| /* |
| * Copyright 2016 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "bench/BigPath.h" |
| #include "include/core/SkCanvas.h" |
| #include "include/core/SkDeferredDisplayList.h" |
| #include "include/core/SkGraphics.h" |
| #include "include/core/SkPicture.h" |
| #include "include/core/SkPictureRecorder.h" |
| #include "include/core/SkStream.h" |
| #include "include/core/SkSurface.h" |
| #include "include/core/SkSurfaceProps.h" |
| #include "include/effects/SkPerlinNoiseShader.h" |
| #include "include/gpu/GrDirectContext.h" |
| #include "src/core/SkOSFile.h" |
| #include "src/core/SkTaskGroup.h" |
| #include "src/gpu/ganesh/GrCaps.h" |
| #include "src/gpu/ganesh/GrDirectContextPriv.h" |
| #include "src/gpu/ganesh/SkGr.h" |
| #include "src/utils/SkMultiPictureDocument.h" |
| #include "src/utils/SkOSPath.h" |
| #include "tools/DDLPromiseImageHelper.h" |
| #include "tools/DDLTileHelper.h" |
| #include "tools/SkSharingProc.h" |
| #include "tools/ToolUtils.h" |
| #include "tools/flags/CommandLineFlags.h" |
| #include "tools/flags/CommonFlags.h" |
| #include "tools/flags/CommonFlagsConfig.h" |
| #include "tools/gpu/FlushFinishTracker.h" |
| #include "tools/gpu/GpuTimer.h" |
| #include "tools/gpu/GrContextFactory.h" |
| |
| #if defined(SK_ENABLE_SVG) |
| #include "modules/svg/include/SkSVGDOM.h" |
| #include "src/xml/SkDOM.h" |
| #endif |
| |
| #include <stdlib.h> |
| #include <algorithm> |
| #include <array> |
| #include <chrono> |
| #include <cinttypes> |
| #include <cmath> |
| #include <vector> |
| |
| /** |
| * This is a minimalist program whose sole purpose is to open a .skp or .svg file, benchmark it on a |
| * single config, and exit. It is intended to be used through skpbench.py rather than invoked |
| * directly. Limiting the entire process to a single config/skp pair helps to keep the results |
| * repeatable. |
| * |
| * No tiling, looping, or other fanciness is used; it just draws the skp whole into a size-matched |
| * render target and syncs the GPU after each draw. |
| * |
| * Well, maybe a little fanciness, MSKP's can be loaded and played. The animation is played as many |
| * times as necessary to reach the target sample duration and FPS is reported. |
| * |
| * Currently, only GPU configs are supported. |
| */ |
| |
| static DEFINE_bool(ddl, false, "record the skp into DDLs before rendering"); |
| static DEFINE_int(ddlNumRecordingThreads, 0, "number of DDL recording threads (0=num_cores)"); |
| static DEFINE_int(ddlTilingWidthHeight, 0, "number of tiles along one edge when in DDL mode"); |
| |
| static DEFINE_bool(comparableDDL, false, "render in a way that is comparable to 'comparableSKP'"); |
| static DEFINE_bool(comparableSKP, false, "report in a way that is comparable to 'comparableDDL'"); |
| |
| static DEFINE_int(duration, 5000, "number of milliseconds to run the benchmark"); |
| static DEFINE_int(sampleMs, 50, "minimum duration of a sample"); |
| static DEFINE_bool(gpuClock, false, "time on the gpu clock (gpu work only)"); |
| static DEFINE_bool(fps, false, "use fps instead of ms"); |
| static DEFINE_string(src, "", |
| "path to a single .skp or .svg file, or 'warmup' for a builtin warmup run"); |
| static DEFINE_string(png, "", "if set, save a .png proof to disk at this file location"); |
| static DEFINE_int(verbosity, 4, "level of verbosity (0=none to 5=debug)"); |
| static DEFINE_bool(suppressHeader, false, "don't print a header row before the results"); |
| static DEFINE_double(scale, 1, "Scale the size of the canvas and the zoom level by this factor."); |
