blob: 6b2d8eccee9e82e1da46859beba983a97e58cf56 [file] [log] [blame]
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkPathRef_DEFINED
#define SkPathRef_DEFINED
#include "include/core/SkArc.h"
#include "include/core/SkPoint.h"
#include "include/core/SkRect.h"
#include "include/core/SkRefCnt.h"
#include "include/core/SkScalar.h"
#include "include/core/SkTypes.h"
#include "include/private/SkIDChangeListener.h"
#include "include/private/base/SkDebug.h"
#include "include/private/base/SkTArray.h"
#include "include/private/base/SkTo.h"
#include <atomic>
#include <cstddef>
#include <cstdint>
#include <tuple>
#include <utility>
class SkMatrix;
class SkRRect;
// These are computed from a stream of verbs
struct SkPathVerbAnalysis {
bool valid;
int points, weights;
unsigned segmentMask;
};
SkPathVerbAnalysis sk_path_analyze_verbs(const uint8_t verbs[], int count);
/**
* Holds the path verbs and points. It is versioned by a generation ID. None of its public methods
* modify the contents. To modify or append to the verbs/points wrap the SkPathRef in an
* SkPathRef::Editor object. Installing the editor resets the generation ID. It also performs
* copy-on-write if the SkPathRef is shared by multiple SkPaths. The caller passes the Editor's
* constructor a pointer to a sk_sp<SkPathRef>, which may be updated to point to a new SkPathRef
* after the editor's constructor returns.
*
* The points and verbs are stored in a single allocation. The points are at the begining of the
* allocation while the verbs are stored at end of the allocation, in reverse order. Thus the points
* and verbs both grow into the middle of the allocation until the meet. To access verb i in the
* verb array use ref.verbs()[~i] (because verbs() returns a pointer just beyond the first
* logical verb or the last verb in memory).
*/
class SK_API SkPathRef final : public SkNVRefCnt<SkPathRef> {
public:
// See https://bugs.chromium.org/p/skia/issues/detail?id=13817 for how these sizes were
// determined.
using PointsArray = skia_private::STArray<4, SkPoint>;
using VerbsArray = skia_private::STArray<4, uint8_t>;
using ConicWeightsArray = skia_private::STArray<2, SkScalar>;
enum class PathType : uint8_t {
kGeneral,
kOval,
kOpenOval, // An unclosed oval, as is generated by canvas2d ellipse or arc
kRRect,
kArc,
};
SkPathRef(PointsArray points, VerbsArray verbs, ConicWeightsArray weights,
unsigned segmentMask)
: fPoints(std::move(points))
, fVerbs(std::move(verbs))
, fConicWeights(std::move(weights))
{
fBoundsIsDirty = true; // this also invalidates fIsFinite
fGenerationID = 0; // recompute
fSegmentMask = segmentMask;
fType = PathType::kGeneral;
// The next two values don't matter unless fType is kOval or kRRect
fRRectOrOvalIsCCW = false;
fRRectOrOvalStartIdx = 0xAC;
fArcOval.setEmpty();
fArcStartAngle = fArcSweepAngle = 0.0f;
fArcType = SkArc::Type::kArc;
SkDEBUGCODE(fEditorsAttached.store(0);)
this->computeBounds(); // do this now, before we worry about multiple owners/threads
SkDEBUGCODE(this->validate();)
}
class Editor {
public:
Editor(sk_sp<SkPathRef>* pathRef,
int incReserveVerbs = 0,
int incReservePoints = 0,
int incReserveConics = 0);
~Editor() { SkDEBUGCODE(fPathRef->fEditorsAttached--;) }
/**
* Returns the array of points.
*/
SkPoint* writablePoints() { return fPathRef->getWritablePoints(); }
const SkPoint* points() const { return fPathRef->points(); }
/**
* Gets the ith point. Shortcut for this->points() + i
*/
SkPoint* atPoint(int i) { return fPathRef->getWritablePoints() + i; }
const SkPoint* atPoint(int i) const { return &fPathRef->fPoints[i]; }
/**
* Adds the verb and allocates space for the number of points indicated by the verb. The
* return value is a pointer to where the points for the verb should be written.
