbolTable> symbolTable) {
const ForStatement& f = statement.as<ForStatement>();
// We need to ensure `initializer` is evaluated first, so that we've already
// remapped its declaration by the time we evaluate `test` and `next`.
std::unique_ptr<Statement> initializerStmt = stmt(f.initializer());
std::unique_ptr<Expression> testExpr = expr(f.test());
std::unique_ptr<Expression> nextExpr = expr(f.next());
std::unique_ptr<Statement> bodyStmt = stmt(f.statement());
std::unique_ptr<LoopUnrollInfo> unrollInfo;
if (f.unrollInfo()) {
// The for loop's unroll-info points to the Variable in the initializer as the
// index. This variable has been rewritten into a clone by the inliner, so we
// need to update the loop-unroll info to point to the clone.
unrollInfo = std::make_unique<LoopUnrollInfo>(*f.unrollInfo());
unrollInfo->fIndex = RemapVariable(unrollInfo->fIndex, varMap);
}
return ForStatement::Make(*fContext, pos, ForLoopPositions{},
std::move(initializerStmt),
std::move(testExpr),
std::move(nextExpr),
std::move(bodyStmt),
std::move(unrollInfo),
std::move(symbolTable));
});
case Statement::Kind::kIf: {
const IfStatement& i = statement.as<IfStatement>();
return IfStatement::Make(*fContext, pos, expr(i.test()),
stmt(i.ifTrue()), stmt(i.ifFalse()));
}
case Statement::Kind::kNop:
return Nop::Make();
case Statement::Kind::kReturn: {
const ReturnStatement& r = statement.as<ReturnStatement>();
if (!r.expression()) {
// This function doesn't return a value. We won't inline functions with early
// returns, so a return statement is a no-op and can be treated as such.
return Nop::Make();
}
// If a function only contains a single return, and it doesn't reference variables from
// inside an Block's scope, we don't need to store the result in a variable at all. Just
// replace the function-call expression with the function's return expression.
SkASSERT(resultExpr);
if (returnComplexity <= Analysis::ReturnComplexity::kSingleSafeReturn) {
*resultExpr = expr(r.expression());
return Nop::Make();
}
// For more complex functions, we assign their result into a variable. We refuse to
// inline anything with early returns, so this should be safe to do; that is, on this
// control path, this is the last statement that will occur.
SkASSERT(*resultExpr);
return ExpressionStatement::Make(
*fContext,
BinaryExpression::Make(
*fContext,
pos,
clone_with_ref_kind(**resultExpr, VariableRefKind::kWrite, pos),
Operator::Kind::EQ,
expr(r.expression())));
}
case Statement::Kind::kSwitch: {
const SwitchStatement& ss = statement.as<SwitchStatement>();
return SwitchStatement::Make(*fContext, pos, expr(ss.value()), stmt(ss.caseBlock()));
}
case Statement::Kind::kSwitchCase: {
const SwitchCase& sc = statement.as<SwitchCase>();
return sc.isDefault() ? SwitchCase::MakeDefault(pos, stmt(sc.statement()))
: SwitchCase::Make(pos, sc.value(), stmt(sc.statement()));
}
case Statement::Kind::kVarDeclaration: {
const VarDeclaration& decl = statement.as<VarDeclaration>();
std::unique_ptr<Expression> initialValue = expr(decl.value());
const Variable* variable = decl.var();
// We assign unique names to inlined variables--scopes hide most of the problems in this
// regard, but see `InlinerAvoidsVariableNameOverlap` for a counterexample where unique
// names are important.
const std::string* name = symbolTableForStatement->takeOwnershipOfString(
fMangler.uniqueName(variable->name(), symbolTableForStatement));
auto clonedVar =
Variable::Make(pos,
variable->modifiersPosition(),
variable->layout(),
variableModifiers(*variable, initialValue.get()),
variable->type().clone(*fContext, symbolTableForStatement),
name->c_str(),
/*mangledName=*/"",
isBuiltinCode,
variable->storage());
varMap->set(variable, VariableReference::Make(pos, clonedVar.get()));
std::unique_ptr<Statement> result =
VarDeclaration::Make(*fContext,
clonedVar.get(),
decl.baseType().clone(*fContext, symbolTableForStatement),
decl.arraySize(),
std::move(initialValue));
symbolTableForStatement->add(*fContext, std::move(clonedVar));
return result;
}
default:
SkASSERT(false);
return nullptr;
}
}
static bool argument_needs_scratch_variable(const Expression* arg,
const Variable* param,
const ProgramUsage& usage) {
// If the parameter isn't written to within the inline function ...