| static DEFINE_bool(dumpSamples, false, "print the individual samples to stdout"); |
| |
| static const char header[] = |
| " accum median max min stddev samples sample_ms clock metric config bench"; |
| |
| static const char resultFormat[] = |
| "%8.4g %8.4g %8.4g %8.4g %6.3g%% %7zu %9i %-5s %-6s %-9s %s"; |
| |
| static constexpr int kNumFlushesToPrimeCache = 3; |
| |
| struct Sample { |
| using duration = std::chrono::nanoseconds; |
| |
| Sample() : fFrames(0), fDuration(0) {} |
| double seconds() const { return std::chrono::duration<double>(fDuration).count(); } |
| double ms() const { return std::chrono::duration<double, std::milli>(fDuration).count(); } |
| double value() const { return FLAGS_fps ? fFrames / this->seconds() : this->ms() / fFrames; } |
| static const char* metric() { return FLAGS_fps ? "fps" : "ms"; } |
| |
| int fFrames; |
| duration fDuration; |
| }; |
| |
| class GpuSync { |
| public: |
| GpuSync() {} |
| ~GpuSync() {} |
| |
| void waitIfNeeded(); |
| |
| sk_gpu_test::FlushFinishTracker* newFlushTracker(GrDirectContext* context); |
| |
| private: |
| enum { kMaxFrameLag = 3 }; |
| sk_sp<sk_gpu_test::FlushFinishTracker> fFinishTrackers[kMaxFrameLag - 1]; |
| int fCurrentFlushIdx = 0; |
| }; |
| |
| enum class ExitErr { |
| kOk = 0, |
| kUsage = 64, |
| kData = 65, |
| kUnavailable = 69, |
| kIO = 74, |
| kSoftware = 70 |
| }; |
| |
| static void flush_with_sync(GrDirectContext*, GpuSync&); |
| static void draw_skp_and_flush_with_sync(GrDirectContext*, SkSurface*, const SkPicture*, GpuSync&); |
| static sk_sp<SkPicture> create_warmup_skp(); |
| static sk_sp<SkPicture> create_skp_from_svg(SkStream*, const char* filename); |
| static bool mkdir_p(const SkString& name); |
| static SkString join(const CommandLineFlags::StringArray&); |
| static void exitf(ExitErr, const char* format, ...); |
| |
| // An interface used by both static SKPs and animated SKPs |
| class SkpProducer { |
| public: |
| virtual ~SkpProducer() {} |
| // Draw an SkPicture to the provided surface, flush the surface, and sync the GPU. |
| // You may use the static draw_skp_and_flush_with_sync declared above. |
| // returned int tells how many draw/flush/sync were done. |
| virtual int drawAndFlushAndSync(GrDirectContext*, SkSurface* surface, GpuSync& gpuSync) = 0; |
| }; |
| |
| class StaticSkp : public SkpProducer { |
| public: |
| StaticSkp(sk_sp<SkPicture> skp) : fSkp(skp) {} |
| |
| int drawAndFlushAndSync(GrDirectContext* context, |
| SkSurface* surface, |
| GpuSync& gpuSync) override { |
| draw_skp_and_flush_with_sync(context, surface, fSkp.get(), gpuSync); |
| return 1; |
| } |
| |
| private: |
| sk_sp<SkPicture> fSkp; |
| }; |
| |
| // A class for playing/benchmarking a multi frame SKP file. |
| // the recorded frames are looped over repeatedly. |
| // This type of benchmark may have a much higher std dev in frame times. |
| class MultiFrameSkp : public SkpProducer { |
| public: |
| MultiFrameSkp(const std::vector<SkDocumentPage>& frames) : fFrames(frames){} |
| |
| static std::unique_ptr<MultiFrameSkp> MakeFromFile(const SkString& path) { |
| // Load the multi frame skp at the given filename. |
| std::unique_ptr<SkStreamAsset> stream = SkStream::MakeFromFile(path.c_str()); |
| if (!stream) { return nullptr; } |
| |
| // Attempt to deserialize with an image sharing serial proc. |
| auto deserialContext = std::make_unique<SkSharingDeserialContext>(); |
| SkDeserialProcs procs; |
| procs.fImageProc = SkSharingDeserialContext::deserializeImage; |
| procs.fImageCtx = deserialContext.get(); |
| |