* 'weight' is only used if 'verb' is kConic_Verb
*/
SkPoint* growForVerb(int /*SkPath::Verb*/ verb, SkScalar weight = 0) {
SkDEBUGCODE(fPathRef->validate();)
return fPathRef->growForVerb(verb, weight);
}
/**
* Allocates space for multiple instances of a particular verb and the
* requisite points & weights.
* The return pointer points at the first new point (indexed normally [<i>]).
* If 'verb' is kConic_Verb, 'weights' will return a pointer to the
* space for the conic weights (indexed normally).
*/
SkPoint* growForRepeatedVerb(int /*SkPath::Verb*/ verb,
int numVbs,
SkScalar** weights = nullptr) {
return fPathRef->growForRepeatedVerb(verb, numVbs, weights);
}
/**
* Concatenates all verbs from 'path' onto the pathRef's verbs array. Increases the point
* count by the number of points in 'path', and the conic weight count by the number of
* conics in 'path'.
*
* Returns pointers to the uninitialized points and conic weights data.
*/
std::tuple<SkPoint*, SkScalar*> growForVerbsInPath(const SkPathRef& path) {
return fPathRef->growForVerbsInPath(path);
}
/**
* Resets the path ref to a new verb and point count. The new verbs and points are
* uninitialized.
*/
void resetToSize(int newVerbCnt, int newPointCnt, int newConicCount) {
fPathRef->resetToSize(newVerbCnt, newPointCnt, newConicCount);
}
/**
* Gets the path ref that is wrapped in the Editor.
*/
SkPathRef* pathRef() { return fPathRef; }
void setIsOval(bool isCCW, unsigned start, bool isClosed) {
fPathRef->setIsOval(isCCW, start, isClosed);
}
void setIsRRect(bool isCCW, unsigned start) {
fPathRef->setIsRRect(isCCW, start);
}
void setIsArc(const SkArc& arc) {
fPathRef->setIsArc(arc);
}
void setBounds(const SkRect& rect) { fPathRef->setBounds(rect); }
private:
SkPathRef* fPathRef;
};
class SK_API Iter {
public:
Iter();
Iter(const SkPathRef&);
void setPathRef(const SkPathRef&);
/** Return the next verb in this iteration of the path. When all
segments have been visited, return kDone_Verb.
If any point in the path is non-finite, return kDone_Verb immediately.
@param pts The points representing the current verb and/or segment
This must not be NULL.
@return The verb for the current segment
*/
uint8_t next(SkPoint pts[4]);
uint8_t peek() const;
SkScalar conicWeight() const { return *fConicWeights; }
private:
const SkPoint* fPts;
const uint8_t* fVerbs;
const uint8_t* fVerbStop;
const SkScalar* fConicWeights;
};
public:
/**
* Gets a path ref with no verbs or points.
*/
static SkPathRef* CreateEmpty();
/**
* Returns true if all of the points in this path are finite, meaning there
* are no infinities and no NaNs.
*/
bool isFinite() const {
if (fBoundsIsDirty) {
this->computeBounds();
}
return SkToBool(fIsFinite);
}
/**
* Returns a mask, where each bit corresponding to a SegmentMask is
* set if the path contains 1 or more segments of that type.
* Returns 0 for an empty path (no segments).
*/
uint32_t getSegmentMasks() const { return fSegmentMask; }
/** Returns true if the path is an oval.
*
* @param rect returns the bounding rect of this oval. It's a circle
* if the height and width are the same.
* @param isCCW is the oval CCW (or CW if false).
* @param start indicates where the contour starts on the oval (see
* SkPath::addOval for intepretation of the index).
*
* @return true if this path is an oval.
* Tracking whether a path is an oval is considered an
* optimization for performance and so some paths that are in
* fact ovals can report false.