const ProgramUsage::VariableCounts& paramUsage = usage.get(*param);
if (!paramUsage.fWrite) {
// ... and can be inlined trivially (e.g. a swizzle, or a constant array index),
// or any expression without side effects that is only accessed at most once...
if ((paramUsage.fRead > 1) ? Analysis::IsTrivialExpression(*arg)
: !Analysis::HasSideEffects(*arg)) {
// ... we don't need to copy it at all! We can just use the existing expression.
return false;
}
}
// We need a scratch variable.
return true;
}
Inliner::InlinedCall Inliner::inlineCall(const FunctionCall& call,
SymbolTable* symbolTable,
const ProgramUsage& usage,
const FunctionDeclaration* caller) {
using ScratchVariable = Variable::ScratchVariable;
// Inlining is more complicated here than in a typical compiler, because we have to have a
// high-level IR and can't just drop statements into the middle of an expression or even use
// gotos.
//
// Since we can't insert statements into an expression, we run the inline function as extra
// statements before the statement we're currently processing, relying on a lack of execution
// order guarantees.
SkASSERT(fContext);
SkASSERT(this->isSafeToInline(call.function().definition(), usage));
const ExpressionArray& arguments = call.arguments();
const Position pos = call.fPosition;
const FunctionDefinition& function = *call.function().definition();
const Block& body = function.body()->as<Block>();
const Analysis::ReturnComplexity returnComplexity = Analysis::GetReturnComplexity(function);
StatementArray inlineStatements;
int expectedStmtCount = 1 + // Result variable
arguments.size() + // Function argument temp-vars
body.children().size(); // Inlined code
inlineStatements.reserve_exact(expectedStmtCount);
std::unique_ptr<Expression> resultExpr;
if (returnComplexity > Analysis::ReturnComplexity::kSingleSafeReturn &&
!function.declaration().returnType().isVoid()) {
// Create a variable to hold the result in the extra statements. We don't need to do this
// for void-return functions, or in cases that are simple enough that we can just replace
// the function-call node with the result expression.
ScratchVariable var = Variable::MakeScratchVariable(*fContext,
fMangler,
function.declaration().name(),
&function.declaration().returnType(),
symbolTable,
/*initialValue=*/nullptr);
inlineStatements.push_back(std::move(var.fVarDecl));
resultExpr = VariableReference::Make(Position(), var.fVarSymbol);
}
// Create variables in the extra statements to hold the arguments, and assign the arguments to
// them.
VariableRewriteMap varMap;
for (int i = 0; i < arguments.size(); ++i) {
const Expression* arg = arguments[i].get();
const Variable* param = function.declaration().parameters()[i];
if (!argument_needs_scratch_variable(arg, param, usage)) {
varMap.set(param, arg->clone());
continue;
}
ScratchVariable var = Variable::MakeScratchVariable(*fContext,
fMangler,
param->name(),
&arg->type(),
symbolTable,
arg->clone());
inlineStatements.push_back(std::move(var.fVarDecl));
varMap.set(param, VariableReference::Make(Position(), var.fVarSymbol));
}
for (const std::unique_ptr<Statement>& stmt : body.children()) {
inlineStatements.push_back(this->inlineStatement(pos, &varMap, symbolTable,
&resultExpr, returnComplexity, *stmt,
usage, caller->isBuiltin()));
}
SkASSERT(inlineStatements.size() <= expectedStmtCount);
// Wrap all of the generated statements in a block. We need a real Block here, because we need
// to add another child statement to the Block later.
