blob: 1b0b12c621c6ce3ef282239959e0ec15e61c1f2e [file] [log] [blame]
/*
* Copyright 2006 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkTypes_DEFINED
#define SkTypes_DEFINED
#include "SkPreConfig.h"
#include "SkUserConfig.h"
#include "SkPostConfig.h"
#include <stdint.h>
#include <sys/types.h>
#if defined(SK_ARM_HAS_NEON)
#include <arm_neon.h>
#elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
#include <immintrin.h>
#endif
/** \file SkTypes.h
*/
/** See SkGraphics::GetVersion() to retrieve these at runtime
*/
#define SKIA_VERSION_MAJOR 1
#define SKIA_VERSION_MINOR 0
#define SKIA_VERSION_PATCH 0
/*
memory wrappers to be implemented by the porting layer (platform)
*/
/** Called internally if we run out of memory. The platform implementation must
not return, but should either throw an exception or otherwise exit.
*/
SK_API extern void sk_out_of_memory(void);
/** Called internally if we hit an unrecoverable error.
The platform implementation must not return, but should either throw
an exception or otherwise exit.
*/
SK_API extern void sk_throw(void);
enum {
SK_MALLOC_TEMP = 0x01, //!< hint to sk_malloc that the requested memory will be freed in the scope of the stack frame
SK_MALLOC_THROW = 0x02 //!< instructs sk_malloc to call sk_throw if the memory cannot be allocated.
};
/** Return a block of memory (at least 4-byte aligned) of at least the
specified size. If the requested memory cannot be returned, either
return null (if SK_MALLOC_TEMP bit is clear) or throw an exception
(if SK_MALLOC_TEMP bit is set). To free the memory, call sk_free().
*/
SK_API extern void* sk_malloc_flags(size_t size, unsigned flags);
/** Same as sk_malloc(), but hard coded to pass SK_MALLOC_THROW as the flag
*/
SK_API extern void* sk_malloc_throw(size_t size);
/** Same as standard realloc(), but this one never returns null on failure. It will throw
an exception if it fails.
*/
SK_API extern void* sk_realloc_throw(void* buffer, size_t size);
/** Free memory returned by sk_malloc(). It is safe to pass null.
*/
SK_API extern void sk_free(void*);
/** Much like calloc: returns a pointer to at least size zero bytes, or NULL on failure.
*/
SK_API extern void* sk_calloc(size_t size);
/** Same as sk_calloc, but throws an exception instead of returning NULL on failure.
*/
SK_API extern void* sk_calloc_throw(size_t size);
// bzero is safer than memset, but we can't rely on it, so... sk_bzero()
static inline void sk_bzero(void* buffer, size_t size) {
memset(buffer, 0, size);
}
///////////////////////////////////////////////////////////////////////////////
#ifdef override_GLOBAL_NEW
#include <new>
inline void* operator new(size_t size) {
return sk_malloc_throw(size);
}
inline void operator delete(void* p) {
sk_free(p);
}
#endif
///////////////////////////////////////////////////////////////////////////////
#define SK_INIT_TO_AVOID_WARNING = 0
#ifndef SkDebugf
SK_API void SkDebugf(const char format[], ...);
#endif
#ifdef SK_DEBUG
#define SkASSERT(cond) SK_ALWAYSBREAK(cond)
#define SkDEBUGFAIL(message) SkASSERT(false && message)
#define SkDEBUGCODE(code) code
#define SkDECLAREPARAM(type, var) , type var
#define SkPARAM(var) , var
// #define SkDEBUGF(args ) SkDebugf##args
#define SkDEBUGF(args ) SkDebugf args
#define SkAssertResult(cond) SkASSERT(cond)
#else
#define SkASSERT(cond)
#define SkDEBUGFAIL(message)
#define SkDEBUGCODE(code)
#define SkDEBUGF(args)
#define SkDECLAREPARAM(type, var)
#define SkPARAM(var)
// unlike SkASSERT, this guy executes its condition in the non-debug build
#define SkAssertResult(cond) cond
#endif
#define SkFAIL(message) SK_ALWAYSBREAK(false && message)
// We want to evaluate cond only once, and inside the SkASSERT somewhere so we see its string form.
// So we use the comma operator to make an SkDebugf that always returns false: we'll evaluate cond,
// and if it's true the assert passes; if it's false, we'll print the message and the assert fails.