*/
bool isOval(SkRect* rect, bool* isCCW, unsigned* start) const {
if (fType == PathType::kOval) {
if (rect) {
*rect = this->getBounds();
}
if (isCCW) {
*isCCW = SkToBool(fRRectOrOvalIsCCW);
}
if (start) {
*start = fRRectOrOvalStartIdx;
}
}
return fType == PathType::kOval;
}
bool isRRect(SkRRect* rrect, bool* isCCW, unsigned* start) const;
bool isArc(SkArc* arc) const {
if (fType == PathType::kArc) {
if (arc) {
*arc = SkArc::Make(fArcOval, fArcStartAngle, fArcSweepAngle, fArcType);
}
}
return fType == PathType::kArc;
}
bool hasComputedBounds() const {
return !fBoundsIsDirty;
}
/** Returns the bounds of the path's points. If the path contains 0 or 1
points, the bounds is set to (0,0,0,0), and isEmpty() will return true.
Note: this bounds may be larger than the actual shape, since curves
do not extend as far as their control points.
*/
const SkRect& getBounds() const {
if (fBoundsIsDirty) {
this->computeBounds();
}
return fBounds;
}
SkRRect getRRect() const;
/**
* Transforms a path ref by a matrix, allocating a new one only if necessary.
*/
static void CreateTransformedCopy(sk_sp<SkPathRef>* dst,
const SkPathRef& src,
const SkMatrix& matrix);
// static SkPathRef* CreateFromBuffer(SkRBuffer* buffer);
/**
* Rollsback a path ref to zero verbs and points with the assumption that the path ref will be
* repopulated with approximately the same number of verbs and points. A new path ref is created
* only if necessary.
*/
static void Rewind(sk_sp<SkPathRef>* pathRef);
~SkPathRef();
int countPoints() const { return fPoints.size(); }
int countVerbs() const { return fVerbs.size(); }
int countWeights() const { return fConicWeights.size(); }
size_t approximateBytesUsed() const;
/**
* Returns a pointer one beyond the first logical verb (last verb in memory order).
*/
const uint8_t* verbsBegin() const { return fVerbs.begin(); }
/**
* Returns a const pointer to the first verb in memory (which is the last logical verb).
*/
const uint8_t* verbsEnd() const { return fVerbs.end(); }
/**
* Returns a const pointer to the first point.
*/
const SkPoint* points() const { return fPoints.begin(); }
/**
* Shortcut for this->points() + this->countPoints()
*/
const SkPoint* pointsEnd() const { return this->points() + this->countPoints(); }
const SkScalar* conicWeights() const { return fConicWeights.begin(); }
const SkScalar* conicWeightsEnd() const { return fConicWeights.end(); }
/**
* Convenience methods for getting to a verb or point by index.
*/
uint8_t atVerb(int index) const { return fVerbs[index]; }
const SkPoint& atPoint(int index) const { return fPoints[index]; }
bool operator== (const SkPathRef& ref) const;
void interpolate(const SkPathRef& ending, SkScalar weight, SkPathRef* out) const;
/**
* Gets an ID that uniquely identifies the contents of the path ref. If two path refs have the
* same ID then they have the same verbs and points. However, two path refs may have the same
* contents but different genIDs.
* skbug.com/1762 for background on why fillType is necessary (for now).
*/
uint32_t genID(uint8_t fillType) const;
void addGenIDChangeListener(sk_sp<SkIDChangeListener>); // Threadsafe.
int genIDChangeListenerCount(); // Threadsafe
bool dataMatchesVerbs() const;
bool isValid() const;
SkDEBUGCODE(void validate() const { SkASSERT(this->isValid()); } )
/**
* Resets this SkPathRef to a clean state.