InlinedCall inlinedCall;
inlinedCall.fInlinedBody = Block::MakeBlock(pos, std::move(inlineStatements),
Block::Kind::kUnbracedBlock);
if (resultExpr) {
// Return our result expression as-is.
inlinedCall.fReplacementExpr = std::move(resultExpr);
} else if (function.declaration().returnType().isVoid()) {
// It's a void function, so its result is the empty expression.
inlinedCall.fReplacementExpr = EmptyExpression::Make(pos, *fContext);
} else {
// It's a non-void function, but it never created a result expression--that is, it never
// returned anything on any path! This should have been detected in the function finalizer.
// Still, discard our output and generate an error.
SkDEBUGFAIL("inliner found non-void function that fails to return a value on any path");
fContext->fErrors->error(function.fPosition, "inliner found non-void function '" +
std::string(function.declaration().name()) +
"' that fails to return a value on any path");
inlinedCall = {};
}
return inlinedCall;
}
bool Inliner::isSafeToInline(const FunctionDefinition* functionDef, const ProgramUsage& usage) {
// A threshold of zero indicates that the inliner is completely disabled, so we can just return.
if (this->settings().fInlineThreshold <= 0) {
return false;
}
// Enforce a limit on inlining to avoid pathological cases. (inliner/ExponentialGrowth.sksl)
if (fInlinedStatementCounter >= kInlinedStatementLimit) {
return false;
}
if (functionDef == nullptr) {
// Can't inline something if we don't actually have its definition.
return false;
}
if (functionDef->declaration().modifierFlags().isNoInline()) {
// Refuse to inline functions decorated with `noinline`.
return false;
}
for (const Variable* param : functionDef->declaration().parameters()) {
// We don't allow inlining functions with parameters that are written-to, if they...
// - are `out` parameters (see skia:11326 for rationale.)
// - are arrays or structures (introducing temporary copies is non-trivial)
if ((param->modifierFlags() & ModifierFlag::kOut) ||
param->type().isArray() ||
param->type().isStruct()) {
ProgramUsage::VariableCounts counts = usage.get(*param);
if (counts.fWrite > 0) {
return false;
}
}
}
// We don't have a mechanism to simulate early returns, so we can't inline if there is one.
return Analysis::GetReturnComplexity(*functionDef) < Analysis::ReturnComplexity::kEarlyReturns;
}
// A candidate function for inlining, containing everything that `inlineCall` needs.
struct InlineCandidate {
SymbolTable* fSymbols; // the SymbolTable of the candidate
std::unique_ptr<Statement>* fParentStmt; // the parent Statement of the enclosing stmt
std::unique_ptr<Statement>* fEnclosingStmt; // the Statement containing the candidate
std::unique_ptr<Expression>* fCandidateExpr; // the candidate FunctionCall to be inlined
FunctionDefinition* fEnclosingFunction; // the Function containing the candidate
};
struct InlineCandidateList {
std::vector<InlineCandidate> fCandidates;
};
class InlineCandidateAnalyzer {
public:
// A list of all the inlining candidates we found during analysis.
InlineCandidateList* fCandidateList;
// A stack of the symbol tables; since most nodes don't have one, expected to be shallower than
// the enclosing-statement stack.
std::vector<SymbolTable*> fSymbolTableStack;
// A stack of "enclosing" statements--these would be suitable for the inliner to use for adding
// new instructions. Not all statements are suitable (e.g. a for-loop's initializer). The
// inliner might replace a statement with a block containing the statement.
std::vector<std::unique_ptr<Statement>*> fEnclosingStmtStack;
// The function that we're currently processing (i.e. inlining into).
FunctionDefinition* fEnclosingFunction = nullptr;
void visit(const std::vector<std::unique_ptr<ProgramElement>>& elements,
SymbolTable* symbols,
InlineCandidateList* candidateList) {
fCandidateList = candidateList;
fSymbolTableStack.push_back(symbols);
for (const std::unique_ptr<ProgramElement>& pe : elements) {
this->visitProgramElement(pe.get());
}
fSymbolTableStack.pop_back();
fCandidateList = nullptr;
}
void visitProgramElement(ProgramElement* pe) {
switch (pe->kind()) {
case ProgramElement::Kind::kFunction: {
FunctionDefinition& funcDef = pe->as<FunctionDefinition>();
// If this function has parameter names that would shadow globally-scoped names, we
// don't scan it for inline candidates, because it's too late to mangle the names.