#define SkASSERTF(cond, fmt, ...) SkASSERT((cond) || (SkDebugf(fmt"\n", __VA_ARGS__), false))
#ifdef SK_DEVELOPER
#define SkDEVCODE(code) code
#else
#define SkDEVCODE(code)
#endif
#ifdef SK_IGNORE_TO_STRING
#define SK_TO_STRING_NONVIRT()
#define SK_TO_STRING_VIRT()
#define SK_TO_STRING_PUREVIRT()
#define SK_TO_STRING_OVERRIDE()
#else
// the 'toString' helper functions convert Sk* objects to human-readable
// form in developer mode
#define SK_TO_STRING_NONVIRT() void toString(SkString* str) const;
#define SK_TO_STRING_VIRT() virtual void toString(SkString* str) const;
#define SK_TO_STRING_PUREVIRT() virtual void toString(SkString* str) const = 0;
#define SK_TO_STRING_OVERRIDE() void toString(SkString* str) const override;
#endif
template <bool>
struct SkCompileAssert {
};
// Uses static_cast<bool>(expr) instead of bool(expr) due to
// https://connect.microsoft.com/VisualStudio/feedback/details/832915
// The extra parentheses in SkCompileAssert<(...)> are a work around for
// http://gcc.gnu.org/bugzilla/show_bug.cgi?id=57771
// which was fixed in gcc 4.8.2.
#define SK_COMPILE_ASSERT(expr, msg) \
typedef SkCompileAssert<(static_cast<bool>(expr))> \
msg[static_cast<bool>(expr) ? 1 : -1] SK_UNUSED
/*
* Usage: SK_MACRO_CONCAT(a, b) to construct the symbol ab
*
* SK_MACRO_CONCAT_IMPL_PRIV just exists to make this work. Do not use directly
*
*/
#define SK_MACRO_CONCAT(X, Y) SK_MACRO_CONCAT_IMPL_PRIV(X, Y)
#define SK_MACRO_CONCAT_IMPL_PRIV(X, Y) X ## Y
/*
* Usage: SK_MACRO_APPEND_LINE(foo) to make foo123, where 123 is the current
* line number. Easy way to construct
* unique names for local functions or
* variables.
*/
#define SK_MACRO_APPEND_LINE(name) SK_MACRO_CONCAT(name, __LINE__)
/**
* For some classes, it's almost always an error to instantiate one without a name, e.g.
* {
* SkAutoMutexAcquire(&mutex);
* <some code>
* }
* In this case, the writer meant to hold mutex while the rest of the code in the block runs,
* but instead the mutex is acquired and then immediately released. The correct usage is
* {
* SkAutoMutexAcquire lock(&mutex);
* <some code>
* }
*
* To prevent callers from instantiating your class without a name, use SK_REQUIRE_LOCAL_VAR
* like this:
* class classname {
* <your class>
* };
* #define classname(...) SK_REQUIRE_LOCAL_VAR(classname)
*
* This won't work with templates, and you must inline the class' constructors and destructors.
* Take a look at SkAutoFree and SkAutoMalloc in this file for examples.
*/
#define SK_REQUIRE_LOCAL_VAR(classname) \
SK_COMPILE_ASSERT(false, missing_name_for_##classname)
///////////////////////////////////////////////////////////////////////
/**
* Fast type for signed 8 bits. Use for parameter passing and local variables,
* not for storage.