| // The outer format of multi-frame skps is the multi-picture document, which is a |
| // skp file containing subpictures separated by annotations. |
| int page_count = SkMultiPictureDocumentReadPageCount(stream.get()); |
| if (!page_count) { |
| return nullptr; |
| } |
| std::vector<SkDocumentPage> frames(page_count); // can't call reserve, why? |
| if (!SkMultiPictureDocumentRead(stream.get(), frames.data(), page_count, &procs)) { |
| return nullptr; |
| } |
| |
| return std::make_unique<MultiFrameSkp>(frames); |
| } |
| |
| // Draw the whole animation once. |
| int drawAndFlushAndSync(GrDirectContext* context, |
| SkSurface* surface, |
| GpuSync& gpuSync) override { |
| for (int i=0; i<this->count(); i++){ |
| draw_skp_and_flush_with_sync(context, surface, this->frame(i).get(), gpuSync); |
| } |
| return this->count(); |
| } |
| // Return the requested frame. |
| sk_sp<SkPicture> frame(int n) const { return fFrames[n].fPicture; } |
| // Return the number of frames in the recording. |
| int count() const { return fFrames.size(); } |
| private: |
| std::vector<SkDocumentPage> fFrames; |
| }; |
| |
| static void ddl_sample(GrDirectContext* dContext, DDLTileHelper* tiles, GpuSync& gpuSync, |
| Sample* sample, SkTaskGroup* recordingTaskGroup, SkTaskGroup* gpuTaskGroup, |
| std::chrono::high_resolution_clock::time_point* startStopTime, |
| SkPicture* picture) { |
| using clock = std::chrono::high_resolution_clock; |
| |
| clock::time_point start = *startStopTime; |
| |
| if (FLAGS_comparableDDL) { |
| SkASSERT(!FLAGS_comparableSKP); |
| |
| // In this mode we simply alternate between creating a DDL and drawing it - all on one |
| // thread. The interleaving is so that we don't starve the GPU. |
| // One unfortunate side effect of this is that we can't delete the DDLs until after |
| // the GPU work is flushed. |
| tiles->interleaveDDLCreationAndDraw(dContext, picture); |
| } else if (FLAGS_comparableSKP) { |
| // In this mode simply draw the re-inflated per-tile SKPs directly to the GPU w/o going |
| // through a DDL. |
| tiles->drawAllTilesDirectly(dContext, picture); |
| } else { |
| tiles->kickOffThreadedWork(recordingTaskGroup, gpuTaskGroup, dContext, picture); |
| recordingTaskGroup->wait(); |
| } |
| |
| if (gpuTaskGroup) { |
| gpuTaskGroup->add([&]{ |
| flush_with_sync(dContext, gpuSync); |
| }); |
| gpuTaskGroup->wait(); |
| } else { |
| flush_with_sync(dContext, gpuSync); |
| } |
| |
| *startStopTime = clock::now(); |
| |
| if (sample) { |
| sample->fDuration += *startStopTime - start; |
| sample->fFrames++; |
| } |
| } |
| |
| static void run_ddl_benchmark(sk_gpu_test::TestContext* testContext, GrDirectContext *dContext, |
| sk_sp<SkSurface> dstSurface, SkPicture* inputPicture, |
| std::vector<Sample>* samples) { |
| using clock = std::chrono::high_resolution_clock; |
| const Sample::duration sampleDuration = std::chrono::milliseconds(FLAGS_sampleMs); |
| const clock::duration benchDuration = std::chrono::milliseconds(FLAGS_duration); |
| |
| SkSurfaceCharacterization dstCharacterization; |
| SkAssertResult(dstSurface->characterize(&dstCharacterization)); |
| |
| SkIRect viewport = dstSurface->imageInfo().bounds(); |
| |
| SkYUVAPixmapInfo::SupportedDataTypes supportedYUVADataTypes(*dContext); |
| DDLPromiseImageHelper promiseImageHelper(supportedYUVADataTypes); |
| sk_sp<SkPicture> newSKP = promiseImageHelper.recreateSKP(dContext, inputPicture); |
| if (!newSKP) { |
| exitf(ExitErr::kUnavailable, "DDL: conversion of skp failed"); |
| } |
| |
| promiseImageHelper.uploadAllToGPU(nullptr, dContext); |
| |