bool foundShadowingParameterName = false;
for (const Variable* param : funcDef.declaration().parameters()) {
if (fSymbolTableStack.front()->find(param->name())) {
foundShadowingParameterName = true;
break;
}
}
if (!foundShadowingParameterName) {
fEnclosingFunction = &funcDef;
this->visitStatement(&funcDef.body());
}
break;
}
default:
// The inliner can't operate outside of a function's scope.
break;
}
}
void visitStatement(std::unique_ptr<Statement>* stmt,
bool isViableAsEnclosingStatement = true) {
if (!*stmt) {
return;
}
Analysis::SymbolTableStackBuilder scopedStackBuilder(stmt->get(), &fSymbolTableStack);
// If this statement contains symbols that would shadow globally-scoped names, we don't look
// for any inline candidates, because it's too late to mangle the names.
if (scopedStackBuilder.foundSymbolTable() &&
fSymbolTableStack.back()->wouldShadowSymbolsFrom(fSymbolTableStack.front())) {
return;
}
size_t oldEnclosingStmtStackSize = fEnclosingStmtStack.size();
if (isViableAsEnclosingStatement) {
fEnclosingStmtStack.push_back(stmt);
}
switch ((*stmt)->kind()) {
case Statement::Kind::kBreak:
case Statement::Kind::kContinue:
case Statement::Kind::kDiscard:
case Statement::Kind::kNop:
break;
case Statement::Kind::kBlock: {
Block& block = (*stmt)->as<Block>();
for (std::unique_ptr<Statement>& blockStmt : block.children()) {
this->visitStatement(&blockStmt);
}
break;
}
case Statement::Kind::kDo: {
DoStatement& doStmt = (*stmt)->as<DoStatement>();
// The loop body is a candidate for inlining.
this->visitStatement(&doStmt.statement());
// The inliner isn't smart enough to inline the test-expression for a do-while
// loop at this time. There are two limitations:
// - We would need to insert the inlined-body block at the very end of the do-
// statement's inner fStatement. We don't support that today, but it's doable.
// - We cannot inline the test expression if the loop uses `continue` anywhere; that
// would skip over the inlined block that evaluates the test expression. There
// isn't a good fix for this--any workaround would be more complex than the cost
// of a function call. However, loops that don't use `continue` would still be
// viable candidates for inlining.
break;
}
case Statement::Kind::kExpression: {
ExpressionStatement& expr = (*stmt)->as<ExpressionStatement>();
this->visitExpression(&expr.expression());
break;
}
case Statement::Kind::kFor: {
ForStatement& forStmt = (*stmt)->as<ForStatement>();
// The initializer and loop body are candidates for inlining.
this->visitStatement(&forStmt.initializer(),
/*isViableAsEnclosingStatement=*/false);
this->visitStatement(&forStmt.statement());
// The inliner isn't smart enough to inline the test- or increment-expressions
// of a for loop loop at this time. There are a handful of limitations:
// - We would need to insert the test-expression block at the very beginning of the
// for-loop's inner fStatement, and the increment-expression block at the very
// end. We don't support that today, but it's doable.
// - The for-loop's built-in test-expression would need to be dropped entirely,
// and the loop would be halted via a break statement at the end of the inlined
// test-expression. This is again something we don't support today, but it could
// be implemented.
// - We cannot inline the increment-expression if the loop uses `continue` anywhere;
// that would skip over the inlined block that evaluates the increment expression.
// There isn't a good fix for this--any workaround would be more complex than the
// cost of a function call. However, loops that don't use `continue` would still
// be viable candidates for increment-expression inlining.
break;
}
case Statement::Kind::kIf: {
IfStatement& ifStmt = (*stmt)->as<IfStatement>();
this->visitExpression(&ifStmt.test());
this->visitStatement(&ifStmt.ifTrue());
this->visitStatement(&ifStmt.ifFalse());
break;
}
case Statement::Kind::kReturn: {
ReturnStatement& returnStmt = (*stmt)->as<ReturnStatement>();
this->visitExpression(&returnStmt.expression());
break;
}
case Statement::Kind::kSwitch: {
SwitchStatement& switchStmt = (*stmt)->as<SwitchStatement>();
this->visitExpression(&switchStmt.value());
for (const std::unique_ptr<Statement>& switchCase : switchStmt.cases()) {
// The switch-case's fValue cannot be a FunctionCall; skip it.
