blob: 76cf7f820ac800a60901d8bd46eb1e4f6658c56b [file] [log] [blame]
/*
* Copyright 2020 Google LLC
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/sksl/SkSLConstantFolder.h"
#include "include/core/SkTypes.h"
#include "include/private/SkSLModifiers.h"
#include "include/private/base/SkFloatingPoint.h"
#include "include/private/base/SkTArray.h"
#include "include/sksl/SkSLErrorReporter.h"
#include "include/sksl/SkSLPosition.h"
#include "src/sksl/SkSLAnalysis.h"
#include "src/sksl/SkSLContext.h"
#include "src/sksl/SkSLProgramSettings.h"
#include "src/sksl/ir/SkSLBinaryExpression.h"
#include "src/sksl/ir/SkSLConstructorCompound.h"
#include "src/sksl/ir/SkSLConstructorDiagonalMatrix.h"
#include "src/sksl/ir/SkSLConstructorSplat.h"
#include "src/sksl/ir/SkSLExpression.h"
#include "src/sksl/ir/SkSLLiteral.h"
#include "src/sksl/ir/SkSLPrefixExpression.h"
#include "src/sksl/ir/SkSLType.h"
#include "src/sksl/ir/SkSLVariable.h"
#include "src/sksl/ir/SkSLVariableReference.h"
#include <cstdint>
#include <float.h>
#include <limits>
#include <optional>
#include <string>
#include <utility>
namespace SkSL {
static bool is_vec_or_mat(const Type& type) {
switch (type.typeKind()) {
case Type::TypeKind::kMatrix:
case Type::TypeKind::kVector:
return true;
default:
return false;
}
}
static std::unique_ptr<Expression> eliminate_no_op_boolean(Position pos,
const Expression& left,
Operator op,
const Expression& right) {
bool rightVal = right.as<Literal>().boolValue();
// Detect no-op Boolean expressions and optimize them away.
if ((op.kind() == Operator::Kind::LOGICALAND && rightVal) || // (expr && true) -> (expr)
(op.kind() == Operator::Kind::LOGICALOR && !rightVal) || // (expr || false) -> (expr)
(op.kind() == Operator::Kind::LOGICALXOR && !rightVal) || // (expr ^^ false) -> (expr)
(op.kind() == Operator::Kind::EQEQ && rightVal) || // (expr == true) -> (expr)
(op.kind() == Operator::Kind::NEQ && !rightVal)) { // (expr != false) -> (expr)
return left.clone(pos);
}
return nullptr;
}
static std::unique_ptr<Expression> short_circuit_boolean(Position pos,
const Expression& left,
Operator op,
const Expression& right) {
bool leftVal = left.as<Literal>().boolValue();
// When the literal is on the left, we can sometimes eliminate the other expression entirely.
if ((op.kind() == Operator::Kind::LOGICALAND && !leftVal) || // (false && expr) -> (false)
(op.kind() == Operator::Kind::LOGICALOR && leftVal)) { // (true || expr) -> (true)
return left.clone(pos);
}
// We can't eliminate the right-side expression via short-circuit, but we might still be able to
// simplify away a no-op expression.
return eliminate_no_op_boolean(pos, right, op, left);
}
static std::unique_ptr<Expression> simplify_constant_equality(const Context& context,
Position pos,
const Expression& left,
Operator op,
const Expression& right) {
if (op.kind() == Operator::Kind::EQEQ || op.kind() == Operator::Kind::NEQ) {
bool equality = (op.kind() == Operator::Kind::EQEQ);
switch (left.compareConstant(right)) {
case Expression::ComparisonResult::kNotEqual:
equality = !equality;
[[fallthrough]];
case Expression::ComparisonResult::kEqual:
return Literal::MakeBool(context, pos, equality);
case Expression::ComparisonResult::kUnknown:
break;
}
}
return nullptr;
}
static std::unique_ptr<Expression> simplify_matrix_multiplication(const Context& context,
Position pos,
const Expression& left,
const Expression& right,
int leftColumns,
int leftRows,
int rightColumns,
int rightRows) {
const Type& componentType = left.type().componentType();
SkASSERT(componentType.matches(right.type().componentType()));
// Fetch the left matrix.