| DDLTileHelper tiles(dContext, dstCharacterization, viewport, |
| FLAGS_ddlTilingWidthHeight, FLAGS_ddlTilingWidthHeight, |
| /* addRandomPaddingToDst */ false); |
| |
| tiles.createBackendTextures(nullptr, dContext); |
| |
| // In comparable modes, there is no GPU thread. The following pointers are all null. |
| // Otherwise, we transfer testContext onto the GPU thread until after the bench. |
| std::unique_ptr<SkExecutor> gpuThread; |
| std::unique_ptr<SkTaskGroup> gpuTaskGroup; |
| std::unique_ptr<SkExecutor> recordingThreadPool; |
| std::unique_ptr<SkTaskGroup> recordingTaskGroup; |
| if (!FLAGS_comparableDDL && !FLAGS_comparableSKP) { |
| gpuThread = SkExecutor::MakeFIFOThreadPool(1, false); |
| gpuTaskGroup = std::make_unique<SkTaskGroup>(*gpuThread); |
| recordingThreadPool = SkExecutor::MakeFIFOThreadPool(FLAGS_ddlNumRecordingThreads, false); |
| recordingTaskGroup = std::make_unique<SkTaskGroup>(*recordingThreadPool); |
| testContext->makeNotCurrent(); |
| gpuTaskGroup->add([=]{ testContext->makeCurrent(); }); |
| } |
| |
| clock::time_point startStopTime = clock::now(); |
| |
| GpuSync gpuSync; |
| ddl_sample(dContext, &tiles, gpuSync, nullptr, recordingTaskGroup.get(), |
| gpuTaskGroup.get(), &startStopTime, newSKP.get()); |
| |
| clock::duration cumulativeDuration = std::chrono::milliseconds(0); |
| |
| do { |
| samples->emplace_back(); |
| Sample& sample = samples->back(); |
| |
| do { |
| tiles.resetAllTiles(); |
| ddl_sample(dContext, &tiles, gpuSync, &sample, recordingTaskGroup.get(), |
| gpuTaskGroup.get(), &startStopTime, newSKP.get()); |
| } while (sample.fDuration < sampleDuration); |
| |
| cumulativeDuration += sample.fDuration; |
| } while (cumulativeDuration < benchDuration || 0 == samples->size() % 2); |
| |
| // Move the context back to this thread now that we're done benching. |
| if (gpuTaskGroup) { |
| gpuTaskGroup->add([=]{ |
| testContext->makeNotCurrent(); |
| }); |
| gpuTaskGroup->wait(); |
| testContext->makeCurrent(); |
| } |
| |
| if (!FLAGS_png.isEmpty()) { |
| // The user wants to see the final result |
| dstSurface->draw(tiles.composeDDL()); |
| dstSurface->flushAndSubmit(); |
| } |
| |
| tiles.resetAllTiles(); |
| |
| // Make sure the gpu has finished all its work before we exit this function and delete the |
| // fence. |
| dContext->flush(); |
| dContext->submit(true); |
| |
| promiseImageHelper.deleteAllFromGPU(nullptr, dContext); |
| |
| tiles.deleteBackendTextures(nullptr, dContext); |
| |
| } |
| |
| static void run_benchmark(GrDirectContext* context, SkSurface* surface, SkpProducer* skpp, |
| std::vector<Sample>* samples) { |
| using clock = std::chrono::high_resolution_clock; |
| const Sample::duration sampleDuration = std::chrono::milliseconds(FLAGS_sampleMs); |
| const clock::duration benchDuration = std::chrono::milliseconds(FLAGS_duration); |
| |
| GpuSync gpuSync; |
| int i = 0; |
| do { |
| i += skpp->drawAndFlushAndSync(context, surface, gpuSync); |
| } while(i < kNumFlushesToPrimeCache); |
| |
| clock::time_point now = clock::now(); |
| const clock::time_point endTime = now + benchDuration; |
| |
| do { |
| clock::time_point sampleStart = now; |
| samples->emplace_back(); |
| Sample& sample = samples->back(); |
| |
| do { |
| sample.fFrames += skpp->drawAndFlushAndSync(context, surface, gpuSync); |
| now = clock::now(); |
| sample.fDuration = now - sampleStart; |
| } while (sample.fDuration < sampleDuration); |
| } while (now < endTime || 0 == samples->size() % 2); |
| |
| // Make sure the gpu has finished all its work before we exit this function and delete the |