this->visitStatement(&switchCase->as<SwitchCase>().statement());
}
break;
}
case Statement::Kind::kVarDeclaration: {
VarDeclaration& varDeclStmt = (*stmt)->as<VarDeclaration>();
// Don't need to scan the declaration's sizes; those are always literals.
this->visitExpression(&varDeclStmt.value());
break;
}
default:
SkUNREACHABLE;
}
// Pop our symbol and enclosing-statement stacks.
fEnclosingStmtStack.resize(oldEnclosingStmtStackSize);
}
void visitExpression(std::unique_ptr<Expression>* expr) {
if (!*expr) {
return;
}
switch ((*expr)->kind()) {
case Expression::Kind::kFieldAccess:
case Expression::Kind::kFunctionReference:
case Expression::Kind::kLiteral:
case Expression::Kind::kMethodReference:
case Expression::Kind::kSetting:
case Expression::Kind::kTypeReference:
case Expression::Kind::kVariableReference:
// Nothing to scan here.
break;
case Expression::Kind::kBinary: {
BinaryExpression& binaryExpr = (*expr)->as<BinaryExpression>();
this->visitExpression(&binaryExpr.left());
// Logical-and and logical-or binary expressions do not inline the right side,
// because that would invalidate short-circuiting. That is, when evaluating
// expressions like these:
// (false && x()) // always false
// (true || y()) // always true
// It is illegal for side-effects from x() or y() to occur. The simplest way to
// enforce that rule is to avoid inlining the right side entirely. However, it is
// safe for other types of binary expression to inline both sides.
Operator op = binaryExpr.getOperator();
bool shortCircuitable = (op.kind() == Operator::Kind::LOGICALAND ||
op.kind() == Operator::Kind::LOGICALOR);
if (!shortCircuitable) {
this->visitExpression(&binaryExpr.right());
}
break;
}
case Expression::Kind::kChildCall: {
ChildCall& childCallExpr = (*expr)->as<ChildCall>();
for (std::unique_ptr<Expression>& arg : childCallExpr.arguments()) {
this->visitExpression(&arg);
}
break;
}
case Expression::Kind::kConstructorArray:
case Expression::Kind::kConstructorArrayCast:
case Expression::Kind::kConstructorCompound:
case Expression::Kind::kConstructorCompoundCast:
case Expression::Kind::kConstructorDiagonalMatrix:
case Expression::Kind::kConstructorMatrixResize:
case Expression::Kind::kConstructorScalarCast:
case Expression::Kind::kConstructorSplat:
case Expression::Kind::kConstructorStruct: {
AnyConstructor& constructorExpr = (*expr)->asAnyConstructor();
for (std::unique_ptr<Expression>& arg : constructorExpr.argumentSpan()) {
this->visitExpression(&arg);
}
break;
}
case Expression::Kind::kFunctionCall: {
FunctionCall& funcCallExpr = (*expr)->as<FunctionCall>();
for (std::unique_ptr<Expression>& arg : funcCallExpr.arguments()) {
this->visitExpression(&arg);
}
this->addInlineCandidate(expr);
break;
}
case Expression::Kind::kIndex: {
IndexExpression& indexExpr = (*expr)->as<IndexExpression>();
this->visitExpression(&indexExpr.base());
this->visitExpression(&indexExpr.index());
break;
}
case Expression::Kind::kPostfix: {
PostfixExpression& postfixExpr = (*expr)->as<PostfixExpression>();
this->visitExpression(&postfixExpr.operand());
break;
}
case Expression::Kind::kPrefix: {
PrefixExpression& prefixExpr = (*expr)->as<PrefixExpression>();
this->visitExpression(&prefixExpr.operand());
break;
}
case Expression::Kind::kSwizzle: {
Swizzle& swizzleExpr = (*expr)->as<Swizzle>();
this->visitExpression(&swizzleExpr.base());
break;
}
case Expression::Kind::kTernary: {
TernaryExpression& ternaryExpr = (*expr)->as<TernaryExpression>();
// The test expression is a candidate for inlining.