*/
typedef int S8CPU;
/**
* Fast type for unsigned 8 bits. Use for parameter passing and local
* variables, not for storage
*/
typedef unsigned U8CPU;
/**
* Fast type for signed 16 bits. Use for parameter passing and local variables,
* not for storage
*/
typedef int S16CPU;
/**
* Fast type for unsigned 16 bits. Use for parameter passing and local
* variables, not for storage
*/
typedef unsigned U16CPU;
/**
* Meant to be faster than bool (doesn't promise to be 0 or 1,
* just 0 or non-zero
*/
typedef int SkBool;
/**
* Meant to be a small version of bool, for storage purposes. Will be 0 or 1
*/
typedef uint8_t SkBool8;
#ifdef SK_DEBUG
SK_API int8_t SkToS8(intmax_t);
SK_API uint8_t SkToU8(uintmax_t);
SK_API int16_t SkToS16(intmax_t);
SK_API uint16_t SkToU16(uintmax_t);
SK_API int32_t SkToS32(intmax_t);
SK_API uint32_t SkToU32(uintmax_t);
SK_API int SkToInt(intmax_t);
SK_API unsigned SkToUInt(uintmax_t);
SK_API size_t SkToSizeT(uintmax_t);
SK_API off_t SkToOffT(intmax_t x);
#else
#define SkToS8(x) ((int8_t)(x))
#define SkToU8(x) ((uint8_t)(x))
#define SkToS16(x) ((int16_t)(x))
#define SkToU16(x) ((uint16_t)(x))
#define SkToS32(x) ((int32_t)(x))
#define SkToU32(x) ((uint32_t)(x))
#define SkToInt(x) ((int)(x))
#define SkToUInt(x) ((unsigned)(x))
#define SkToSizeT(x) ((size_t)(x))
#define SkToOffT(x) ((off_t)(x))
#endif
/** Returns 0 or 1 based on the condition
*/
#define SkToBool(cond) ((cond) != 0)
#define SK_MaxS16 32767
#define SK_MinS16 -32767
#define SK_MaxU16 0xFFFF
#define SK_MinU16 0
#define SK_MaxS32 0x7FFFFFFF
#define SK_MinS32 -SK_MaxS32
#define SK_MaxU32 0xFFFFFFFF
#define SK_MinU32 0
#define SK_NaN32 (1 << 31)
/** Returns true if the value can be represented with signed 16bits
*/
static inline bool SkIsS16(long x) {
return (int16_t)x == x;
}
/** Returns true if the value can be represented with unsigned 16bits
*/
static inline bool SkIsU16(long x) {
return (uint16_t)x == x;
}
//////////////////////////////////////////////////////////////////////////////
#ifndef SK_OFFSETOF
#define SK_OFFSETOF(type, field) (size_t)((char*)&(((type*)1)->field) - (char*)1)
#endif
/** Returns the number of entries in an array (not a pointer) */
template <typename T, size_t N> char (&SkArrayCountHelper(T (&array)[N]))[N];
#define SK_ARRAY_COUNT(array) (sizeof(SkArrayCountHelper(array)))
#define SkAlign2(x) (((x) + 1) >> 1 << 1)
#define SkIsAlign2(x) (0 == ((x) & 1))
#define SkAlign4(x) (((x) + 3) >> 2 << 2)
#define SkIsAlign4(x) (0 == ((x) & 3))
#define SkAlign8(x) (((x) + 7) >> 3 << 3)
#define SkIsAlign8(x) (0 == ((x) & 7))
#define SkAlignPtr(x) (sizeof(void*) == 8 ? SkAlign8(x) : SkAlign4(x))
#define SkIsAlignPtr(x) (sizeof(void*) == 8 ? SkIsAlign8(x) : SkIsAlign4(x))
typedef uint32_t SkFourByteTag;
#define SkSetFourByteTag(a, b, c, d) (((a) << 24) | ((b) << 16) | ((c) << 8) | (d))
/** 32 bit integer to hold a unicode value
*/
typedef int32_t SkUnichar;
/** 32 bit value to hold a millisecond count
*/
typedef uint32_t SkMSec;
/** 1 second measured in milliseconds
*/
#define SK_MSec1 1000
/** maximum representable milliseconds
*/
#define SK_MSecMax 0x7FFFFFFF
/** Returns a < b for milliseconds, correctly handling wrap-around from 0xFFFFFFFF to 0
*/
#define SkMSec_LT(a, b) ((int32_t)(a) - (int32_t)(b) < 0)
/** Returns a <= b for milliseconds, correctly handling wrap-around from 0xFFFFFFFF to 0
*/
#define SkMSec_LE(a, b) ((int32_t)(a) - (int32_t)(b) <= 0)
/** The generation IDs in Skia reserve 0 has an invalid marker.
*/
#define SK_InvalidGenID 0
/** The unique IDs in Skia reserve 0 has an invalid marker.