double leftVals[4][4];
for (int c = 0; c < leftColumns; ++c) {
for (int r = 0; r < leftRows; ++r) {
leftVals[c][r] = *left.getConstantValue((c * leftRows) + r);
}
}
// Fetch the right matrix.
double rightVals[4][4];
for (int c = 0; c < rightColumns; ++c) {
for (int r = 0; r < rightRows; ++r) {
rightVals[c][r] = *right.getConstantValue((c * rightRows) + r);
}
}
SkASSERT(leftColumns == rightRows);
int outColumns = rightColumns,
outRows = leftRows;
ExpressionArray args;
args.reserve_back(outColumns * outRows);
for (int c = 0; c < outColumns; ++c) {
for (int r = 0; r < outRows; ++r) {
// Compute a dot product for this position.
double val = 0;
for (int dotIdx = 0; dotIdx < leftColumns; ++dotIdx) {
val += leftVals[dotIdx][r] * rightVals[c][dotIdx];
}
args.push_back(Literal::Make(pos, val, &componentType));
}
}
if (outColumns == 1) {
// Matrix-times-vector conceptually makes a 1-column N-row matrix, but we return vecN.
std::swap(outColumns, outRows);
}
const Type& resultType = componentType.toCompound(context, outColumns, outRows);
return ConstructorCompound::Make(context, pos, resultType, std::move(args));
}
static std::unique_ptr<Expression> simplify_matrix_times_matrix(const Context& context,
Position pos,
const Expression& left,
const Expression& right) {
const Type& leftType = left.type();
const Type& rightType = right.type();
SkASSERT(leftType.isMatrix());
SkASSERT(rightType.isMatrix());
return simplify_matrix_multiplication(context, pos, left, right,
leftType.columns(), leftType.rows(),
rightType.columns(), rightType.rows());
}
static std::unique_ptr<Expression> simplify_vector_times_matrix(const Context& context,
Position pos,
const Expression& left,
const Expression& right) {
const Type& leftType = left.type();
const Type& rightType = right.type();
SkASSERT(leftType.isVector());
SkASSERT(rightType.isMatrix());
return simplify_matrix_multiplication(context, pos, left, right,
/*leftColumns=*/leftType.columns(), /*leftRows=*/1,
rightType.columns(), rightType.rows());
}
static std::unique_ptr<Expression> simplify_matrix_times_vector(const Context& context,
Position pos,
const Expression& left,
const Expression& right) {
const Type& leftType = left.type();
const Type& rightType = right.type();
SkASSERT(leftType.isMatrix());
SkASSERT(rightType.isVector());
return simplify_matrix_multiplication(context, pos, left, right,
leftType.columns(), leftType.rows(),
/*rightColumns=*/1, /*rightRows=*/rightType.columns());
}
static std::unique_ptr<Expression> simplify_componentwise(const Context& context,
Position pos,
const Expression& left,
Operator op,
const Expression& right) {
SkASSERT(is_vec_or_mat(left.type()));
SkASSERT(left.type().matches(right.type()));
const Type& type = left.type();
// Handle equality operations: == !=
if (std::unique_ptr<Expression> result = simplify_constant_equality(context, pos, left, op,
right)) {
return result;
}
// Handle floating-point arithmetic: + - * /
using FoldFn = double (*)(double, double);
FoldFn foldFn;
switch (op.kind()) {
case Operator::Kind::PLUS: foldFn = +[](double a, double b) { return a + b; }; break;
case Operator::Kind::MINUS: foldFn = +[](double a, double b) { return a - b; }; break;
case Operator::Kind::STAR: foldFn = +[](double a, double b) { return a * b; }; break;
case Operator::Kind::SLASH: foldFn = +[](double a, double b) { return a / b; }; break;
default:
return nullptr;
}