*/
void reset();
bool isInitialEmptyPathRef() const {
return fGenerationID == kEmptyGenID;
}
private:
enum SerializationOffsets {
kLegacyRRectOrOvalStartIdx_SerializationShift = 28, // requires 3 bits, ignored.
kLegacyRRectOrOvalIsCCW_SerializationShift = 27, // requires 1 bit, ignored.
kLegacyIsRRect_SerializationShift = 26, // requires 1 bit, ignored.
kIsFinite_SerializationShift = 25, // requires 1 bit
kLegacyIsOval_SerializationShift = 24, // requires 1 bit, ignored.
kSegmentMask_SerializationShift = 0 // requires 4 bits (deprecated)
};
SkPathRef(int numVerbs = 0, int numPoints = 0, int numConics = 0) {
fBoundsIsDirty = true; // this also invalidates fIsFinite
fGenerationID = kEmptyGenID;
fSegmentMask = 0;
fType = PathType::kGeneral;
// The next two values don't matter unless fType is kOval or kRRect
fRRectOrOvalIsCCW = false;
fRRectOrOvalStartIdx = 0xAC;
fArcOval.setEmpty();
fArcStartAngle = fArcSweepAngle = 0.0f;
fArcType = SkArc::Type::kArc;
if (numPoints > 0) {
fPoints.reserve_exact(numPoints);
}
if (numVerbs > 0) {
fVerbs.reserve_exact(numVerbs);
}
if (numConics > 0) {
fConicWeights.reserve_exact(numConics);
}
SkDEBUGCODE(fEditorsAttached.store(0);)
SkDEBUGCODE(this->validate();)
}
void copy(const SkPathRef& ref, int additionalReserveVerbs, int additionalReservePoints, int additionalReserveConics);
// Return true if the computed bounds are finite.
static bool ComputePtBounds(SkRect* bounds, const SkPathRef& ref) {
return bounds->setBoundsCheck(ref.points(), ref.countPoints());
}
// called, if dirty, by getBounds()
void computeBounds() const {
SkDEBUGCODE(this->validate();)
// TODO: remove fBoundsIsDirty and fIsFinite,
// using an inverted rect instead of fBoundsIsDirty and always recalculating fIsFinite.
SkASSERT(fBoundsIsDirty);
fIsFinite = ComputePtBounds(&fBounds, *this);
fBoundsIsDirty = false;
}
void setBounds(const SkRect& rect) {
SkASSERT(rect.fLeft <= rect.fRight && rect.fTop <= rect.fBottom);
fBounds = rect;
fBoundsIsDirty = false;
fIsFinite = fBounds.isFinite();
}
/** Makes additional room but does not change the counts or change the genID */
void incReserve(int additionalVerbs, int additionalPoints, int additionalConics) {
SkDEBUGCODE(this->validate();)
// Use reserve() so that if there is not enough space, the array will grow with some
// additional space. This ensures repeated calls to grow won't always allocate.
if (additionalPoints > 0) {
fPoints.reserve(fPoints.size() + additionalPoints);
}
if (additionalVerbs > 0) {
fVerbs.reserve(fVerbs.size() + additionalVerbs);
}
if (additionalConics > 0) {
fConicWeights.reserve(fConicWeights.size() + additionalConics);
}
SkDEBUGCODE(this->validate();)
}
/**
* Resets all state except that of the verbs, points, and conic-weights.
* Intended to be called from other functions that reset state.
*/
void commonReset() {
SkDEBUGCODE(this->validate();)
this->callGenIDChangeListeners();
fBoundsIsDirty = true; // this also invalidates fIsFinite
fGenerationID = 0;
fSegmentMask = 0;
fType = PathType::kGeneral;
}
/** Resets the path ref with verbCount verbs and pointCount points, all uninitialized. Also
* allocates space for reserveVerb additional verbs and reservePoints additional points.*/
void resetToSize(int verbCount, int pointCount, int conicCount,
int reserveVerbs = 0, int reservePoints = 0,
int reserveConics = 0) {
this->commonReset();
// Use reserve_exact() so the arrays are sized to exactly fit the data.
fPoints.reserve_exact(pointCount + reservePoints);
fPoints.resize_back(pointCount);
fVerbs.reserve_exact(verbCount + reserveVerbs);
fVerbs.resize_back(verbCount);
fConicWeights.reserve_exact(conicCount + reserveConics);
fConicWeights.resize_back(conicCount);
SkDEBUGCODE(this->validate();)
}
/**
* Increases the verb count by numVbs and point count by the required amount.