this->visitExpression(&ternaryExpr.test());
// The true- and false-expressions cannot be inlined, because we are only allowed to
// evaluate one side.
break;
}
default:
SkUNREACHABLE;
}
}
void addInlineCandidate(std::unique_ptr<Expression>* candidate) {
fCandidateList->fCandidates.push_back(
InlineCandidate{fSymbolTableStack.back(),
find_parent_statement(fEnclosingStmtStack),
fEnclosingStmtStack.back(),
candidate,
fEnclosingFunction});
}
};
static const FunctionDeclaration& candidate_func(const InlineCandidate& candidate) {
return (*candidate.fCandidateExpr)->as<FunctionCall>().function();
}
bool Inliner::functionCanBeInlined(const FunctionDeclaration& funcDecl,
const ProgramUsage& usage,
InlinabilityCache* cache) {
if (const bool* cachedInlinability = cache->find(&funcDecl)) {
return *cachedInlinability;
}
bool inlinability = this->isSafeToInline(funcDecl.definition(), usage);
cache->set(&funcDecl, inlinability);
return inlinability;
}
bool Inliner::candidateCanBeInlined(const InlineCandidate& candidate,
const ProgramUsage& usage,
InlinabilityCache* cache) {
// Check the cache to see if this function is safe to inline.
const FunctionDeclaration& funcDecl = candidate_func(candidate);
if (!this->functionCanBeInlined(funcDecl, usage, cache)) {
return false;
}
// Even if the function is safe, the arguments we are passing may not be. In particular, we
// can't make copies of opaque values, so we need to reject inline candidates that would need to
// do this. Every call has different arguments, so this part is not cacheable. (skia:13824)
const FunctionCall& call = candidate.fCandidateExpr->get()->as<FunctionCall>();
const ExpressionArray& arguments = call.arguments();
for (int i = 0; i < arguments.size(); ++i) {
const Expression* arg = arguments[i].get();
if (arg->type().isOpaque()) {
const Variable* param = funcDecl.parameters()[i];
if (argument_needs_scratch_variable(arg, param, usage)) {
return false;
}
}
}
return true;
}
int Inliner::getFunctionSize(const FunctionDeclaration& funcDecl, FunctionSizeCache* cache) {
if (const int* cachedSize = cache->find(&funcDecl)) {
return *cachedSize;
}
int size = Analysis::NodeCountUpToLimit(*funcDecl.definition(),
this->settings().fInlineThreshold);
cache->set(&funcDecl, size);
return size;
}
void Inliner::buildCandidateList(const std::vector<std::unique_ptr<ProgramElement>>& elements,
SymbolTable* symbols,
ProgramUsage* usage,
InlineCandidateList* candidateList) {
// This is structured much like a ProgramVisitor, but does not actually use ProgramVisitor.
// The analyzer needs to keep track of the `unique_ptr<T>*` of statements and expressions so
// that they can later be replaced, and ProgramVisitor does not provide this; it only provides a
// `const T&`.
InlineCandidateAnalyzer analyzer;
analyzer.visit(elements, symbols, candidateList);
// Early out if there are no inlining candidates.
std::vector<InlineCandidate>& candidates = candidateList->fCandidates;
if (candidates.empty()) {
return;
}
// Remove candidates that are not safe to inline.
InlinabilityCache cache;
candidates.erase(std::remove_if(candidates.begin(),
candidates.end(),
[&](const InlineCandidate& candidate) {
return !this->candidateCanBeInlined(
candidate, *usage, &cache);
}),
candidates.end());
// If the inline threshold is unlimited, or if we have no candidates left, our candidate list is
// complete.
if (this->settings().fInlineThreshold == INT_MAX || candidates.empty()) {
return;
}
// Remove candidates on a per-function basis if the effect of inlining would be to make more
// than `inlineThreshold` nodes. (i.e. if Func() would be inlined six times and its size is
// 10 nodes, it should be inlined if the inlineThreshold is 60 or higher.)