const Type& componentType = type.componentType();
SkASSERT(componentType.isNumber());
double minimumValue = componentType.minimumValue();
double maximumValue = componentType.maximumValue();
ExpressionArray args;
int numSlots = type.slotCount();
args.reserve_back(numSlots);
for (int i = 0; i < numSlots; i++) {
double value = foldFn(*left.getConstantValue(i), *right.getConstantValue(i));
if (value < minimumValue || value > maximumValue) {
return nullptr;
}
args.push_back(Literal::Make(pos, value, &componentType));
}
return ConstructorCompound::Make(context, pos, type, std::move(args));
}
static std::unique_ptr<Expression> splat_scalar(const Context& context,
const Expression& scalar,
const Type& type) {
if (type.isVector()) {
return ConstructorSplat::Make(context, scalar.fPosition, type, scalar.clone());
}
if (type.isMatrix()) {
int numSlots = type.slotCount();
ExpressionArray splatMatrix;
splatMatrix.reserve_back(numSlots);
for (int index = 0; index < numSlots; ++index) {
splatMatrix.push_back(scalar.clone());
}
return ConstructorCompound::Make(context, scalar.fPosition, type, std::move(splatMatrix));
}
SkDEBUGFAILF("unsupported type %s", type.description().c_str());
return nullptr;
}
static std::unique_ptr<Expression> cast_expression(const Context& context,
Position pos,
const Expression& expr,
const Type& type) {
SkASSERT(type.componentType().matches(expr.type().componentType()));
if (expr.type().isScalar()) {
if (type.isMatrix()) {
return ConstructorDiagonalMatrix::Make(context, pos, type, expr.clone());
}
if (type.isVector()) {
return ConstructorSplat::Make(context, pos, type, expr.clone());
}
}
if (type.matches(expr.type())) {
return expr.clone(pos);
}
// We can't cast matrices into vectors or vice-versa.
return nullptr;
}
static std::unique_ptr<Expression> zero_expression(const Context& context,
Position pos,
const Type& type) {
std::unique_ptr<Expression> zero = Literal::Make(pos, 0.0, &type.componentType());
if (type.isScalar()) {
return zero;
}
if (type.isVector()) {
return ConstructorSplat::Make(context, pos, type, std::move(zero));
}
if (type.isMatrix()) {
return ConstructorDiagonalMatrix::Make(context, pos, type, std::move(zero));
}
SkDEBUGFAILF("unsupported type %s", type.description().c_str());
return nullptr;
}
static std::unique_ptr<Expression> negate_expression(const Context& context,
Position pos,
const Expression& expr,
const Type& type) {
std::unique_ptr<Expression> ctor = cast_expression(context, pos, expr, type);
return ctor ? PrefixExpression::Make(context, pos, Operator::Kind::MINUS, std::move(ctor))
: nullptr;
}
bool ConstantFolder::GetConstantInt(const Expression& value, SKSL_INT* out) {
const Expression* expr = GetConstantValueForVariable(value);
if (!expr->isIntLiteral()) {
return false;
}
*out = expr->as<Literal>().intValue();
return true;
}
bool ConstantFolder::GetConstantValue(const Expression& value, double* out) {
const Expression* expr = GetConstantValueForVariable(value);
if (!expr->is<Literal>()) {
return false;
}
*out = expr->as<Literal>().value();
return true;
}
static bool contains_constant_zero(const Expression& expr) {
int numSlots = expr.type().slotCount();
for (int index = 0; index < numSlots; ++index) {
std::optional<double> slotVal = expr.getConstantValue(index);
if (slotVal.has_value() && *slotVal == 0.0) {
return true;
}
}
return false;
}
// Returns true if the expression contains `value` in every slot.