* The new points are uninitialized. All the new verbs are set to the specified
* verb. If 'verb' is kConic_Verb, 'weights' will return a pointer to the
* uninitialized conic weights.
*/
SkPoint* growForRepeatedVerb(int /*SkPath::Verb*/ verb, int numVbs, SkScalar** weights);
/**
* Increases the verb count 1, records the new verb, and creates room for the requisite number
* of additional points. A pointer to the first point is returned. Any new points are
* uninitialized.
*/
SkPoint* growForVerb(int /*SkPath::Verb*/ verb, SkScalar weight);
/**
* Concatenates all verbs from 'path' onto our own verbs array. Increases the point count by the
* number of points in 'path', and the conic weight count by the number of conics in 'path'.
*
* Returns pointers to the uninitialized points and conic weights data.
*/
std::tuple<SkPoint*, SkScalar*> growForVerbsInPath(const SkPathRef& path);
/**
* Private, non-const-ptr version of the public function verbsMemBegin().
*/
uint8_t* verbsBeginWritable() { return fVerbs.begin(); }
/**
* Called the first time someone calls CreateEmpty to actually create the singleton.
*/
friend SkPathRef* sk_create_empty_pathref();
void setIsOval(bool isCCW, unsigned start, bool isClosed) {
fType = isClosed ? PathType::kOval : PathType::kOpenOval;
fRRectOrOvalIsCCW = isCCW;
fRRectOrOvalStartIdx = SkToU8(start);
}
void setIsRRect(bool isCCW, unsigned start) {
fType = PathType::kRRect;
fRRectOrOvalIsCCW = isCCW;
fRRectOrOvalStartIdx = SkToU8(start);
}
void setIsArc(const SkArc& arc) {
fType = PathType::kArc;
fArcOval = arc.fOval;
fArcStartAngle = arc.fStartAngle;
fArcSweepAngle = arc.fSweepAngle;
fArcType = arc.fType;
}
// called only by the editor. Note that this is not a const function.
SkPoint* getWritablePoints() {
SkDEBUGCODE(this->validate();)
fType = PathType::kGeneral;
return fPoints.begin();
}
const SkPoint* getPoints() const {
SkDEBUGCODE(this->validate();)
return fPoints.begin();
}
void callGenIDChangeListeners();
mutable SkRect fBounds;
enum {
kEmptyGenID = 1, // GenID reserved for path ref with zero points and zero verbs.
};
mutable uint32_t fGenerationID;
SkIDChangeListener::List fGenIDChangeListeners;
PointsArray fPoints;
VerbsArray fVerbs;
ConicWeightsArray fConicWeights;
SkDEBUGCODE(std::atomic<int> fEditorsAttached;) // assert only one editor in use at any time.
mutable uint8_t fBoundsIsDirty;
mutable bool fIsFinite; // only meaningful if bounds are valid
PathType fType;
// Both the circle and rrect special cases have a notion of direction and starting point
// The next two variables store that information for either.
bool fRRectOrOvalIsCCW;
uint8_t fRRectOrOvalStartIdx;
uint8_t fSegmentMask;
// If the path is an arc, these four variables store that information.
// We should just store an SkArc, but alignment would cost us 8 more bytes.
SkArc::Type fArcType;
SkRect fArcOval;
SkScalar fArcStartAngle;
SkScalar fArcSweepAngle;
friend class PathRefTest_Private;
friend class ForceIsRRect_Private; // unit test isRRect
friend class SkPath;
friend class SkPathBuilder;
friend class SkPathPriv;
};
#endif