| // fence. |
| surface->flush(); |
| context->submit(true); |
| } |
| |
| static void run_gpu_time_benchmark(sk_gpu_test::GpuTimer* gpuTimer, GrDirectContext* context, |
| SkSurface* surface, const SkPicture* skp, |
| std::vector<Sample>* samples) { |
| using sk_gpu_test::PlatformTimerQuery; |
| using clock = std::chrono::steady_clock; |
| const clock::duration sampleDuration = std::chrono::milliseconds(FLAGS_sampleMs); |
| const clock::duration benchDuration = std::chrono::milliseconds(FLAGS_duration); |
| |
| if (!gpuTimer->disjointSupport()) { |
| fprintf(stderr, "WARNING: GPU timer cannot detect disjoint operations; " |
| "results may be unreliable\n"); |
| } |
| |
| GpuSync gpuSync; |
| draw_skp_and_flush_with_sync(context, surface, skp, gpuSync); |
| |
| PlatformTimerQuery previousTime = 0; |
| for (int i = 1; i < kNumFlushesToPrimeCache; ++i) { |
| gpuTimer->queueStart(); |
| draw_skp_and_flush_with_sync(context, surface, skp, gpuSync); |
| previousTime = gpuTimer->queueStop(); |
| } |
| |
| clock::time_point now = clock::now(); |
| const clock::time_point endTime = now + benchDuration; |
| |
| do { |
| const clock::time_point sampleEndTime = now + sampleDuration; |
| samples->emplace_back(); |
| Sample& sample = samples->back(); |
| |
| do { |
| gpuTimer->queueStart(); |
| draw_skp_and_flush_with_sync(context, surface, skp, gpuSync); |
| PlatformTimerQuery time = gpuTimer->queueStop(); |
| |
| switch (gpuTimer->checkQueryStatus(previousTime)) { |
| using QueryStatus = sk_gpu_test::GpuTimer::QueryStatus; |
| case QueryStatus::kInvalid: |
| exitf(ExitErr::kUnavailable, "GPU timer failed"); |
| break; |
| case QueryStatus::kPending: |
| exitf(ExitErr::kUnavailable, "timer query still not ready after fence sync"); |
| break; |
| case QueryStatus::kDisjoint: |
| if (FLAGS_verbosity >= 4) { |
| fprintf(stderr, "discarding timer query due to disjoint operations.\n"); |
| } |
| break; |
| case QueryStatus::kAccurate: |
| sample.fDuration += gpuTimer->getTimeElapsed(previousTime); |
| ++sample.fFrames; |
| break; |
| } |
| gpuTimer->deleteQuery(previousTime); |
| previousTime = time; |
| now = clock::now(); |
| } while (now < sampleEndTime || 0 == sample.fFrames); |
| } while (now < endTime || 0 == samples->size() % 2); |
| |
| gpuTimer->deleteQuery(previousTime); |
| |
| // Make sure the gpu has finished all its work before we exit this function and delete the |
| // fence. |
| surface->flush(); |
| context->submit(true); |
| } |
| |
| void print_result(const std::vector<Sample>& samples, const char* config, const char* bench) { |
| if (0 == (samples.size() % 2)) { |
| exitf(ExitErr::kSoftware, "attempted to gather stats on even number of samples"); |
| } |
| |
| if (FLAGS_dumpSamples) { |
| printf("Samples: "); |
| for (const Sample& sample : samples) { |
| printf("%" PRId64 " ", static_cast<int64_t>(sample.fDuration.count())); |
| } |
| printf("%s\n", bench); |
| } |
| |
| Sample accum = Sample(); |
| std::vector<double> values; |
| values.reserve(samples.size()); |
| for (const Sample& sample : samples) { |
| accum.fFrames += sample.fFrames; |
| accum.fDuration += sample.fDuration; |
| values.push_back(sample.value()); |
| } |
| std::sort(values.begin(), values.end()); |
| |
| const double accumValue = accum.value(); |
| double variance = 0; |
| for (double value : values) { |
| const double delta = value - accumValue; |
| variance += delta * delta; |
| } |
| variance /= values.size(); |
| // Technically, this is the relative standard deviation. |
| const double stddev = 100/*%*/ * sqrt(variance) / accumValue; |