static bool is_constant_splat(const Expression& expr, double value) {
int numSlots = expr.type().slotCount();
for (int index = 0; index < numSlots; ++index) {
std::optional<double> slotVal = expr.getConstantValue(index);
if (!slotVal.has_value() || *slotVal != value) {
return false;
}
}
return true;
}
// Returns true if the expression is a square diagonal matrix containing `value`.
static bool is_constant_diagonal(const Expression& expr, double value) {
SkASSERT(expr.type().isMatrix());
int columns = expr.type().columns();
int rows = expr.type().rows();
if (columns != rows) {
return false;
}
int slotIdx = 0;
for (int c = 0; c < columns; ++c) {
for (int r = 0; r < rows; ++r) {
double expectation = (c == r) ? value : 0;
std::optional<double> slotVal = expr.getConstantValue(slotIdx++);
if (!slotVal.has_value() || *slotVal != expectation) {
return false;
}
}
}
return true;
}
// Returns true if the expression is a scalar, vector, or diagonal matrix containing `value`.
static bool is_constant_value(const Expression& expr, double value) {
return expr.type().isMatrix() ? is_constant_diagonal(expr, value)
: is_constant_splat(expr, value);
}
// The expression represents the right-hand side of a division op. If the division can be
// strength-reduced into multiplication by a reciprocal, returns that reciprocal as an expression.
// Note that this only supports literal values with safe-to-use reciprocals, and returns null if
// Expression contains anything else.
static std::unique_ptr<Expression> make_reciprocal_expression(const Context& context,
const Expression& right) {
if (right.type().isMatrix() || !right.type().componentType().isFloat()) {
return nullptr;
}
// Verify that each slot contains a finite, non-zero literal, take its reciprocal.
int nslots = right.type().slotCount();
SkSTArray<4, double> values;
for (int index = 0; index < nslots; ++index) {
std::optional<double> value = right.getConstantValue(index);
if (!value) {
return nullptr;
}
*value = sk_ieee_double_divide(1.0, *value);
if (*value >= -FLT_MAX && *value <= FLT_MAX && *value != 0.0) {
// The reciprocal can be represented safely as a finite 32-bit float.
values.push_back(*value);
} else {
// The value is outside the 32-bit float range, or is NaN; do not optimize.
return nullptr;
}
}
// Convert our reciprocal values to Literals.
ExpressionArray exprs;
exprs.reserve_back(nslots);
for (double value : values) {
exprs.push_back(Literal::Make(right.fPosition, value, &right.type().componentType()));
}
// Turn the expression array into a compound constructor. (If this is a single-slot expression,
// this will return the literal as-is.)
return ConstructorCompound::Make(context, right.fPosition, right.type(), std::move(exprs));
}
static bool error_on_divide_by_zero(const Context& context, Position pos, Operator op,
const Expression& right) {
switch (op.kind()) {
case Operator::Kind::SLASH:
case Operator::Kind::SLASHEQ:
case Operator::Kind::PERCENT:
case Operator::Kind::PERCENTEQ:
if (contains_constant_zero(right)) {
context.fErrors->error(pos, "division by zero");
return true;
}
return false;
default:
return false;
}
}
const Expression* ConstantFolder::GetConstantValueOrNullForVariable(const Expression& inExpr) {
for (const Expression* expr = &inExpr;;) {
if (!expr->is<VariableReference>()) {
break;
}
const VariableReference& varRef = expr->as<VariableReference>();
if (varRef.refKind() != VariableRefKind::kRead) {
break;
}
const Variable& var = *varRef.variable();
if (!(var.modifiers().fFlags & Modifiers::kConst_Flag)) {
break;
}
expr = var.initialValue();
if (!expr) {
// Function parameters can be const but won't have an initial value.
break;
}
if (Analysis::IsCompileTimeConstant(*expr)) {
return expr;
}
}
// We didn't find a compile-time constant at the end.