*/
#define SK_InvalidUniqueID 0
/****************************************************************************
The rest of these only build with C++
*/
#ifdef __cplusplus
/** Faster than SkToBool for integral conditions. Returns 0 or 1
*/
static inline int Sk32ToBool(uint32_t n) {
return (n | (0-n)) >> 31;
}
/** Generic swap function. Classes with efficient swaps should specialize this function to take
their fast path. This function is used by SkTSort. */
template <typename T> inline void SkTSwap(T& a, T& b) {
T c(a);
a = b;
b = c;
}
static inline int32_t SkAbs32(int32_t value) {
SkASSERT(value != SK_NaN32); // The most negative int32_t can't be negated.
if (value < 0) {
value = -value;
}
return value;
}
template <typename T> inline T SkTAbs(T value) {
if (value < 0) {
value = -value;
}
return value;
}
static inline int32_t SkMax32(int32_t a, int32_t b) {
if (a < b)
a = b;
return a;
}
static inline int32_t SkMin32(int32_t a, int32_t b) {
if (a > b)
a = b;
return a;
}
template <typename T> const T& SkTMin(const T& a, const T& b) {
return (a < b) ? a : b;
}
template <typename T> const T& SkTMax(const T& a, const T& b) {
return (b < a) ? a : b;
}
static inline int32_t SkSign32(int32_t a) {
return (a >> 31) | ((unsigned) -a >> 31);
}
static inline int32_t SkFastMin32(int32_t value, int32_t max) {
if (value > max) {
value = max;
}
return value;
}
template <typename T> static inline const T& SkTPin(const T& x, const T& min, const T& max) {
return SkTMax(SkTMin(x, max), min);
}
/** Returns signed 32 bit value pinned between min and max, inclusively. */
static inline int32_t SkPin32(int32_t value, int32_t min, int32_t max) {
return SkTPin(value, min, max);
}
static inline uint32_t SkSetClearShift(uint32_t bits, bool cond,
unsigned shift) {
SkASSERT((int)cond == 0 || (int)cond == 1);
return (bits & ~(1 << shift)) | ((int)cond << shift);
}
static inline uint32_t SkSetClearMask(uint32_t bits, bool cond,
uint32_t mask) {
return cond ? bits | mask : bits & ~mask;
}
///////////////////////////////////////////////////////////////////////////////
/** Use to combine multiple bits in a bitmask in a type safe way.
*/
template <typename T>
T SkTBitOr(T a, T b) {
return (T)(a | b);
}
/**
* Use to cast a pointer to a different type, and maintaining strict-aliasing
*/
template <typename Dst> Dst SkTCast(const void* ptr) {
union {
const void* src;
Dst dst;
} data;
data.src = ptr;
return data.dst;
}
//////////////////////////////////////////////////////////////////////////////
/** \class SkNoncopyable
SkNoncopyable is the base class for objects that do not want to
be copied. It hides its copy-constructor and its assignment-operator.
*/
class SK_API SkNoncopyable {
public:
SkNoncopyable() {}
private:
SkNoncopyable(const SkNoncopyable&);
SkNoncopyable& operator=(const SkNoncopyable&);
};
class SkAutoFree : SkNoncopyable {
public:
SkAutoFree() : fPtr(NULL) {}
explicit SkAutoFree(void* ptr) : fPtr(ptr) {}
~SkAutoFree() { sk_free(fPtr); }
/** Return the currently allocate buffer, or null
*/
void* get() const { return fPtr; }
/** Assign a new ptr allocated with sk_malloc (or null), and return the
previous ptr. Note it is the caller's responsibility to sk_free the
returned ptr.
*/
void* set(void* ptr) {
void* prev = fPtr;
fPtr = ptr;
return prev;
}
/** Transfer ownership of the current ptr to the caller, setting the
internal reference to null. Note the caller is reponsible for calling
sk_free on the returned address.
*/
void* detach() { return this->set(NULL); }
/** Free the current buffer, and set the internal reference to NULL. Same
as calling sk_free(detach())
*/
void free() {
sk_free(fPtr);
fPtr = NULL;
}
private:
void* fPtr;
// illegal
SkAutoFree(const SkAutoFree&);
SkAutoFree& operator=(const SkAutoFree&);
};
#define SkAutoFree(...) SK_REQUIRE_LOCAL_VAR(SkAutoFree)
/**
* Manage an allocated block of heap memory. This object is the sole manager of
* the lifetime of the block, so the caller must not call sk_free() or delete
* on the block, unless detach() was called.
*/
class SkAutoMalloc : SkNoncopyable {
public:
explicit SkAutoMalloc(size_t size = 0) {
fPtr = size ? sk_malloc_throw(size) : NULL;
fSize = size;
}
~SkAutoMalloc() {
sk_free(fPtr);
}
/**
* Passed to reset to specify what happens if the requested size is smaller
* than the current size (and the current block was dynamically allocated).