| |
| printf(resultFormat, accumValue, values[values.size() / 2], values.back(), values.front(), |
| stddev, values.size(), FLAGS_sampleMs, FLAGS_gpuClock ? "gpu" : "cpu", Sample::metric(), |
| config, bench); |
| printf("\n"); |
| fflush(stdout); |
| } |
| |
| int main(int argc, char** argv) { |
| CommandLineFlags::SetUsage( |
| "Use skpbench.py instead. " |
| "You usually don't want to use this program directly."); |
| CommandLineFlags::Parse(argc, argv); |
| |
| if (!FLAGS_suppressHeader) { |
| printf("%s\n", header); |
| } |
| if (FLAGS_duration <= 0) { |
| exit(0); // This can be used to print the header and quit. |
| } |
| |
| // Parse the config. |
| const SkCommandLineConfigGpu* config = nullptr; // Initialize for spurious warning. |
| SkCommandLineConfigArray configs; |
| ParseConfigs(FLAGS_config, &configs); |
| if (configs.count() != 1 || !(config = configs[0]->asConfigGpu())) { |
| exitf(ExitErr::kUsage, "invalid config '%s': must specify one (and only one) GPU config", |
| join(FLAGS_config).c_str()); |
| } |
| |
| // Parse the skp. |
| if (FLAGS_src.count() != 1) { |
| exitf(ExitErr::kUsage, |
| "invalid input '%s': must specify a single .skp or .svg file, or 'warmup'", |
| join(FLAGS_src).c_str()); |
| } |
| |
| SkGraphics::Init(); |
| |
| sk_sp<SkPicture> skp; |
| std::unique_ptr<MultiFrameSkp> mskp; // populated if the file is multi frame. |
| SkString srcname; |
| if (0 == strcmp(FLAGS_src[0], "warmup")) { |
| skp = create_warmup_skp(); |
| srcname = "warmup"; |
| } else { |
| SkString srcfile(FLAGS_src[0]); |
| std::unique_ptr<SkStream> srcstream(SkStream::MakeFromFile(srcfile.c_str())); |
| if (!srcstream) { |
| exitf(ExitErr::kIO, "failed to open file %s", srcfile.c_str()); |
| } |
| if (srcfile.endsWith(".svg")) { |
| skp = create_skp_from_svg(srcstream.get(), srcfile.c_str()); |
| } else if (srcfile.endsWith(".mskp")) { |
| mskp = MultiFrameSkp::MakeFromFile(srcfile); |
| // populate skp with it's first frame, for width height determination. |
| skp = mskp->frame(0); |
| } else { |
| skp = SkPicture::MakeFromStream(srcstream.get()); |
| } |
| if (!skp) { |
| exitf(ExitErr::kData, "failed to parse file %s", srcfile.c_str()); |
| } |
| srcname = SkOSPath::Basename(srcfile.c_str()); |
| } |
| int width = std::min(SkScalarCeilToInt(skp->cullRect().width()), 2048), |
| height = std::min(SkScalarCeilToInt(skp->cullRect().height()), 2048); |
| if (FLAGS_verbosity >= 3 && |
| (width != skp->cullRect().width() || height != skp->cullRect().height())) { |
| fprintf(stderr, "%s is too large (%ix%i), cropping to %ix%i.\n", |
| srcname.c_str(), SkScalarCeilToInt(skp->cullRect().width()), |
| SkScalarCeilToInt(skp->cullRect().height()), width, height); |
| } |
| if (FLAGS_scale != 1) { |
| width *= FLAGS_scale; |
| height *= FLAGS_scale; |
| if (FLAGS_verbosity >= 3) { |
| fprintf(stderr, "Scale factor of %.2f: scaling to %ix%i.\n", |
| FLAGS_scale, width, height); |
| } |
| } |
| |
| if (config->getSurfType() != SkCommandLineConfigGpu::SurfType::kDefault) { |
| exitf(ExitErr::kUnavailable, "This tool only supports the default surface type. (%s)", |
| config->getTag().c_str()); |
| } |
| |
| // Create a context. |
| GrContextOptions ctxOptions; |
| CommonFlags::SetCtxOptions(&ctxOptions); |
| sk_gpu_test::GrContextFactory factory(ctxOptions); |
| sk_gpu_test::ContextInfo ctxInfo = |
| factory.getContextInfo(config->getContextType(), config->getContextOverrides()); |
| auto ctx = ctxInfo.directContext(); |
| if (!ctx) { |
| exitf(ExitErr::kUnavailable, "failed to create context for config %s", |