return nullptr;
}
const Expression* ConstantFolder::GetConstantValueForVariable(const Expression& inExpr) {
const Expression* expr = GetConstantValueOrNullForVariable(inExpr);
return expr ? expr : &inExpr;
}
std::unique_ptr<Expression> ConstantFolder::MakeConstantValueForVariable(
Position pos, std::unique_ptr<Expression> inExpr) {
const Expression* expr = GetConstantValueOrNullForVariable(*inExpr);
return expr ? expr->clone(pos) : std::move(inExpr);
}
static bool is_scalar_op_matrix(const Expression& left, const Expression& right) {
return left.type().isScalar() && right.type().isMatrix();
}
static bool is_matrix_op_scalar(const Expression& left, const Expression& right) {
return is_scalar_op_matrix(right, left);
}
static std::unique_ptr<Expression> simplify_arithmetic(const Context& context,
Position pos,
const Expression& left,
Operator op,
const Expression& right,
const Type& resultType) {
switch (op.kind()) {
case Operator::Kind::PLUS:
if (!is_scalar_op_matrix(left, right) && is_constant_splat(right, 0.0)) { // x + 0
if (std::unique_ptr<Expression> expr = cast_expression(context, pos, left,
resultType)) {
return expr;
}
}
if (!is_matrix_op_scalar(left, right) && is_constant_splat(left, 0.0)) { // 0 + x
if (std::unique_ptr<Expression> expr = cast_expression(context, pos, right,
resultType)) {
return expr;
}
}
break;
case Operator::Kind::STAR:
if (is_constant_value(right, 1.0)) { // x * 1
if (std::unique_ptr<Expression> expr = cast_expression(context, pos, left,
resultType)) {
return expr;
}
}
if (is_constant_value(left, 1.0)) { // 1 * x
if (std::unique_ptr<Expression> expr = cast_expression(context, pos, right,
resultType)) {
return expr;
}
}
if (is_constant_value(right, 0.0) && !Analysis::HasSideEffects(left)) { // x * 0
return zero_expression(context, pos, resultType);
}
if (is_constant_value(left, 0.0) && !Analysis::HasSideEffects(right)) { // 0 * x
return zero_expression(context, pos, resultType);
}
if (is_constant_value(right, -1.0)) { // x * -1 (to `-x`)
if (std::unique_ptr<Expression> expr = negate_expression(context, pos, left,
resultType)) {
return expr;
}
}
if (is_constant_value(left, -1.0)) { // -1 * x (to `-x`)
if (std::unique_ptr<Expression> expr = negate_expression(context, pos, right,
resultType)) {
return expr;
}
}
break;
case Operator::Kind::MINUS:
if (!is_scalar_op_matrix(left, right) && is_constant_splat(right, 0.0)) { // x - 0
if (std::unique_ptr<Expression> expr = cast_expression(context, pos, left,
resultType)) {
return expr;
}
}
if (!is_matrix_op_scalar(left, right) && is_constant_splat(left, 0.0)) { // 0 - x
if (std::unique_ptr<Expression> expr = negate_expression(context, pos, right,
resultType)) {
return expr;
}
}
break;
case Operator::Kind::SLASH:
if (!is_scalar_op_matrix(left, right) && is_constant_splat(right, 1.0)) { // x / 1
if (std::unique_ptr<Expression> expr = cast_expression(context, pos, left,
resultType)) {
return expr;
}
}
if (!left.type().isMatrix()) { // convert `x / 2` into `x * 0.5`
if (std::unique_ptr<Expression> expr = make_reciprocal_expression(context, right)) {
return BinaryExpression::Make(context, pos, left.clone(), Operator::Kind::STAR,
std::move(expr));
}
}
break;
case Operator::Kind::PLUSEQ:
case Operator::Kind::MINUSEQ:
if (is_constant_splat(right, 0.0)) { // x += 0, x -= 0
if (std::unique_ptr<Expression> var = cast_expression(context, pos, left,
resultType)) {
Analysis::UpdateVariableRefKind(var.get(), VariableRefKind::kRead);
return var;
}
}
break;
case Operator::Kind::STAREQ:
if (is_constant_value(right, 1.0)) { // x *= 1
if (std::unique_ptr<Expression> var = cast_expression(context, pos, left,
resultType)) {
Analysis::UpdateVariableRefKind(var.get(), VariableRefKind::kRead);
return var;
}
}
break;
case Operator::Kind::SLASHEQ:
if (is_constant_splat(right, 1.0)) { // x /= 1
if (std::unique_ptr<Expression> var = cast_expression(context, pos, left,
resultType)) {
Analysis::UpdateVariableRefKind(var.get(), VariableRefKind::kRead);
return var;
}
}
if (std::unique_ptr<Expression> expr = make_reciprocal_expression(context, right)) {
return BinaryExpression::Make(context, pos, left.clone(), Operator::Kind::STAREQ,
std::move(expr));
}
break;
default:
break;
}
return nullptr;
}
// The expression must be scalar, and represents the right-hand side of a division op. It can
// contain anything, not just literal values. This returns the binary expression `1.0 / expr`. The
// expression might be further simplified by the constant folding, if possible.