*/
enum OnShrink {
/**
* If the requested size is smaller than the current size, and the
* current block is dynamically allocated, free the old block and
* malloc a new block of the smaller size.
*/
kAlloc_OnShrink,
/**
* If the requested size is smaller than the current size, and the
* current block is dynamically allocated, just return the old
* block.
*/
kReuse_OnShrink
};
/**
* Reallocates the block to a new size. The ptr may or may not change.
*/
void* reset(size_t size, OnShrink shrink = kAlloc_OnShrink, bool* didChangeAlloc = NULL) {
if (size == fSize || (kReuse_OnShrink == shrink && size < fSize)) {
if (didChangeAlloc) {
*didChangeAlloc = false;
}
return fPtr;
}
sk_free(fPtr);
fPtr = size ? sk_malloc_throw(size) : NULL;
fSize = size;
if (didChangeAlloc) {
*didChangeAlloc = true;
}
return fPtr;
}
/**
* Releases the block back to the heap
*/
void free() {
this->reset(0);
}
/**
* Return the allocated block.
*/
void* get() { return fPtr; }
const void* get() const { return fPtr; }
/** Transfer ownership of the current ptr to the caller, setting the
internal reference to null. Note the caller is reponsible for calling
sk_free on the returned address.
*/
void* detach() {
void* ptr = fPtr;
fPtr = NULL;
fSize = 0;
return ptr;
}
private:
void* fPtr;
size_t fSize; // can be larger than the requested size (see kReuse)
};
#define SkAutoMalloc(...) SK_REQUIRE_LOCAL_VAR(SkAutoMalloc)
/**
* Manage an allocated block of memory. If the requested size is <= kSize, then
* the allocation will come from the stack rather than the heap. This object
* is the sole manager of the lifetime of the block, so the caller must not
* call sk_free() or delete on the block.
*/
template <size_t kSize> class SkAutoSMalloc : SkNoncopyable {
public:
/**
* Creates initially empty storage. get() returns a ptr, but it is to
* a zero-byte allocation. Must call reset(size) to return an allocated
* block.
*/
SkAutoSMalloc() {
fPtr = fStorage;
fSize = kSize;
}
/**
* Allocate a block of the specified size. If size <= kSize, then the
* allocation will come from the stack, otherwise it will be dynamically
* allocated.
*/
explicit SkAutoSMalloc(size_t size) {
fPtr = fStorage;
fSize = kSize;
this->reset(size);
}
/**
* Free the allocated block (if any). If the block was small enought to
* have been allocated on the stack (size <= kSize) then this does nothing.
*/
~SkAutoSMalloc() {
if (fPtr != (void*)fStorage) {
sk_free(fPtr);
}
}
/**
* Return the allocated block. May return non-null even if the block is
* of zero size. Since this may be on the stack or dynamically allocated,
* the caller must not call sk_free() on it, but must rely on SkAutoSMalloc
* to manage it.
*/
void* get() const { return fPtr; }
/**
* Return a new block of the requested size, freeing (as necessary) any
* previously allocated block. As with the constructor, if size <= kSize
* then the return block may be allocated locally, rather than from the
* heap.
*/
void* reset(size_t size,
SkAutoMalloc::OnShrink shrink = SkAutoMalloc::kAlloc_OnShrink,
bool* didChangeAlloc = NULL) {
size = (size < kSize) ? kSize : size;
bool alloc = size != fSize && (SkAutoMalloc::kAlloc_OnShrink == shrink || size > fSize);
if (didChangeAlloc) {
*didChangeAlloc = alloc;
}
if (alloc) {
if (fPtr != (void*)fStorage) {
sk_free(fPtr);
}
if (size == kSize) {
SkASSERT(fPtr != fStorage); // otherwise we lied when setting didChangeAlloc.
fPtr = fStorage;
} else {
fPtr = sk_malloc_flags(size, SK_MALLOC_THROW | SK_MALLOC_TEMP);
}
fSize = size;
}
SkASSERT(fSize >= size && fSize >= kSize);
SkASSERT((fPtr == fStorage) || fSize > kSize);
return fPtr;
}
private:
void* fPtr;
size_t fSize; // can be larger than the requested size (see kReuse)
uint32_t fStorage[(kSize + 3) >> 2];
};
// Can't guard the constructor because it's a template class.
#endif /* C++ */
#endif