| config->getTag().c_str()); |
| } |
| if (ctx->maxRenderTargetSize() < std::max(width, height)) { |
| exitf(ExitErr::kUnavailable, "render target size %ix%i not supported by platform (max: %i)", |
| width, height, ctx->maxRenderTargetSize()); |
| } |
| GrBackendFormat format = ctx->defaultBackendFormat(config->getColorType(), GrRenderable::kYes); |
| if (!format.isValid()) { |
| exitf(ExitErr::kUnavailable, "failed to get GrBackendFormat from SkColorType: %d", |
| config->getColorType()); |
| } |
| int supportedSampleCount = ctx->priv().caps()->getRenderTargetSampleCount( |
| config->getSamples(), format); |
| if (supportedSampleCount != config->getSamples()) { |
| exitf(ExitErr::kUnavailable, "sample count %i not supported by platform", |
| config->getSamples()); |
| } |
| sk_gpu_test::TestContext* testCtx = ctxInfo.testContext(); |
| if (!testCtx) { |
| exitf(ExitErr::kSoftware, "testContext is null"); |
| } |
| if (!testCtx->fenceSyncSupport()) { |
| exitf(ExitErr::kUnavailable, "GPU does not support fence sync"); |
| } |
| |
| // Create a render target. |
| SkImageInfo info = SkImageInfo::Make( |
| width, height, config->getColorType(), config->getAlphaType(), config->refColorSpace()); |
| SkSurfaceProps props(config->getSurfaceFlags(), kRGB_H_SkPixelGeometry); |
| sk_sp<SkSurface> surface = |
| SkSurface::MakeRenderTarget(ctx, SkBudgeted::kNo, info, config->getSamples(), &props); |
| if (!surface) { |
| exitf(ExitErr::kUnavailable, "failed to create %ix%i render target for config %s", |
| width, height, config->getTag().c_str()); |
| } |
| |
| // Run the benchmark. |
| std::vector<Sample> samples; |
| if (FLAGS_sampleMs > 0) { |
| // +1 because we might take one more sample in order to have an odd number. |
| samples.reserve(1 + (FLAGS_duration + FLAGS_sampleMs - 1) / FLAGS_sampleMs); |
| } else { |
| samples.reserve(2 * FLAGS_duration); |
| } |
| SkCanvas* canvas = surface->getCanvas(); |
| canvas->translate(-skp->cullRect().x(), -skp->cullRect().y()); |
| if (FLAGS_scale != 1) { |
| canvas->scale(FLAGS_scale, FLAGS_scale); |
| } |
| if (!FLAGS_gpuClock) { |
| if (FLAGS_ddl) { |
| run_ddl_benchmark(testCtx, ctx, surface, skp.get(), &samples); |
| } else if (!mskp) { |
| auto s = std::make_unique<StaticSkp>(skp); |
| run_benchmark(ctx, surface.get(), s.get(), &samples); |
| } else { |
| run_benchmark(ctx, surface.get(), mskp.get(), &samples); |
| } |
| } else { |
| if (FLAGS_ddl) { |
| exitf(ExitErr::kUnavailable, "DDL: GPU-only timing not supported"); |
| } |
| if (!testCtx->gpuTimingSupport()) { |
| exitf(ExitErr::kUnavailable, "GPU does not support timing"); |
| } |
| run_gpu_time_benchmark(testCtx->gpuTimer(), ctx, surface.get(), skp.get(), &samples); |
| } |
| print_result(samples, config->getTag().c_str(), srcname.c_str()); |
| |
| // Save a proof (if one was requested). |
| if (!FLAGS_png.isEmpty()) { |
| SkBitmap bmp; |
| bmp.allocPixels(info); |
| if (!surface->getCanvas()->readPixels(bmp, 0, 0)) { |
| exitf(ExitErr::kUnavailable, "failed to read canvas pixels for png"); |
| } |
| if (!mkdir_p(SkOSPath::Dirname(FLAGS_png[0]))) { |
| exitf(ExitErr::kIO, "failed to create directory for png \"%s\"", FLAGS_png[0]); |
| } |
| if (!ToolUtils::EncodeImageToFile(FLAGS_png[0], bmp, SkEncodedImageFormat::kPNG, 100)) { |
| exitf(ExitErr::kIO, "failed to save png to \"%s\"", FLAGS_png[0]); |
| } |
| } |
| |
| return(0); |
| } |
| |
| static void flush_with_sync(GrDirectContext* context, GpuSync& gpuSync) { |
| gpuSync.waitIfNeeded(); |
| |
| GrFlushInfo flushInfo; |