static std::unique_ptr<Expression> one_over_scalar(const Context& context,
const Expression& right) {
SkASSERT(right.type().isScalar());
Position pos = right.fPosition;
return BinaryExpression::Make(context, pos,
Literal::Make(pos, 1.0, &right.type()),
Operator::Kind::SLASH,
right.clone());
}
static std::unique_ptr<Expression> simplify_matrix_division(const Context& context,
Position pos,
const Expression& left,
Operator op,
const Expression& right,
const Type& resultType) {
// Convert matrix-over-scalar `x /= y` into `x *= (1.0 / y)`. This generates better
// code in SPIR-V and Metal, and should be roughly equivalent elsewhere.
switch (op.kind()) {
case OperatorKind::SLASH:
case OperatorKind::SLASHEQ:
if (left.type().isMatrix() && right.type().isScalar()) {
Operator multiplyOp = op.isAssignment() ? OperatorKind::STAREQ
: OperatorKind::STAR;
return BinaryExpression::Make(context, pos,
left.clone(),
multiplyOp,
one_over_scalar(context, right));
}
break;
default:
break;
}
return nullptr;
}
static std::unique_ptr<Expression> fold_expression(Position pos,
double result,
const Type* resultType) {
if (resultType->isNumber()) {
if (result >= resultType->minimumValue() && result <= resultType->maximumValue()) {
// This result will fit inside its type.
} else {
// The value is outside the range or is NaN (all if-checks fail); do not optimize.
return nullptr;
}
}
return Literal::Make(pos, result, resultType);
}
std::unique_ptr<Expression> ConstantFolder::Simplify(const Context& context,
Position pos,
const Expression& leftExpr,
Operator op,
const Expression& rightExpr,
const Type& resultType) {
// Replace constant variables with their literal values.
const Expression* left = GetConstantValueForVariable(leftExpr);
const Expression* right = GetConstantValueForVariable(rightExpr);
// If this is the assignment operator, and both sides are the same trivial expression, this is
// self-assignment (i.e., `var = var`) and can be reduced to just a variable reference (`var`).
// This can happen when other parts of the assignment are optimized away.
if (op.kind() == Operator::Kind::EQ && Analysis::IsSameExpressionTree(*left, *right)) {
return right->clone(pos);
}
// Simplify the expression when both sides are constant Boolean literals.
if (left->isBoolLiteral() && right->isBoolLiteral()) {
bool leftVal = left->as<Literal>().boolValue();
bool rightVal = right->as<Literal>().boolValue();
bool result;
switch (op.kind()) {
case Operator::Kind::LOGICALAND: result = leftVal && rightVal; break;
case Operator::Kind::LOGICALOR: result = leftVal || rightVal; break;
case Operator::Kind::LOGICALXOR: result = leftVal ^ rightVal; break;
case Operator::Kind::EQEQ: result = leftVal == rightVal; break;
case Operator::Kind::NEQ: result = leftVal != rightVal; break;
default: return nullptr;
}
return Literal::MakeBool(context, pos, result);
}
// If the left side is a Boolean literal, apply short-circuit optimizations.