FunctionSizeCache functionSizeCache;
FunctionSizeCache candidateTotalCost;
for (InlineCandidate& candidate : candidates) {
const FunctionDeclaration& fnDecl = candidate_func(candidate);
candidateTotalCost[&fnDecl] += this->getFunctionSize(fnDecl, &functionSizeCache);
}
candidates.erase(std::remove_if(candidates.begin(), candidates.end(),
[&](const InlineCandidate& candidate) {
const FunctionDeclaration& fnDecl = candidate_func(candidate);
if (fnDecl.modifierFlags().isInline()) {
// Functions marked `inline` ignore size limitations.
return false;
}
if (usage->get(fnDecl) == 1) {
// If a function is only used once, it's cost-free to inline.
return false;
}
if (candidateTotalCost[&fnDecl] <= this->settings().fInlineThreshold) {
// We won't exceed the inline threshold by inlining this.
return false;
}
// Inlining this function will add too many IRNodes.
return true;
}),
candidates.end());
}
bool Inliner::analyze(const std::vector<std::unique_ptr<ProgramElement>>& elements,
SymbolTable* symbols,
ProgramUsage* usage) {
// A threshold of zero indicates that the inliner is completely disabled, so we can just return.
if (this->settings().fInlineThreshold <= 0) {
return false;
}
// Enforce a limit on inlining to avoid pathological cases. (inliner/ExponentialGrowth.sksl)
if (fInlinedStatementCounter >= kInlinedStatementLimit) {
return false;
}
InlineCandidateList candidateList;
this->buildCandidateList(elements, symbols, usage, &candidateList);
// Inline the candidates where we've determined that it's safe to do so.
using StatementRemappingTable = THashMap<std::unique_ptr<Statement>*,
std::unique_ptr<Statement>*>;
StatementRemappingTable statementRemappingTable;
bool madeChanges = false;
for (const InlineCandidate& candidate : candidateList.fCandidates) {
const FunctionCall& funcCall = (*candidate.fCandidateExpr)->as<FunctionCall>();
// Convert the function call to its inlined equivalent.
InlinedCall inlinedCall = this->inlineCall(funcCall, candidate.fSymbols, *usage,
&candidate.fEnclosingFunction->declaration());
// Stop if an error was detected during the inlining process.
if (!inlinedCall.fInlinedBody && !inlinedCall.fReplacementExpr) {
break;
}
// Ensure that the inlined body has a scope if it needs one.
this->ensureScopedBlocks(inlinedCall.fInlinedBody.get(), candidate.fParentStmt->get());
// Add references within the inlined body
usage->add(inlinedCall.fInlinedBody.get());
// Look up the enclosing statement; remap it if necessary.
std::unique_ptr<Statement>* enclosingStmt = candidate.fEnclosingStmt;
for (;;) {
std::unique_ptr<Statement>** remappedStmt = statementRemappingTable.find(enclosingStmt);
if (!remappedStmt) {
break;
}
enclosingStmt = *remappedStmt;
}
// Move the enclosing statement to the end of the unscoped Block containing the inlined
// function, then replace the enclosing statement with that Block.
// Before:
// fInlinedBody = Block{ stmt1, stmt2, stmt3 }
// fEnclosingStmt = stmt4
// After:
// fInlinedBody = null
// fEnclosingStmt = Block{ stmt1, stmt2, stmt3, stmt4 }
inlinedCall.fInlinedBody->children().push_back(std::move(*enclosingStmt));
*enclosingStmt = std::move(inlinedCall.fInlinedBody);
// Replace the candidate function call with our replacement expression.
usage->remove(candidate.fCandidateExpr->get());
usage->add(inlinedCall.fReplacementExpr.get());
*candidate.fCandidateExpr = std::move(inlinedCall.fReplacementExpr);
madeChanges = true;
// If anything else pointed at our enclosing statement, it's now pointing at a Block
// containing many other statements as well. Maintain a fix-up table to account for this.
statementRemappingTable.set(enclosingStmt,&(*enclosingStmt)->as<Block>().children().back());
// Stop inlining if we've reached our hard cap on new statements.
if (fInlinedStatementCounter >= kInlinedStatementLimit) {
break;
}
// Note that nothing was destroyed except for the FunctionCall. All other nodes should
// remain valid.
}
return madeChanges;
}
} // namespace SkSL
#endif // SK_ENABLE_OPTIMIZE_SIZE