| flushInfo.fFinishedProc = sk_gpu_test::FlushFinishTracker::FlushFinished; |
| flushInfo.fFinishedContext = gpuSync.newFlushTracker(context); |
| |
| context->flush(flushInfo); |
| context->submit(); |
| } |
| |
| static void draw_skp_and_flush_with_sync(GrDirectContext* context, SkSurface* surface, |
| const SkPicture* skp, GpuSync& gpuSync) { |
| auto canvas = surface->getCanvas(); |
| canvas->drawPicture(skp); |
| |
| flush_with_sync(context, gpuSync); |
| } |
| |
| static sk_sp<SkPicture> create_warmup_skp() { |
| static constexpr SkRect bounds{0, 0, 500, 500}; |
| SkPictureRecorder recorder; |
| SkCanvas* recording = recorder.beginRecording(bounds); |
| |
| recording->clear(SK_ColorWHITE); |
| |
| SkPaint stroke; |
| stroke.setStyle(SkPaint::kStroke_Style); |
| stroke.setStrokeWidth(2); |
| |
| // Use a big path to (theoretically) warmup the CPU. |
| SkPath bigPath = BenchUtils::make_big_path(); |
| recording->drawPath(bigPath, stroke); |
| |
| // Use a perlin shader to warmup the GPU. |
| SkPaint perlin; |
| perlin.setShader(SkPerlinNoiseShader::MakeTurbulence(0.1f, 0.1f, 1, 0, nullptr)); |
| recording->drawRect(bounds, perlin); |
| |
| return recorder.finishRecordingAsPicture(); |
| } |
| |
| static sk_sp<SkPicture> create_skp_from_svg(SkStream* stream, const char* filename) { |
| #if defined(SK_ENABLE_SVG) |
| sk_sp<SkSVGDOM> svg = SkSVGDOM::MakeFromStream(*stream); |
| if (!svg) { |
| exitf(ExitErr::kData, "failed to build svg dom from file %s", filename); |
| } |
| |
| static constexpr SkRect bounds{0, 0, 1200, 1200}; |
| SkPictureRecorder recorder; |
| SkCanvas* recording = recorder.beginRecording(bounds); |
| |
| svg->setContainerSize(SkSize::Make(recording->getBaseLayerSize())); |
| svg->render(recording); |
| |
| return recorder.finishRecordingAsPicture(); |
| #endif |
| exitf(ExitErr::kData, "SK_ENABLE_SVG is disabled; cannot open svg file %s", filename); |
| return nullptr; |
| } |
| |
| bool mkdir_p(const SkString& dirname) { |
| if (dirname.isEmpty() || dirname == SkString("/")) { |
| return true; |
| } |
| return mkdir_p(SkOSPath::Dirname(dirname.c_str())) && sk_mkdir(dirname.c_str()); |
| } |
| |
| static SkString join(const CommandLineFlags::StringArray& stringArray) { |
| SkString joined; |
| for (int i = 0; i < stringArray.count(); ++i) { |
| joined.appendf(i ? " %s" : "%s", stringArray[i]); |
| } |
| return joined; |
| } |
| |
| static void exitf(ExitErr err, const char* format, ...) SK_PRINTF_LIKE(2, 3); |
| |
| static void exitf(ExitErr err, const char* format, ...) { |
| fprintf(stderr, ExitErr::kSoftware == err ? "INTERNAL ERROR: " : "ERROR: "); |
| va_list args; |
| va_start(args, format); |
| vfprintf(stderr, format, args); |
| va_end(args); |
| fprintf(stderr, ExitErr::kSoftware == err ? "; this should never happen.\n": ".\n"); |
| exit((int)err); |
| } |
| |
| void GpuSync::waitIfNeeded() { |
| if (fFinishTrackers[fCurrentFlushIdx]) { |
| fFinishTrackers[fCurrentFlushIdx]->waitTillFinished(); |
| } |
| } |
| |
| sk_gpu_test::FlushFinishTracker* GpuSync::newFlushTracker(GrDirectContext* context) { |
| fFinishTrackers[fCurrentFlushIdx].reset(new sk_gpu_test::FlushFinishTracker(context)); |
| |
| sk_gpu_test::FlushFinishTracker* tracker = fFinishTrackers[fCurrentFlushIdx].get(); |
| // We add an additional ref to the current flush tracker here. This ref is owned by the finish |
| // callback on the flush call. The finish callback will unref the tracker when called. |
| tracker->ref(); |
| |
| fCurrentFlushIdx = (fCurrentFlushIdx + 1) % SK_ARRAY_COUNT(fFinishTrackers); |
| return tracker; |
| } |