if (left->isBoolLiteral()) {
return short_circuit_boolean(pos, *left, op, *right);
}
// If the right side is a Boolean literal...
if (right->isBoolLiteral()) {
// ... and the left side has no side effects...
if (!Analysis::HasSideEffects(*left)) {
// We can reverse the expressions and short-circuit optimizations are still valid.
return short_circuit_boolean(pos, *right, op, *left);
}
// We can't use short-circuiting, but we can still optimize away no-op Boolean expressions.
return eliminate_no_op_boolean(pos, *left, op, *right);
}
if (op.kind() == Operator::Kind::EQEQ && Analysis::IsSameExpressionTree(*left, *right)) {
// With == comparison, if both sides are the same trivial expression, this is self-
// comparison and is always true. (We are not concerned with NaN.)
return Literal::MakeBool(context, pos, /*value=*/true);
}
if (op.kind() == Operator::Kind::NEQ && Analysis::IsSameExpressionTree(*left, *right)) {
// With != comparison, if both sides are the same trivial expression, this is self-
// comparison and is always false. (We are not concerned with NaN.)
return Literal::MakeBool(context, pos, /*value=*/false);
}
if (error_on_divide_by_zero(context, pos, op, *right)) {
return nullptr;
}
// Perform full constant folding when both sides are compile-time constants.
const Type& leftType = left->type();
const Type& rightType = right->type();
bool leftSideIsConstant = Analysis::IsCompileTimeConstant(*left);
bool rightSideIsConstant = Analysis::IsCompileTimeConstant(*right);
if (leftSideIsConstant && rightSideIsConstant) {
// Handle pairs of integer literals.
if (left->isIntLiteral() && right->isIntLiteral()) {
using SKSL_UINT = uint64_t;
SKSL_INT leftVal = left->as<Literal>().intValue();
SKSL_INT rightVal = right->as<Literal>().intValue();
// Note that fold_expression returns null if the result would overflow its type.
#define RESULT(Op) fold_expression(pos, (SKSL_INT)(leftVal) Op \
(SKSL_INT)(rightVal), &resultType)
#define URESULT(Op) fold_expression(pos, (SKSL_INT)((SKSL_UINT)(leftVal) Op \
(SKSL_UINT)(rightVal)), &resultType)
switch (op.kind()) {
case Operator::Kind::PLUS: return URESULT(+);
case Operator::Kind::MINUS: return URESULT(-);
case Operator::Kind::STAR: return URESULT(*);
case Operator::Kind::SLASH:
if (leftVal == std::numeric_limits<SKSL_INT>::min() && rightVal == -1) {
context.fErrors->error(pos, "arithmetic overflow");
return nullptr;
}
return RESULT(/);
case Operator::Kind::PERCENT:
if (leftVal == std::numeric_limits<SKSL_INT>::min() && rightVal == -1) {
context.fErrors->error(pos, "arithmetic overflow");
return nullptr;
}
return RESULT(%);
case Operator::Kind::BITWISEAND: return RESULT(&);
case Operator::Kind::BITWISEOR: return RESULT(|);
case Operator::Kind::BITWISEXOR: return RESULT(^);
case Operator::Kind::EQEQ: return RESULT(==);
case Operator::Kind::NEQ: return RESULT(!=);
case Operator::Kind::GT: return RESULT(>);
case Operator::Kind::GTEQ: return RESULT(>=);
case Operator::Kind::LT: return RESULT(<);
case Operator::Kind::LTEQ: return RESULT(<=);
case Operator::Kind::SHL:
if (rightVal >= 0 && rightVal <= 31) {
// Left-shifting a negative (or really, any signed) value is undefined
// behavior in C++, but not in GLSL. Do the shift on unsigned values to avoid
// triggering an UBSAN error.
return URESULT(<<);
}
context.fErrors->error(pos, "shift value out of range");
return nullptr;
case Operator::Kind::SHR:
if (rightVal >= 0 && rightVal <= 31) {
return RESULT(>>);
}
context.fErrors->error(pos, "shift value out of range");
return nullptr;
default:
return nullptr;
}
#undef RESULT
#undef URESULT
}
// Handle pairs of floating-point literals.
if (left->isFloatLiteral() && right->isFloatLiteral()) {
SKSL_FLOAT leftVal = left->as<Literal>().floatValue();
SKSL_FLOAT rightVal = right->as<Literal>().floatValue();
#define RESULT(Op) fold_expression(pos, leftVal Op rightVal, &resultType)
switch (op.kind()) {
case Operator::Kind::PLUS: return RESULT(+);
case Operator::Kind::MINUS: return RESULT(-);
case Operator::Kind::STAR: return RESULT(*);
case Operator::Kind::SLASH: return RESULT(/);
case Operator::Kind::EQEQ: return RESULT(==);
case Operator::Kind::NEQ: return RESULT(!=);
case Operator::Kind::GT: return RESULT(>);
case Operator::Kind::GTEQ: return RESULT(>=);
case Operator::Kind::LT: return RESULT(<);
case Operator::Kind::LTEQ: return RESULT(<=);
default: return nullptr;
}
#undef RESULT
}
// Perform matrix multiplication.
if (op.kind() == Operator::Kind::STAR) {
if (leftType.isMatrix() && rightType.isMatrix()) {
return simplify_matrix_times_matrix(context, pos, *left, *right);
}
if (leftType.isVector() && rightType.isMatrix()) {
return simplify_vector_times_matrix(context, pos, *left, *right);
}
if (leftType.isMatrix() && rightType.isVector()) {
return simplify_matrix_times_vector(context, pos, *left, *right);
}
}
// Perform constant folding on pairs of vectors/matrices.
if (is_vec_or_mat(leftType) && leftType.matches(rightType)) {
return simplify_componentwise(context, pos, *left, op, *right);
}
// Perform constant folding on vectors/matrices against scalars, e.g.: half4(2) + 2
if (rightType.isScalar() && is_vec_or_mat(leftType) &&
leftType.componentType().matches(rightType)) {
return simplify_componentwise(context, pos,
*left, op, *splat_scalar(context, *right, left->type()));
}
// Perform constant folding on scalars against vectors/matrices, e.g.: 2 + half4(2)
if (leftType.isScalar() && is_vec_or_mat(rightType) &&
rightType.componentType().matches(leftType)) {
return simplify_componentwise(context, pos,
*splat_scalar(context, *left, right->type()), op, *right);
}
// Perform constant folding on pairs of matrices, arrays or structs.
if ((leftType.isMatrix() && rightType.isMatrix()) ||
(leftType.isArray() && rightType.isArray()) ||
(leftType.isStruct() && rightType.isStruct())) {
return simplify_constant_equality(context, pos, *left, op, *right);
}
}
if (context.fConfig->fSettings.fOptimize) {
// If just one side is constant, we might still be able to simplify arithmetic expressions
// like `x * 1`, `x *= 1`, `x + 0`, `x * 0`, `0 / x`, etc.
if (leftSideIsConstant || rightSideIsConstant) {
if (std::unique_ptr<Expression> expr = simplify_arithmetic(context, pos, *left, op,
*right, resultType)) {
return expr;
}
}
// We can simplify some forms of matrix division even when neither side is constant.
if (std::unique_ptr<Expression> expr = simplify_matrix_division(context, pos, *left, op,
*right, resultType)) {
return expr;
}
}
// We aren't able to constant-fold.
return nullptr;
}
} // namespace SkSL